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In deciding what to investigate, how to formulate ideas and what problems
to focus on, the individual mathematician has to be guided ultimately by
their own sense of values. There are no clear rules, or rather if you only
follow old rules you do not create anything worthwhile.

Sir Michael Atiyah (FRS, Fields Medallist 1966). What’s it all
about? UK EPSRC Newsline Journal – Mathematics (2001)
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Preface

The experiences of Fox, Huskey, and Wilkinson [from solving systems
of orders up to 20] prompted Turing to write a remarkable paper [in
1948] . . . In this paper, Turing made several important contributions . . . He
used the word “preconditioning” to mean improving the condition of a
system of linear equations (a term that did not come into popular use until
1970s).
Nicholas J. Higham. Accuracy and Stability of Numerical Algorithms.

SIAM Publications (1996)

Matrix computing arises in the solution of almost all linear and nonlinear sys-
tems of equations. As the computer power upsurges and high resolution sim-
ulations are attempted, a method can reach its applicability limits quickly and
hence there is a constant demand for new and fast matrix solvers. Precondi-
tioning is the key to a successful iterative solver. It is the intention of this
book to present a comprehensive exposition of the many useful preconditioning
techniques.

Preconditioning equations mainly serve for an iterative method and are often
solved by a direct solver (occasionally by another iterative solver). Therefore
it is inevitable to address direct solution techniques for both sparse and dense
matrices. While fast solvers are frequently associated with iterative solvers,
for special problems, a direct solver can be competitive. Moreover, there are
situations where preconditioning is also needed for a direct solution method.
This clearly demonstrates the close relationship between a direct and an iterative
method.

This book is the first of its kind attempting to address an active research
topic, covering these main types of preconditioners.

xiii
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Type 1 Matrix splitting preconditioner FEM setting
Type 2 Approximate inverse preconditioner FEM setting
Type 3 Multilevel (approximate inverse) preconditioner FEM setting
Type 4 Recursive Schur complements preconditioner FEM setting
Type 5 Matrix splitting and Approximate inverses Wavelet setting
Type 6 Recursive Schur complements preconditioner Wavelet setting
Type 7 Implicit wavelet preconditioner FEM setting

Here by ‘FEM setting’, we mean a usual matrix (as we found it) often formed
from discretization by finite element methods (FEM) for partial differential
equations with piecewise polynomial basis functions whilst the ‘Wavelet
setting’ refers to wavelet discretizations. The iterative solvers, often called
accelerators, are selected to assist and motivate preconditioning. As we believe
that suitable preconditioners can work with most accelerators, many other
variants of accelerators are only briefly mentioned to allow us a better focus
on the main theme. However these accelerators are well documented in whole
or in part in the more recent as well as the more classical survey books or
monographs (to name only a few)

� Young, D. M. (1971). Iterative Solution of Large Linear Systems. Academic
Press.

� Hageman A. L. and Young D. M. (1981). Applied Iterative Methods. Aca-
demic Press.

� McCormick S. F. (1992). Multilevel Projection Methods for Partial Differen-
tial Equations. SIAM Publications.

� Barrett R., et al. (1993). Templates for the Solution of Linear Systems: Build-
ing Blocks for Iterative Methods. SIAM Publications.

� Axelsson O. (1994). Iterative Solution Methods. Cambridge University Press
(reprinted by SIAM Publications in 2001)

� Hackbusch W. (1994). Iterative Solution of Large Sparse Systems. Springer-
Verlag.

� Kelly C. T. (1995). Iterative Methods for Solving Linear and Nonlinear Equa-
tions. SIAM Publications.

� Smith B., et al. (1996). Domain Decomposition Methods. Cambridge Uni-
versity Press.

� Golub G. and van Loan C. (1996). Matrix Computations, 3rd edn. Johns
Hopkins University Press.

� Brezinski C. (1997). Projection Methods for Systems of Equations. North-
Holland.

� Demmel J. (1997). Applied Numerical Linear Algebra. SIAM Publications.
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� Greenbaum A. (1997). Iterative Methods for Solving Linear Systems. SIAM
Publications.

� Trefethen N. and Bau D. (1997). Numerical Linear Algebra. SIAM Publica-
tions.

� Dongarra J., et al. (1998). Numerical Linear Algebra on High-Performance
Computers. SIAM Publications.

� Briggs W., et al. (2000). A Multigrid Tutorial, 2nd edn. SIAM Publications.
� Varga R. (2001). Matrix Iteration Analysis, 2nd edn. Springer.
� Higham N. J. (2002). Accuracy and Stability of Numerical Algorithms, 2nd

edn. SIAM Publications.
� van der Vorst H. A. (2003). Iterative Krylov Methods for Large Linear Sys-

tems. Cambridge University Press
� Saad Y. (2003). Iterative Methods for Sparse Linear Systems. PWS.
� Duff I. S., et al. (2006). Direct Methods for Sparse Matrices, 2nd edn.

Clarendon Press.
� Elman H., et al. (2005) Finite Elements and Fast Solvers. Oxford University

Press.

Most generally applicable preconditioning techniques for unsymmetric ma-
trices are covered in this book. More specialized preconditioners, designed for
symmetric matrices, are only briefly mentioned; where possible we point to
suitable references for details. Our emphasis is placed on a clear exposition of
the motivations and techniques of preconditioning, backed up by MATLAB r©1

Mfiles, and theories are only presented or outlined if they help to achieve better
understanding. Broadly speaking, the convergence of an iterative solver is de-
pendent of the underlying problem class. The robustness can often be improved
by suitably designed preconditioners. In this sense, one might stay with any
preferred iterative solver and concentrate on preconditioner designs to achieve
better convergence.

As is well known, the idea of providing and sharing software is to enable
other colleagues and researchers to concentrate on solving newer and harder
problems instead of repeating work already done. In the extreme case, there is
nothing more frustrating than not being able to reproduce results that are claimed
to have been achieved. The MATLAB Mfiles are designed in a friendly style
to reflect the teaching of the author’s friend and former MSc advisor Mr Will

1 MATLAB is a registered trademark of MathWorks, Inc; see its home page
http://www.mathworks.com. MATLAB is an easy-to-use script language, hav-
ing almost the full capability as a C programming language without the somewhat
complicated syntax of C . Beginners can consult a MATLAB text e.g. [135] from
http://www.liv.ac.uk/maths/ETC/matbook or any tutorial document from
the internet. Search http://www.google.com using the key words: MATLAB tutorial.
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McLewin (University of Manchester) who rightly said: ‘in Mathematics, never
use the word ‘obviously’.’ A simple and useful feature of the supplied Mfiles
is that typing in the file name invokes the help page, giving working examples.
(The standard MATLAB reply to such a usage situation is ??? Error . . . Not
enough input arguments.)

The book was born mainly out of research work done in recent years and
partly out of a need of helping out graduate students to implement a method
following the not-always-easy-to-follow descriptions by some authors (who
use the words ‘trivial’, ‘standard’, ‘well-known’, ‘leave the reader to work it
out as an exercise’ in a casual way and in critical places). That is to say, we
aspire to emphasize the practical implementation as well as the understand-
ing rather than too much of the theory. In particular the book is to attempt a
clear presentation and explanation, with the aid of illustrations and computer
software, so that the reader can avoid the occasional frustration that one must
know the subject already before one can really understand and appreciate a
beautiful mathematical idea or algorithm presented in some (maybe a lot of)
mathematical literature.

� About the solvers and preconditioners.

Chapter 1. (Introduction) defines the commonly used concepts; in particular the
two most relevant terms in preconditioning: condition number and clustering.
With non-mathematics majors’ readers in mind, we give an introduction to sev-
eral discretization and linearization methods which generate matrix equations –
the idea of mesh ordering affecting the resulting matrix is first encountered.
Examples of bounding conditioned numbers by considering norm equivalence
(for symmetric systems) are given; these appealing theories are not a guarantee
for fast convergence of iterative solvers. Both the fast Fourier transforms (FFT)
and fast wavelet transforms (FWT) are introduced here (mainly discrete FWT
and the continuous to come later); further discussions of FFT and FWT are in
Chapters 2, 4 and 8.

Chapter 2. (Direct methods) discusses the direct Gaussian elimination method
and the Gauss–Jordan and several variants. Direct methods are on one hand
necessary for forward type preconditioning steps and on the other hand pro-
vide various motivations for designing an effective preconditioner. Likewise,
for some ill-conditioned linear systems, there is a strong need for scaling
and preconditioning to obtain accurate direct solutions – a much less ad-
dressed subject. Algorithms for inverting several useful special matrices are then
given; for circulant matrices diagonalization by Fourier transforms is explained
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before considering Toeplitz matrices. Block Toeplitz matrices are considered
later in Chapter 13. Algorithms for graph nodal or mesh (natural graph) order-
ings by reverse Cuthill–McKee method (RCM), spiral and domain decompo-
sition methods (DDM) are given. The Schur complements and partitioned LU
decompositions are presented together; for symmetric positive definite (SPD)
matrices, some Schur properties are discussed. Overall, this chapter contains
most of the ingredients for implementing a successful preconditioner.

Chapter 3. (Iterative methods) first discusses the classical iterative methods and
highlights their use in multigrid methods (MGM, Chapter 6) and DDM. Then
we introduce the topics most relevant to the book, conjugate gradient methods
(CGM) of the Krylov subspace type (the complex variant algorithm does not
appear in the literature as explicitly as presented in Section 3.7). We elaborate on
the convergence with a view on preconditioners’ design. Finally the popular fast
multipole expansion method (along with preconditioning) is introduced. The
mission of this chapter is to convey the message that preconditioning is relatively
more important than modifying existing or inventing new CGM solvers.

Chapter 4. (Matrix splitting preconditioners: Type 1) presents a class of mainly
sparse preconditioners and indicates their possible application areas, algorithms
and limitations. All these preconditioners are of the forward type, i.e. M ≈ A
in some way and efficiency in solving Mx = b is assured. The most effective
and general variant is the incomplete LU (ILU) preconditioner with suitable
nodal ordering. The last two main sections (especially the last one) are mainly
useful for dense matrix applications.

Chapter 5. (Approximate inverse preconditioners: Type 2) presents another
large class of sparse approximate inverse preconditioners for a general sparse
matrix problem, with band preconditioners suitable for diagonally dominant
matrices and near neighbour preconditioners suitable for singular operator equa-
tions. All these preconditioners are of the backward type, i.e. M ≈ A−1 in some
way and application of each sparse preconditioner M requires a simple multi-
plication.

Chapter 6. (Multilevel methods and preconditioners: Type 3) gives an introduc-
tion to geometric multigrid methods for partial differential equations (PDEs)
and integral equations (IEs) and algebraic multigrid method for sparse linear
systems, indicating that for PDEs, in general, smoothing is important but can
be difficult while for IEs operator compactness is the key. Finally we discuss
multilevel domain decomposition preconditioners for CG methods.
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Chapter 7. (Multilevel recursive Schur preconditioners: Type 4) surveys the re-
cent Schur complements based recursive preconditioners where matrix partition
can be based on functional space nesting or graph nesting (both geometrically
based and algebraically based).

Chapter 8. (Sparse wavelet preconditioners: Type 5) first introduces the con-
tinuous wavelets and then considers to how construct preconditioners under the
wavelet basis in which an underlying operator is more amenable to approxima-
tion by the techniques of Chapters 4–7. Finally we discuss various permutations
for the standard wavelet transforms and their use in designing banded arrow
(wavelet) preconditioners.

Chapter 9. (Wavelet Schur preconditioners: Type 6) generalizes the Schur pre-
conditioner of Chapter 7 to wavelet discretization. Here we propose to combine
the non-standard form with Schur complement ideas to avoid finger-patterned
matrices.

Chapter 10. (Implicit wavelet preconditioners: Type 7) presents some recent
results that propose to combine the advantages of sparsity of finite elements,
sparse approximate inverses and wavelets compression. Effectively the wavelet
theory is used to justify the a priori patterns that are needed to enable approx-
imate inverses to be efficient; this strategy is different from Chapter 9 which
does not use approximate inverses.

� About the selected applications.

Chapter 11. (Application I) discusses the iterative solution of boundary integral
equations reformulating the Helmholtz equation in an infinite domain modelling
the acoustic scattering problem. We include some recent results on high order
formulations to overcome the hyper-singularity. The chapter is concluded with
a discussion of the open challenge of modelling high wavenumber problems.

Chapter 12. (Application II) surveys some recent work on preconditioning cou-
pled matrix problems. These include Hermitian and skew-Hermitian splitting,
continuous operators based Schur approximations for Oseen problems, the
block diagonal approximate inverse preconditioners for a coupled fluid structure
interaction problem, and FWT based sparse preconditioners for EHL equations
modelling the isothermal (two dependent variables) and thermal (three depen-
dent variables) cases.

Chapter 13. (Application III) surveys some recent results for iterative solution
of inverse problems. We take the example of the nonlinear total variation (TV)
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equation for image restoration using operator splitting and circulant precondi-
tioners. We show some new results based on combining FWT and FFT precon-
ditioners for possibly more robust and faster solution and results on developing
nonlinear multigrid methods for optimization. Also discussed is the ‘matrix-
free’ idea of solving an elliptic PDE via an explicit scheme of a parabolic PDE,
which is widely used in evolving level set functions for interfaces tracking; the
related variational formulation of image segmentation is discussed.

Chapter 14. (Application IV) shows an example from scientific computing that
typifies the challenge facing computational mathematics – the bifurcation prob-
lem. It comes from studying voltage stability in electrical power transmission
systems. We have developed two-level preconditioners (approximate inverses
with deflation) for solving the fold bifurcation while the Hopf problem remains
an open problem as the problem dimension is ‘squared’!

Chapter 15. (Parallel computing) gives a brief introduction to the important
subject of parallel computing. Instead of parallelizing many algorithms, we
motivate two fundamental issues here: firstly how to implement a parallel algo-
rithm in a step-by-step manner and with complete MPI Fortran programs, and
secondly what to consider when adapting a sequential algorithm for parallel
computing. We take four relatively simple tasks for discussing the underlying
ideas.

The Appendices give some useful background material, for reference pur-
pose, on introductory linear algebra, the Harwell–Boeing data format, a
MATLAB tutorial, the supplied Mfiles and Internet resources relevant to this
book.

� Use of the book. The book should be accessible to graduate students in
various scientific computing disciplines who have a basic linear algebra and
computing knowledge. It will be useful to researchers and computational prac-
titioners. It is anticipated that the reader can build intuition, gain insight and
get enough hands on experience with the discussed methods, using the supplied
Mfiles and programs from

http : //www.cambridge.org/9780521838283
http : //www.liv.ac.uk/maths/ETC/mpta

while reading. As a reference for researchers, the book provides a toolkit and
with it the reader is expected to experiment with a matrix under consideration
and identify the suitable methods first before embarking on serious analysis of
a new problem.
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Nomenclature

All the beautiful mathematical ideas can be found in Numerical Linear
Algebra. However, the subject is better to be enjoyed by researchers
than to teach to students as many excellent ideas are often buried in the
complicated notation. A researcher must be aware of this fact.

Gene H. Golub. Lecture at University of Liverpool (1995)

Throughout the book, capital letters such as A denote a rectangular matrix m × n
(or a square matrix of size n), whose (i, j) entry is denoted by A(i, j) = ai j ,
and small letters such as x, b denote vectors of size n unless stated otherwise
i.e. A ∈ R

m×n and x, b ∈ R
n .

Some (common) abbreviations and notations are listed here

C
n → the space of all complex vectors of size n

R
n → the space of all real vectors of size n

[note R
n ⊂ C

n and R
n×n ⊂ C

n×n) ]
‖A‖ → A norm of matrix A (see §1.5)
|A| → The matrix of absolute values of A i.e.

(|A|)i j = |A(i, j)| = |ai j |.
AT → The transpose of A i.e. AT (i, j) = A( j, i).

[A is symmetric if AT = A]
AH → The transpose conjugate for complex A i.e. AH (i, j) = A( j, i).

[A is Hermitian if AH = A. Some books write A∗ = AH ]
det(A) → The determinant of matrix A

diag(α j ) → A diagonal matrix made up of scalars α j

λ(A) → An eigenvalue of A
A ⊕ B → The direct sum of orthogonal quantities A, B
A 
 B → The biproduct of matrices A, B (Definition 14.3.8)
A ⊗ B → The tensor product of matrices A, B (Definition 14.3.3)

xxi
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σ (A) → A singular value of A
κ(A) → The condition number cond(A) of A (in some norm)
�(A) → Eigenspectrum for A

�ε(A) → ε-Eigenspectrum for A
�(A) → Spectrum of singular values of A
Qk → Set of all degree k polynomials with q(0) = 1 for q ∈ Qk

W(A) → Field of values (FoA) spectrum
AINV → Approximate inverse [55]
BEM → Boundary element method

BIE → Boundary integral equation
BCCB → Block circulant with circulant blocks
BTTB → Block Toeplitz with Toeplitz blocks

BPX → Bramble–Pasciak–Xu (preconditioner)
CG → Conjugate gradient

CGM → CG Method
CGN → Conjugate gradient normal method

DBAI → Diagonal block approximate inverse (preconditioner)
DDM → Domain decomposition method
DFT → Discrete Fourier transform

DWT → Discrete wavelet transform
FDM → Finite difference method
FEM → Finite element method
FFT → Fast Fourier transform

FFT2 → Fast Fourier transform in 2D (tensor products)
FMM → Fast multipole method

FoV → Field of values
FSAI → Factorized approximate inverse (preconditioner) [321]
FWT → Fast wavelet transform

GMRES → Generalised minimal residual method
GJ → Gauss–Jordan decomposition
GS → Gauss–Seidel iterations (or Gram–Schmidt method)
HB → Hierachical basis (finite elements)

ILU → Incomplete LU decomposition
LU → Lower upper triangular matrix decomposition

LSAI → Least squares approximate inverse (preconditioner)
MGM → Multigrid method
MRA → Multilresolution analysis
OSP → Operator splitting preconditioner
PDE → Partial differential equation



Nomenclature xxiii

PSM → Powers of sparse matrices
QR → Orthogonal upper triangular decomposition

SDD → Strictly diagonally dominant
SOR → Successive over-relaxation

SSOR → Symmetric SOR
SPAI → Sparse approximate inverse [253]
SPD → Symmetric positive definite matrix (λ j (A) > 0)
SVD → Singular value decomposition

WSPAI → Wavelet SPAI
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Introduction

To obtain improved convergence rates for the methods of successive dis-
placement we require the coefficient matrix to have a P-condition number
as small as possible. If this criterion is not satisfied, then it is advisable
to prepare the system or ‘precondition’ it beforehand.

D. J. Evans. Journal of the Institute of Mathematics and Applications,
(1968)

In devising a preconditioner, we are faced with a choice between finding
a matrix M that approximates A, and for which solving a system is easier
than solving one with A, or finding a matrix M that approximates A−1,
so that only multiplication by M is needed.

R. Barrett, et al. The Templates book. SIAM Publications (1993)

This book is concerned with designing an effective matrix, the so-called pre-
conditioner, in order to obtain a numerical solution with more accuracy or in
less time. Denote a large-scale linear system of n equations, with A ∈ R

n×n, b ∈
R

n , by

Ax = b (1.1)

and one simple preconditioned system takes the following form

M Ax = Mb. (1.2)

(Our primary concern is the real case; the complex case is addressed later.)
We shall present various techniques of constructing such a preconditioner M
that the preconditioned matrix A1 = M A has better matrix properties than A.
As we see, preconditioning can strike the balance of success and failure of a
numerical method.

1



2 Introduction

This chapter will review these introductory topics (if the material proves
difficult, consult some suitable textbooks e.g. [80,444] or read the Appendix of
[299]).

Section 1.1 Direct and iterative solvers, types of preconditioning
Section 1.2 Norms and condition number
Section 1.3 Perturbation theorems for linear systems and eigenvalues
Section 1.4 The Arnoldi iterations and decomposition
Section 1.5 Clustering, field of values and ε-pseudospectrum
Section 1.6 Fast Fourier transforms and fast wavelet transforms
Section 1.7 Numerical solution techniques
Section 1.8 Common theories on preconditioned systems
Section 1.9 Guide to software development and the supplied M-files

Here Sections 1.2–1.5 review some basic theories, Sections 1.6 and 1.7 some nu-
merical tools with which many matrix problems are derived from applied math-
ematics applications, and Section 1.8 on general discussion of preconditioning
issues. Finally Section 1.9 introduces several software Mfiles which the reader
can download and use to further the understanding of the underlying topics.

1.1 Direct and iterative solvers, types of preconditioning

There are two types of practical methods for solving the equation (1.1): the
direct methods (Chapter 2) and the iterative methods (Chapter 3). Each method
produces a numerical solution x , that should approximate the analytical solution
x∗ = A−1b with a certain number of accurate digits. Modern developments into
new solution techniques make the distinction of the two types a bit blurred,
because often the two are very much mixed in formulation.

Traditionally, a direct method refers to any method that seeks a solution to
(1.1) by simplifying A explicitly

Ax = b =⇒ A j x = b j =⇒ T x = c, (1.3)

where T is a much simplified matrix (e.g. T is ideally diagonal) and c ∈ R
n .

The philosophy is essentially decoupling the interactions of components of
x = [x1, . . . , xn]T in a new system. One may say that the ‘enemy’ is A. A
somewhat different approach is taken in the Gauss–Purcell method Section 15.5
that views x from a higher space R

n+1.
On the other hand, without modifying entries of A, an iterative method finds

a sequence of solutions x0, x1, . . . , xk, . . . by working closely with the residual
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vector

r = rk = b − Axk, (1.4)

which can not only indicate how good xk is, but also may extract analytical
information of matrix A. One hopes that an early termination of iterations will
provide a sufficient accurate solution, which is cheaper to obtain than a direct
solver. Indeed it is the analytical property of A that determines whether an
iterative method will converge at all. See Chapter 3.

A preconditioner may enter the picture of both types of methods. It can help
a direct method (Chapter 2) to achieve the maximum number of digits allowable
in full machine precision, whenever conditioning is an issue. For an iterative
method (Chapter 3), when (often) convergence is a concern, preconditioning
is expected to accelerate the convergence to an approximate solution quickly
[48,464].

Although we have only listed one typical type of preconditioning in (1.2)
namely the left inverse preconditioner as the equation makes sense only when
M ≈ A−1 in some sense. There are several other types, each depending on how
one intends to approximate A and whether one intends to transform A to Ã in
a different space before approximation.

Essentially all preconditioners fall into two categories.

Forward Type: aiming M ≈ A
I (left) M−1 Ax = M−1b
II (right) AM−1 y = b, x = M−1 y
III (mixed) M−1

2 AM−1
1 y = M−1

2 b, x = M−1
1 y

Inverse Type: aiming M ≈ A−1

I (left) M Ax = Mb
II (right) AMy = b, x = My
III (mixed) M2 AM1 y = M2b, x = M1 y.

Clearly matrix splitting type (e.g. incomplete LU decomposition [28] as in
Chapter 4) preconditioners fall into the Forward Type as represented

M−1 Ax = M−1b (1.5)

while the approximate inverse type preconditioners (e.g. AINV [57] and SPAI
[253] as in Chapter 5) fall into the Inverse Type and can be represented by
(1.2) i.e.

M Ax = Mb. (1.6)

Similarly it is not difficult to identify the same types of preconditioners when
A is first transformed into Ã in another space, as in Chapters 8–10.
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Remark 1.1.1. Here we should make some remarks on this classification.

(1) As with all iterative solution methods, explicit inversion in the Forward
Type is implemented by a direct solution method e.g. implement z = M−1w

as solving Mz = w for z (surely one can use another iterative solver for
this).

(2) Each preconditioner notation can be interpreted as a product of simple
matrices (e.g. factorized form).

(3) In the context of preconditioning, the notation M ≈ A or M−1 ≈ A should
be broadly interpreted as approximating either A (or A−1) directly or simply
its certain analytical property (e.g. both M and A have the same small
eigenvalues).

1.2 Norms and condition number

The magnitude of any scalar number is easily measured by its modulus, which
is non-negative, i.e. |a| for a ∈ R. The same can be done for vectors in R

n

and matrices in R
m×n , through a non-negative measure called the norm. The

following definition, using three norm axioms, determines if any such non-
negative measure is a norm.

Definition 1.2.2. Let V be either R
n (for vectors) or R

m×n (for matrices). A
measure ‖u‖ of u ∈ V , satisfying the following Norm axioms, is a valid norm:

� ‖u‖ ≥ 0 for any u and ‖u‖ = 0 is and only if u = 0,
� ‖αu‖ = |α|‖u‖ for any u and any α ∈ R,
� ‖u + v‖ ≤ ‖u‖ + ‖v‖ for any u, v ∈ V .

Remark that the same axioms are also used for function norms.
One can verify that the following are valid vector norms [80], for x ∈ R

n ,

‖x‖p =


(

n∑
i=1

|xi |p

)1/p

, if 1 ≤ p < ∞,

max
1≤i≤n

|xi |, if p = ∞.

(1.7)

and similarly the following are valid matrix norms, for A ∈ R
m×n ,

‖A‖p = sup
x 	=0∈Rn

‖Ax‖p

‖x‖p
= sup

‖x‖p=1
‖Ax‖p, (1.8)

where ‘sup’ denotes ‘supremum’ and note Ax ∈ R
m .

While the formulae for vector norms are easy, those for matrices are not.
We need to take some specific p in order to present computable formulae
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from (1.8)

p = 1 : ‖A‖1 = max
1≤ j≤n

m∑
i=1

|ai j | = max
1≤ j≤n

‖a j‖1,

p = 2 : ‖A‖2 = ρ(AT A)1/2 = max
1≤ j≤n

λ j (AT A)1/2 = σmax(A)

p = ∞ : ‖A‖∞ = max
1≤i≤m

n∑
j=1

|ai j | = max
1≤i≤m

‖̃ai‖1,

(1.9)

where A ∈ R
m×n is partitioned in columns first A = [a1, . . . , an] and then in

rows A = [̃aT
1 , . . . , ãT

m ]T , λ is the notation for eigenvalues,1 ρ denotes the spec-
tral radius and σmax(A) denotes the maximal singular value.2 Notice that the
matrix 2-norm (really an eigenvalue norm) does not resemble the vector 2-norm.
The proper counterpart is the following matrix Frobenius norm:

‖A‖F =
√√√√ n∑

i=1

n∑
j=1

a2
i j =

√√√√ n∑
j=1

‖a j‖2
2 =

√√√√ m∑
i=1

‖̃ai‖2
2

= [
trace(AT A)

]1/2 = [
trace(AAT )

]1/2 =
[

n∑
j=1

λ j (AAT )

]1/2

.

(1.10)

A closely related norm is the so-called Hilbert–Schmidt ‘weak’ norm

‖A‖H S = ‖A‖F√
n

=
√√√√1

n

n∑
i=1

n∑
j=1

a2
i j .

We now review some properties of norms for vectors and square matrices.

(1) If M−1 AM = B, then A, B are similar so λ j (B) = λ j (A), although this
property is not directly useful to preconditioning since the latter is supposed
to change λ.
Proof. For any j , from Ax j = λ(A)x j , we have (define y j = M−1x j )

M−1 AM M−1x j = λ j (A)M−1x j =⇒ By j = λ j y j .

Clearly λ j (B) = λ j (A) and the corresponding j th eigenvector for B is y j .

1 Recall the definition of eigenvalues λ j and eigenvectors x j of a square matrix B ∈ R
n×n :

Bx j = λ j x j , for j = 1,· · · , n,

with ρ(B) = max j |λ j |. Also det(B) = ∏n
j=1 λ j and trace(B) = ∑n

j=1 B( j, j) = ∑n
j=1 λ j .

2 Recall that, if A = U�V T with � = diag(σ j ) for orthogonal U, V , then σ j ’s are the singular
values of A while U, V contain the left and right singular vectors of A respectively. Denote by
�(A) the spectrum of singular values.
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(2) One of the most useful properties of the 2-norm and F-norm is the so-called
norm invariance i.e. an orthogonal matrix Q ∈ R

n×n (satisfying QT Q =
Q QT = I or QT = Q−1) does not change the 2-norm of a vector or both
the 2-norm and the F-norm of a matrix.
The proof is quite simple for the vector case: e.g. let y = Qx , then ‖y‖2

2 =
yT y = (Qx)T Qx = xT QT Qx = xT x = ‖x‖2

2.
For matrices, we use (1.8) to prove ‖P AQ‖ = ‖A‖ for F and 2-norms.
Proof. (i) 2-norm case: (Norm invariance)
Noting that λ(QT AT AQ) = λ(AT A) since Q serves as a similarity trans-
form, then

‖P AQ‖2 = ρ((P AQ)T P AQ) = ρ(QT AT AQ) = ρ(AT A) = ‖A‖2.

(ii) F-norm case: Let AQ = W = [w1, w2, . . . , wn] (in columns).
We hope to show ‖PW‖F = ‖W‖F first. This follows from a column
partition of matrices and the previous property for vector norm invari-
ance: ‖P AQ‖2

F = ‖PW‖2
F = ∑n

j=1 ‖Pw j‖2
2 = ∑n

j=1 ‖w j‖2
2 = ‖W‖2

F =
‖AQ‖2

F . Next it remains to show that ‖AQ‖2
F = ‖A‖2

F from a row partition

A = (
aT

1 aT
2 . . . aT

n

)T
and again the vector norm invariance:

‖AQ‖2
F =

n∑
i=1

‖ai Q‖2
2 =

n∑
i=1

‖QT aT
i ‖2

2 =
n∑

i=1

‖aT
i ‖2

2 = ‖A‖2
F .

The same result holds for the complex case when Q is unitary.3

(3) The spectral radius is the lower bound for all matrix norms: ρ(B) ≤ ‖B‖.
The proof for p-norms is quite easy, as (define Bxk = λk xk)

ρ(B) = max
1≤ j≤n

|λ j (B)| = |λk(B)| = |λk(B)| · ‖xk‖
‖xk‖

= ‖Bxk‖
‖xk‖ ≤ sup

x 	=0

‖Bx‖p

‖x‖p
= ‖B‖p.

For the F-norm, one can use the Schur unitary decomposition

B = U T U H , with triangular T = � + N , (1.11)

where U H is the conjugate transpose of the matrix U and � = diag(T ) con-
tains the eigenvalues, so4 ‖B‖2

F = ‖T ‖2
F = ‖�‖2

F + ‖N‖2
F . Hence ρ(B) ≤√∑n

j=1 |λ j |2 ≤ ‖T ‖F .

3 In contrast to QT Q = I for a real and orthogonal matrix Q, a complex matrix Q is called unitary
if Q H Q = I .

4 This equation is used later to discuss non-normality. For a normal matrix, ‖N‖ = 0 as N = 0.
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(4) If A is symmetric, then AT A = A2 so the 2-norm is simply: ‖A‖2 =
ρ(A2)1/2 = ρ(A).
The proof uses the facts: λ j (A2) = λ j (A)2 and in general λ j (Ak) = λ j (A)k

for any matrix A which is proved by repeatedly using Ax j = λx j (if λ j 	= 0
and ∀ integer k).

(5) Matrix ∞-norm (1.9) may be written into a product form

‖A‖∞ = max
1≤i≤m

‖̃ai‖1 = ‖ |A|e‖∞ , (1.12)

with e = (1, . . . , 1)T , and similarly

‖A‖1 = max
1≤ j≤n

‖a j‖1 = ∥∥ |AT |e∥∥∞ =
∥∥∥∥(

eT |A|
)T

∥∥∥∥
∞

,

i.e.

‖ A︸︷︷︸
matrix

‖∞ = ‖ |A|e︸︷︷︸
vector

‖∞, and ‖ A︸︷︷︸
matrix

‖1 = ‖ |AT |e︸ ︷︷ ︸
vector

‖∞.

(6) Besides the above ‘standard matrix norms’, one may also view a n × n
matrix A ∈ R

n×n as a member of the long vector space A ∈ R
n2

. If so, A
can be measured in vector p-norms directly (note: ‖A‖2,v = ‖A‖F so this
explains how F-norm is invented)

‖A‖p,v =
(

n∑
j=1

n∑
k=1

|a jk |p

)1/p

.

(7) Different norms of the same quantity can only differ by at most a constant
multiple that depends on the dimension parameter n. For example,

‖A‖1 ≤ n‖A‖∞, ‖A‖∞ ≤ n‖A‖1, and (1.13)

‖A‖2 ≤ √
n‖A‖1, ‖A‖1 ≤ √

n‖A‖2, (1.14)

from the vector norm inequalities

‖x‖1√
n

≤ ‖x‖2 ≤ ‖x‖1. (1.15)

Proof. To prove (1.13), use (1.8) and matrix partitions in (1.9): for any
x 	= 0 ∈ R

n ,

‖Ax‖1

‖x‖1
=

∑n
i=1 |̃ai x |∑n
i=1 |xi | ≤ n maxi |̃ai x |∑n

i=1 |xi | ≤ n maxi |̃ai x |
maxi |xi | = n‖Ax‖∞

‖x‖∞
,

‖Ax‖∞
‖x‖∞

= n maxi |̃ai x |
n maxi |xi | ≤ n maxi |̃ai x |∑n

i=1 |xi | ≤ n
∑n

i=1 |̃ai x |∑n
i=1 |xi | = n‖Ax‖1

‖x‖1
.
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Thus the proof for (1.13) is complete from (1.8). To prove the left inequality
(since the second one is easy) in (1.15), we can use induction and the
Cauchy–Schwarz inequality

|x · y| ≤ ‖x‖2‖y‖2, ||x1| + |x2|| ≤
√

2
√

x2
1 + x2

2 .

Using (1.15), inequalities (1.14) follow from (1.8).

Further results will be given later when needed; consult also [80,229,280].
(8) The condition number of a nonsingular matrix A ∈ R

n×n is defined as

κ(A) = ‖A‖‖A−1‖. (1.16)

From ‖AB‖ ≤ ‖A‖‖B‖ and ‖I‖ = 1, we have

κ(A) ≥ 1. (1.17)

Here certain matrix norm is used and sometimes for clarity we write ex-
plicitly κ	(A) if the 	-norm is used (e.g. 	 = 1, 2 or 	 = F).

Although widely publicized and yet vaguely convincing, a condition
number measures how well-conditioned a matrix is. However, without in-
volving a particular context or an application, the meaning of κ(A) can be
seen more precisely from the following two equivalent formulae [280]:

κ(A) = lim
ε→0

sup
‖
A‖≤ε‖A‖

‖(A + 
A)−1 − A−1‖
ε‖A−1‖ , (1.18)

κ(A) = 1

dist(A)
with dist(A) = min

A+
A singular

‖
A‖
‖A‖ . (1.19)

If A is ‘far’ from its nearest singular neighbour, the condition number is
small.

Two further issues are important. Firstly, if A is nonsingular and P, Q are
orthogonal matrices, then κ(P AQ) = κ(A) for F and 2-norms.
Proof. This result is a consequence of matrix norm invariance:

κ(P AQ)=‖(P AQ)−1‖‖P AQ‖=‖QT A−1PT ‖‖A‖=‖A−1‖‖A‖=κ(A).

Secondly, if A is symmetric and nonsingular, then eigensystems are special
so

κ2(A) = ‖A‖2‖A−1‖2 = ρ(A)ρ(A−1) = |λ|max

|λ|min
. (1.20)
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For SPD matrices, as λ j (A) > 0,

κ2(A) = λmax

λmin
. (1.21)

Example 1.2.3. The following 3 × 3 matrix

A =
12 1 −17

5 4 −9
7 1 −10


has three eigenvalues λ = 1, 2, 3, from solving |A − λI | = λ3 − 6λ2 +

11λ − 6 = 0, corresponding to three eigenvectors x1 =
3

1
2

 , x2 =
5

1
3

 and

x3 =
 2

−1
1

.

Clearly the spectral radius of A is ρ(A) = 3, ‖A‖1 = 36 and ‖A‖∞ =
30. Finally putting the eigensystems Ax j = λ j x j into matrix form, noting
X = [x1 x2 x3] and AX = [Ax1 Ax2 Ax3], we obtain AX = X D with D =

diag(1, 2, 3). From A−1 =
−31/6 −7/6 59/6

−13/6 −1/6 23/6
−23/6 −5/6 43/6

, we can compute that

κ1(A) = 36 (125/6) = 750.

Remark 1.2.4. Although this book will focus on fast solvers for solving the
linear system (1.1), the solution of the eigenvalue problems may be sought
by techniques involving indefinite and singular linear systems and hence our
preconditioning techniques are also applicable to ‘preconditioning eigenvalue
problems’ [36,58,360]. Refer also to [486].

1.3 Perturbation theories for linear systems
and eigenvalues

A computer (approximate) solution will not satisfy (1.1) exactly so it is of
interest to examine the perturbation theory.

Theorem 1.3.5. Let Ax = b and (A + 
A)(x + 
x) = b + 
b.
If ‖A−1‖‖
A‖ < 1, then

‖
x‖
‖x‖ ≤ κ(A)

1 − ‖A−1‖‖
A‖
(‖
A‖

‖A‖ + ‖
b‖
‖b‖

)
. (1.22)
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The proof of this result is easy once one notes that


x = (A + 
A)−1 (−
Ax + 
b) = (
I + A−1
A

)−1
A−1(−
Ax + 
b),

‖ (
I + A−1
A

)−1 ‖ ≤ 1/(1 − ‖A−1‖‖
A‖), ‖b‖ ≤ ‖A‖‖x‖.
Here for our application to iterative solution, 
A is not a major concern but


b will be reflected in the usual stopping criterion based on residuals. Clearly
the condition number κ(A) will be crucial in determining the final solution
accuracy as computer arithmetic has a finite machine precision.

Eigenvalue perturbation. We give a brief result on eigenvalues simply for
comparison and completeness [218].

Theorem 1.3.6. (Bauer–Fike). Let A, X ∈ R
n×n and X be nonsingular. For

D = diag(λi ) with λi = λi (A), let ‖.‖ be one of these norms: 1, 2 or ∞,
such that ‖D‖ = max

1≤i≤n
|λi |. If B = A + 
A is a perturbed matrix of A and

X−1 AX = D, then all eigenvalues of B are inside the union of n discs
n⋃

i=1

�i ,
where the discs are defined by
General case: 1, 2, ∞ norm and any matrix X: cond(X ) = ‖X‖ ‖X−1‖ ≥ 1

�i = {z ∈ C | |z − λi | ≤ cond(X )‖
A‖}.

Special case: 2-norm and orthogonal matrix X: cond(X ) = ‖X‖2 ‖X−1‖2 = 1

�i = {z ∈ C | |z − λi | ≤ ‖
A‖2}.

Proof. Define K = D − µI . If µ is an eigenvalue of B, then B − µI = A +

A − µI is singular; we may assume that this particular µ 	= λi (A) for any i
(otherwise the above results are already valid as the difference is zero). That is,
we assume K is nonsingular. Also define W = K −1 X−1
AX . Now consider
decomposing

B − µI = A + 
A − λI = X DX−1 + 
A − µI

= X
[
D + X−1
AX − µI

]
X−1

= X
[
(D − µI ) + X−1
AX

]
X−1

= X
[
K + X−1
AX

]
X−1

= X K
[
I + K −1 X−1
AX

]
X−1

= X K [I + W ] X−1.

Clearly, by taking determinants both sides, matrix I + W must be singu-
lar as B − µI is, so W has the eigenvalue −1. Further from the property
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ρ(W ) ≤ ‖W‖,

1 = |λ(W )| ≤ ρ(W ) ≤ ‖W‖ = ‖K −1 X−1
AX‖
≤ ‖K −1‖ ‖X−1‖ ‖
A‖ ‖X‖ = ‖K −1‖ κ(X )‖
A‖.

As K is a simple diagonal matrix, we observe that

K −1 = diag (1/(λ1 − µ), 1/(λ2 − µ) . . . , 1/(λn − µ))n×n .

Therefore for 1, 2, ∞ norm, ‖K −1‖ = max
i

∣∣∣∣ 1

λi − µ

∣∣∣∣ = 1

mini |λi − µ| =
1

|λk − µ| . Thus the previous inequality becomes

|λk − µ| = 1/‖K −1‖ ≤ κ(X )‖
A‖.
Furthermore, if X T = X−1 for 2-norm, κ(X ) = 1, the above result reduces to
a simpler inequality.

Remark 1.3.7.

(1) Clearly from the above proof, if the F-norm must be used, ‖K −1‖ =√∑n
j=1 1/(λ j − µ)2 and a slightly more complex formula can still be given.

(2) If A is the numerical matrix and λ j (A)’s are the numerical eigenvalues, this
perturbation result says that the distance of these numerical values from
the true eigenvalues for the true matrix B = A + 
A depends on the
conditioning of matrix X (i.e. the way λ j (A)’s are computed!).

(3) Clearly the perturbation bound for λ(A) is quite different from the linear
system case as the latter involves κ(A) rather than κ(X ).

1.4 The Arnoldi iterations and decomposition

The Arnoldi decomposition for matrix A is to achieve QT AQ = H or AQ =
Q H , where Q is orthogonal and H is upper Hessenberg

H =



h1,1 h1,2 h1,3 · · · h1,n−1 h1,n

h2,1 h2,2 h2,3 · · · h2,n−1 h2,n

h3,2 h3,3 · · · h3,n−1 h3,n

. . .
. . .

...
...

. . . hn−1,n−1 hn−1,n

hn,n−1 hn,n


. (1.23)

There are three methods of realizing this decomposition and we shall use the
third method quite often.
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� Method 1 — Givens rotation. The Givens matrix has four main nonzeros
that are in turn determined by an angle parameter θ

P(i, j) =



1
. . .

1
cos(θ ) · · · sin(θ )

...
. . .

...
sin(θ ) · · · − cos(θ )

1
. . .

1



for short=

=
[

c s
s −c

]
. (1.24)

Note PT = P = P−1.
We shall use Givens rotations to zero out these positions of A: ( j, i) =

(3, 1), · · · , (n, 1), (4, 2), · · · , (n, n − 2). Each of these ( j, i) pairs defines a
Givens rotation P(i + 1, j) and the crucial observation is that the target ( j, i)
position of matrices P(i + 1, j)A and P(i + 1, j)AP(i + 1, j) are identi-
cal (this would be false if matrix P(i, j) is used). Therefore, to specify
P(i + 1, j) = P( j, i + 1), we only need to consider P(i + 1, j)A whose ( j, i)
position can be set to zero:

ã j i = ai+1,i sin(θi+1, j ) − a ji cos(θi+1, j ) = 0,

giving

θi+1, j = tan−1 a ji

ai+1,i
= arctan

a ji

ai+1,i
= arctan

Lower position

Upper position

= arctan
(

ratio ji

)
.

From properties of trigonometric functions, we have

sin(θ ) = r√
1 + r2

, cos(θ ) = 1√
1 + r2

with r = a ji

ai+1,i
. (1.25)

That is to say, it is not necessary to find θ to work out P(i + 1, j). Here and
in this section, we assume that A is over-written A = P(i + 1, j)AP(i + 1, j)
(by intermediate and partially transformed matrices). The final Q matrix comes
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from the product of these rotation matrices:

Q = P(2, 3) · · · P(2, n)︸ ︷︷ ︸
Column 1

· · · P(n − 2, n − 1) P(n − 2, n)︸ ︷︷ ︸
Column n−3

P(n − 1, n)︸ ︷︷ ︸
Column n−2

.

� Method 2 — Householder transform. For any nonzero vector v, the fol-
lowing Householder matrix is symmetric and orthogonal, and it can be used to
design our method 2: (note: 	 can be any integer so e1, v ∈ R

	 and P, vvT ∈
R

	×	)

P = P(v) = P	×	 = I − 2
vvT

vT v
. (1.26)

Defining w = v
‖v‖2

(unit vector) and β = 2
vT v

= 2
‖v‖2

2
, the above form can be

written equivalently as

P = P(w) = P	×	 = I − 2wwT = I − βvvT .

For a vector x = x	×1, here is the magic choice of v,5

v = v	×1 = x + αe1

with α = S(x1)‖x‖2 ensuring that Px = −αe1. Here S = SI G N = ±1 de-
notes the usual sign function. The full vector (basic) case is summarised as:

v = [ x1 + S(x1)‖x‖2, x2, · · · , x	]T

Px = [ −S(x1)‖x‖2, 0, · · · , 0]T

The most useful form of Householder transform is the following:

x = [ x1, x2, · · · , xk−1, xk, xk+1, · · · , xn ]T

= [ x̃ T xT ]T

v = [ 0, 0, · · · , 0, xk + S(xk)‖x̄k,n‖2, xk+1, · · · , xn ]T

= [ 0T vT ]T

Pk x = [ x1, x2, · · · , xk−1, −S(xk)‖x̄k,n‖2, 0, · · · , 0]T

where x = xk,n = x(k : n) = [xk, xk+1, · · · , xn]T . Here the MATL4B r© no-
tation6 is used; more uses can be found in Section 1.6. The following diagram

5 The derivation [229] uses the properties that P(γ v) = P(v) for any scalar γ and if Px = (1 −
W )x + Wβe1 = −αe1, then W = 1.

6 In MATLAB, if x is an n × 1 vector, then y = x(3 : 6) extracts positions 3 to 6 of x . Likely
z = x([1 : 2 7 : n]) extracts a new vector excluding positions 3 : 6.
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summarizes the above procedure [P̄ = I − 2v̄v̄T /(v̄T v̄)]

x =



×
×
×
×
×
×


=


x̃

x


v=

0
v


=⇒ Pk x =



x̃

−αe1


=



×
×
×

−α

0
0


, Pk =

(
Ik−1

P̄

)
.

(1.27)

To realize A = Q H QT , at step i = 1, 2, · · · , n − 2, denote the (i + 1)th

column of A by x =
(

x̃
x

)
, we take x = A((i + 1) : n, i) to define matrix

Pi+1. The final Q matrix is

Q = P2 P3 · · · Pn−1.

Remark 1.4.8. Our Givens formula (1.24) for Pi, j differs from almost all text-
books by (−1) in row j in order to keep it symmetric! One useful consequence
is that when v has only two nonzero positions, both Methods 1 and 2 define the
identical transform matrix.

� Method 3 — the Arnoldi method. This is based on the well-known Gram–
Schmidt orthogonalization process [229]. The method reduces to the Lanczos
method in the symmetric case. The big idea in this famous Gram–Schmidt
method is to make full use of vector orthogonalities in a direct manner. The
Gram–Schmidt method is also heavily used in other subjects involving orthog-
onal polynomials or basis.

Let QT AQ = H or AQ = Q H . Expanding both sides of the latter form
gives

Column −→1 Aq1 = q1h11 + q2h21

Column −→2 Aq2 = q1h12 + q2h22 + q3h32

Column −→3 Aq3 = q1h13 + q2h23 + q3h33 + q3h43
...

Column −→n−1 Aqn−1 = q1h1,n−1 + q2h2,n−1 + q3h3,n−1 + · · · + qnhn,n−1

Column −→n Aqn = q1h1,n + q2h2,n + q3h3,n + · · · + qnhn,n,

↑ ↑ ↑ ↑
Observe hi, j =⇒ [row 1] [row 2] [row 3] [row n]
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where equation j involves column j elements of H . Using the orthogonality
relation qT

i q j = δi j , we obtain the recursive formula (the Arnoldi method).7

Algorithm 1.4.9.

(1) Let q1 be given (qT
1 q1 = 1).

(2) for j = 1, 2, · · · , n
hk, j = qT

k Aq j (for k = 1, · · · , j)

r j = Aq j −
j∑

k=1

qkhk, j , h j+1, j = ‖r j‖2 =
√

r T
j r j

if h j+1, j 	= 0, then q j+1 = r j/h j+1, j , otherwise stop
with m ≡ j (rank of Krylov matrix Kn(A, q1) found §3.4)

end for j = 1, 2, · · · , n
(3) Hj may be applied with say QR method to find the eigenvalues of A.

The algorithm is implemented inhess_as.m, which will produce a tridiagonal
matrix H if A is symmetric (and then the Arnoldi method reduces to the Lanczos
method [229]).

Although Methods 1, 2 can always find a Hessenberg matrix of size n × n
with Q having a unit vector e1 at its column 1, Method 3 can have a ‘lucky’
breakdown whenever r j is 0 or too small. When this happens, due to some special
choice of q1, K j (A, q1) ≡ Kn(A, q1) and K j defines an invariant subspace in
R

n for A:

A(Q j )n× j = Q j (Hj ) j× j , or Hj = QT
j AQ j .

Regardless of breakdown or not, at step j ,

AQ j = Q j Hj + h j+1, j q j+1eT
j , (1.28)

the special matrix Hj has interesting properties resembling that of A (e.g.
eigenvalues). In particular, the eigenvalues θk and eigenvectors sk of Hj are
usually called the Ritz values and Ritz vectors respectively:

Hj sk = θksk . (1.29)

If h j+1, j information is also used, the Harmonic Ritz values ŝk and vectors θ̂k

are defined similarly by(
H T

j Hj + h2
j+1, j e j e

T
j

)
ŝk = θ̂k H T

j ŝk . (1.30)

7 The definition for Krylov subspace K is K	(A, q) = span
(
q, Aq, . . . , A	−1q

)
. See 3.4 and 3.6.
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As these Ritz values approximate eigenvalues and the approximation improves
with increasing size j , there have been a lot of recent work on these Ritz-related
methods for many purposes; see [331,305,359]. For symmetric matrices, the
Arnoldi method reduces to the Lanczos method with Hj replaced by a symmetric
tridiagonal Tj and those λ(Tj ) can approximate the extreme eigenvalues of A
very well; see [383].

We make an early remark on the eigenvalue connection to the context of
preconditioning via deflation. As the approximations from Ritz values are not
accurate, it is not entirely clear how to make use this information to design pre-
conditioners for (1.2); a direct application via deflation may not be appropriate
[138].

1.5 Clustering characterization, field of values and
ε-pseudospectrum

In the theory of iterative methods and preconditioners, we often use different
measures of the eigenspectrum or the singular value spectrum to indicate levels
of expected fast convergence. The key measure is clustering.

By ‘cluster’ or ‘clustering’ we mean that there are a large number of eigen-
values (or singular values) that are inside a small interval [384] or close to a
fixed point [28]. If we define, for any µ1 ≤ µ2, a complex row vector set by

Υ[n1,µ1]
[	,µ2] =

aT

∣∣∣∣∣∣∣ a =

 a1

...
an

 ∈ C
n,

|a j − 	| ≤ µ2 for j ≥ 1 and

|ak − 	| ≤ µ1 for k ≥ n1

 ,

then a more precise statement can be made as follows.

Definition 1.5.10. Given a square matrix An×n, if �(A) ∈ Υ[n1,µ1]
[	,µ2] for some

relatively small n1 (with respect to n), we say �(A) is clustered at point 	 with
a cluster size µ1 and cluster radius µ2.

Here µ2 is the radius of a disc, centering at 	, containing all the eigenvalues
and µ1 is the radius of a smaller disc that contains most of the eigenvalues (i.e.,
all eigenvalues except the first n1 − 1).

Remark 1.5.11. As far as convergence of conjugate gradients methods is con-
cerned, point clusterings imply that at step n1 the underlying approximation in
span

(
q1, . . . , qn1

)
(in Section 3.6 and Section 3.5) is almost as accurate as

in span (q1, . . . , qn). In this sense, both condition number estimates (popular
in the literature) and interval clusterings are not as effective as point clusterings
(Definition 1.5.10) in measuring convergence.
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In view of [364,297], it is might be more suitable but not difficult to define
a concept of multiple clustering for spectrum �(A) or �(A).

Compactness and eigenvalue clustering. We recall that for a compact
operator defined in a Hilbert space, its eigenvalues cluster at zero. For compact
K, the adjoint K∗ and product K∗K are also compact. Therefore in this case
for A, λ(A) ∈ Υ[n1,µ1]

[α,µ2] and λ(A∗ A) ∈ Υ[n1,µ1]
[|α|2,µ2], i.e., clustered at α = 0 and

|α|2 = 0, respectively, with µ1 arbitrarily small for some suitable and fixed n1.
The use of this operator idea will be picked up again in Chapter 4. Further
the superlinear convergence of both CGN and GMRES has been established in
[493] and [358], respectively.

Before we complete this section, we must comment on the suitability of
eigenvalue clustering (singular value clustering is always meaningful and suit-
able regardless of A’s normality). This is because, in addition to condition
number κ(A), eigenvalues with eigenspectrum �(A) and singular values with
spectrum �(A), two other properties of a matrix A namely field of values (FoV)
with their spectrum denoted by W(A) and ε-pseudospectra denoted by �ε(A),
are useful in the context of iterative methods and preconditioning techniques.
We here define and discuss these concepts to conclude that eigenvalue cluster-
ing may only be meaningful in preconditioners’ design if non-normality is first
tested.

Definition 1.5.12. (Field of values). The field of values of a matrix A ∈ C
n×n

is defined as the set of all Rayleigh quotients

W(A) =
{

x H Ax

x H x

∣∣∣∣ x 	= 0 ∈ C
n

}
with the numerical radius µ(A) = max{|z| | z ∈ W(A)}.

Observe that

�(A) ⊂ W(A) (1.31)

so ρ(A) ≤ µ(A). From the following∣∣∣∣ x H Ax

x H x

∣∣∣∣ ≤ ‖x‖2‖Ax‖2

x H x
= ‖Ax‖2

‖x‖2
= (x H AH Ax)1/2

‖x‖2
≤ ρ(AH A)1/2 (x H x)1/2

‖x‖2

= ‖A‖2

we see that µ(A) ≤ ‖A‖2. Further one can prove [243,256] that ‖A‖2 ≤ 2µ(A)
so we have

ρ(A) ≤ µ(A) ≤ ‖A‖2 ≤ 2µ(A). (1.32)
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If A is diagonalizable i.e. A = V �V −1, then

µ(A) ≤ ‖V ‖2‖V −1‖2‖�‖2 = κ2(V )ρ(A). (1.33)

As is known, for unsymmetric and highly non-normal matrices, eigenvalues
may not represent the correct behaviour of matrix A as they become seriously
unstable e.g. with n a ‘random’ matrix with entries in (0, 0.01), for

A =


2 1 0 0
0 1 20 0
0 0 2 300
0 0 0 4

 ,

B = A + n =


2.0090 1.0041 0.0016 0.0014
0.0043 1.0013 20.0007 0.0078
0.0014 0.0089 2.0037 300.0046
0.0095 0.0009 0.0025 4.0035

 , (1.34)

see the remarkable differences in the eigenvalues:

λ(A) = [ 2 1 2 4 ]
λ(B) = [ 5.5641, 2.0129 + 2.4928i, 2.0129 − 2.4928i, −0.5725 ].

The dilemma is that, when what you have obtained is just λ(B), one could not
use it to describe the behaviour of matrix A (or vice versa). Of course, singular
values would give correct information as

σ (A) = [ 300.0334, 20.0246, 2.2355, 0.0012 ]
σ (B) = [ 300.0380, 20.0253, 2.2454, 0.0025 ].

Here we present another eigenvalues related concept, the so-called ε-
pseudospectrum [456,366,457], which is a suitable description of eigensystems
(especially when A is non-normal).

Definition 1.5.13. (ε-pseudospectra). The 2-norm ε-pseudospectra of a ma-
trix A ∈ C

n×n is the following

�ε(A) =
{

z
∣∣ z ∈ C

n,
∥∥(z I − A)−1

∥∥
2 ≥ 1

ε

}
Note that if z = λ(A), then det(z I − A) = 0 and ‖(z I − A)−1‖2 = ∞ so

λ(A) ∈ �ε(A) and �(A) ⊂ �ε(A) for any ε > 0; therefore �ε(A) will be able
to contain all other values of z satisfying det(z I − A) ≈ 0.8 This connection to
nearby eigenvalues of A can be formally established [457] to give an alternative

8 Here one should not use the unscaled determinant det(B) to judge the magnitude of B as this is
highly unreliable. e.g. det(B) = 10−n if B = diag([0.1, . . . , 0.1]). Refer to Chapter 14.
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to Definition 1.5.13:

�ε(A) = {z | z ∈ �(A + E), ‖E‖2 ≤ ε} .

For non-normal matrices, eigenvectors play a dominating role! Even if �(A)
appears to be ‘nicely’ distributed (or clustered Section 1.5), the matrix V of
A’s eigenvectors may have a large condition number e.g. cond(V ) = ∞ for
the example in (1.34). If �ε(A) is capable of representing A, it should be
related to cond(V ) = κ(V ) somehow; indeed one such result has been given in
[457]:

�ε(A) ⊆ �(A)
⋃


r , (1.35)

where r = εκ2(V ) and 
r = {z | |z| ≤ r, z ∈ C
n}. It is also interesting to

point out that the ε-pseudospectrum is also closely related to the FoV spectrum
[198,457]:

�ε(A) ⊆ W(A)
⋃


ε. (1.36)

Clearly from (1.31), (1.35) and (1.36), for a given unsymmetric matrix M A
in (1.2), the eigenspectrum is only ‘trustful’ if its distance from both W(M A)
and �ε(M A) is not large. One hopes that a good preconditioner might do
that.

1.6 Fast Fourier transforms and fast wavelet transforms

Both the Fourier analysis and wavelet analysis provide us a chance to trans-
form a given problem (usually defined in a space of piecewise polynomials)
to a new problem in a different functional space [482,481]. At a matrix level,
however, both the fast Fourier transforms and the fast wavelet transforms are
indispensable tools for certain applications. Here we give a short introduction.

1.6.1 The fast Fourier transform

The fast Fourier transform (FFT) represents a fast method of implementing the
same discrete Fourier transform (DFT) [465,310]. The DFT comes about from
an attempt of representing a general (and maybe nonperiodic) function f (t),
only available at n equally-spaced discrete points { fk}n−1

0 = { f (kL)}n−1
0 , by

trigonometric functions just as continuous periodic functions are represented
by Fourier series or nonperiodic ones by Fourier transforms [300].

One may either use the so-called semi-discrete Fourier transforms by em-
bedding these points into an infinite and periodic sequence, or simply use the
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Fourier transforms for the sampled function: fs(t) = ∑N−1
k=0 f (kL)δ(t − kL),

where the usual Delta function δ indicates a local pulse. Then the Fourier
transform for fs(t) is

Fs(ω) =
∫ ∞

−∞
fs(t)e−iωt dt =

n−1∑
k=0

fke−ikωL ,

where i = √−1. Note that Fs(ω) is periodic with period 2π/L (or periodic in
variable ωL with period 2π ) with n coefficients so it is sufficient to consider
n equally-spaced samples of Fs(ω) in interval [0, 2π/L] i.e. take {Fj }n−1

j=0 =
{Fs( j
ω)}n−1

j=0 with

n
ω = 2π

L
, i.e. (ω j L) = j
ωL = 2 j Lπ

nL
= 2 jπ

n
.

Therefore the Discrete Fourier Transform (DFT) for sequence { fk}n−1
0 is

Fj =
n−1∑
k=0

fke− 2πk ji
n =

n−1∑
k=0

fk exp
(

− 2πk ji

n

)
, for j = 0, 1, . . . , n − 1.

(1.37)

To put (1.37) into matrix form, we define the usual notation (note that ωn
n = 1)

ωn = exp(−2π i/n) = cos(2π i/n) − i sin(2π i/n).

Therefore the DFT equation (1.37) becomes

g =


F1

F1
...

Fn

 =


1 1 1 · · · 1
1 ωn ω2

n · · · ω(n−1)
n

1 ω2
n ω4

n · · · ω2(n−1)
n

...
...

...
. . .

...
1 ω(n−1)

n ω2(n−1)
n · · · ω(n−1)2

n




f1

f1
...
fn

 = Fnf. (1.38)

Clearly carrying out a DFT amounts to a matrix vector multiplication which
takes 2n2 operations. Noting that the pth row of FH

n and the qth column of Fn

are respectively (with ω̄n = 1/ωn = exp(2π i/n))[
1, ω̄

p−1
n , ω̄

2(p−1)
n , ω̄

2(p−1)
n , · · · , ω̄

(n−1)(p−1)
n

]
,[

1, ω
q−1
n , ω

2(q−1)
n , ω

2(q−1)
n , · · · , ω

(n−1)(q−1)
n

]
,

one can show that the DFT matrix Fn/
√

n is unitary via FH
n Fn = nIn i.e. F−1

n =
FH

n /n. This implies that to obtain the inverse DFT, we set ωn = exp(2π i/n)
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and divide the transformed result by n i.e.

fk = 1

n

n−1∑
j=0

Fj exp
(2πkji

n

)
, for j = 0, 1, . . . , n − 1. (1.39)

One may also use the idea of a sampled function Fs(ω) to derive (1.39)
[300].

To introduce the FFT, consider n = 8 case and focus on its odd and even
columns separately (noting ω2

8 = ω4 or more generally ω2k
n = ωk

n/2).

F8 =



1 1 1 1 1 1 1 1

1 ω1
8 ω2

8 ω3
8 ω4

8 ω5
8 ω6

8 ω7
8

1 ω2
8 ω4

8 ω6
8 ω8

8 ω10
8 ω12

8 ω14
8

1 ω3
8 ω6

8 ω9
8 ω12

8 ω15
8 ω18

8 ω21
8

1 ω4
8 ω8

8 ω12
8 ω16

8 ω20
8 ω24

8 ω28
8

1 ω5
8 ω10

8 ω15
8 ω20

8 ω25
8 ω30

8 ω35
8

1 ω6
8 ω12

8 ω18
8 ω24

8 ω30
8 ω36

8 ω42
8

1 ω7
8 ω14

8 ω21
8 ω28

8 ω35
8 ω42

8 ω49
8



=



1 1 1 1 1 1 1 1

1 ω1
8 ω1

4 ω3
8 ω2

4 ω5
8 ω3

4 ω7
8

1 ω2
8 ω2

4 ω6
8 ω4

4 ω10
8 ω6

4 ω14
8

1 ω3
8 ω3

4 ω9
8 ω6

4 ω15
8 ω9

4 ω21
8

1 ω4
8 ω4

4 ω12
8 ω8

4 ω20
8 ω12

4 ω28
8

1 ω5
8 ω5

4 ω15
8 ω10

4 ω25
8 ω15

4 ω35
8

1 ω6
8 ω6

4 ω18
8 ω12

4 ω30
8 ω18

4 ω42
8

1 ω7
8 ω7

4 ω21
8 ω14

4 ω35
8 ω21

4 ω49
8


Firstly the odd columns present two 4 × 4 blocks (noting ω4

4 = ω8
4 = ω12

4 = 1):

F8(odd columns) =



1 1 1 1

1 ω1
4 ω2

4 ω3
4

1 ω2
4 ω4

4 ω6
4

1 ω3
4 ω6

4 ω9
4

1 ω4
4 ω8

4 ω12
4

1 ω5
4 ω10

4 ω15
4

1 ω6
4 ω12

4 ω18
4

1 ω7
4 ω14

4 ω21
4


=



1 1 1 1

1 ω1
4 ω2

4 ω3
4

1 ω2
4 ω4

4 ω6
4

1 ω3
4 ω6

4 ω9
4

1 1 1 1

1 ω1
4 ω2

4 ω3
4

1 ω2
4 ω4

4 ω6
4

1 ω3
4 ω6

4 ω9
4


=

(
F4

F4

)
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Secondly noting ω8
8 = 1, ω4

8 = ω12
8 = ω20

8 = ω28
8 = −1 and ω5

8 = −ω8, ω6
8 =

−ω2
8 etc:

F8(even columns) =



1 1 1 1

ω1
8 ω3

8 ω5
8 ω7

8

ω2
8 ω6

8 ω10
8 ω14

8

ω3
8 ω9

8 ω15
8 ω21

8

ω4
8 ω12

8 ω20
8 ω28

8

ω5
8 ω15

8 ω25
8 ω35

8

ω6
8 ω18

8 ω30
8 ω42

8

ω7
8 ω21

8 ω35
8 ω49

8


=



1 1 1 1

ω1
8 ω3

8 ω5
8 ω7

8

ω2
8 ω6

8 ω10
8 ω14

8

ω3
8 ω9

8 ω15
8 ω21

8

−1 −1 −1 −1

−ω1
8 −ω3

8 −ω5
8 −ω7

8

−ω2
8 −ω6

8 −ω10
8 −ω14

8

−ω3
8 −ω9

8 −ω15
8 −ω21

8



=



1

ω8

ω2
8

ω3
8

−1

−ω8

−ω2
8

−ω3
8





1 1 1 1

1 ω1
4 ω2

4 ω3
4

1 ω2
4 ω4

4 ω6
4

1 ω3
4 ω6

4 ω9
4

1 1 1 1

1 ω1
4 ω2

4 ω3
4

1 ω2
4 ω4

4 ω6
4

1 ω3
4 ω6

4 ω9
4


=

(
�4F4

−�4F4

)
,

where �4 is a 4 × 4 diagonal matrix

�4 =


1

ω8

ω2
8

ω3
8

 defined in terms of ω8, not of ω4.

Assuming �8 is a permutation matrix swapping odd even columns, then

F8�8 = [F8(odd columns) F8(even columns)] =
(

I4 �4

I4 −�4

) (
F4

F4

)
,

where, using the MATLAB notation,9 �8 = I8(:, r8 + 1) with I8 is the 8 × 8
identity matrix and r8 = [0 : 2 : 6 1 : 2 : 7]. That is, the DFT matrix can be

9 In MATLAB, if A is an n × n matrix, then B = A(:, 1 : 3) extracts the all the rows and only
columns 1 to 3 of A. Likely C = A(1 : 4, 2 : 2 : 10) extracts a block matrix of rows 1 to 4 and
columns 2, 4, 6, 8, 10 of matrix A.
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decomposed

F8 =
(

I4 �4

I4 −�4

) (
F4

F4

)
�T

8 .

As the above process is completely general, the same result holds for a general
n:

Fn =
(

In/2 �n/2

In/2 −�n/2

) (
Fn/2

Fn/2

)
�T

n , (1.40)

where �n = In(:, rn + 1), the order rn = [0 : 2 : n − 2 1 : 2 : n − 1] and �n =
diag(1, ω2n, . . . , ω

n−1
2n ). Evidently I1 = 1, �1 = 1, r2 = [0 1] so �2 = I2 and

F1 = 1. When n = 2, the above formula becomes

F2 =
(

I1 �1

I1 −�1

) (
F1

F1

)
�T

2 =
(

1 1

1 −1

)
.

It only remains to find a more compact notation. The first notation is for a
Kronecker product (or tensor product in Definition 14.3.3) A ⊗ W of two ma-
trices, A ∈ C

p×q and W ∈ C
m×n , is defined by

(A ⊗ W )pm×qn =


a0,0W a0,1W · · · a0,q−1W

a1,0W a1,1W · · · a1,q−1W

...
...

. . .
...

ap−1,0W ap−1,1W · · · ap−1,q−1W

 . (1.41)

Observe that the Kronecker product A ⊗ W is essentially an p × q block matrix
with its i j ‘element’ being ai, j W . The second notation, for the above 2 × 2 block
matrix with simple blocks of size k/2 × k/2, is the butterfly matrix of size k × k

Bk =
(

Ik/2 �k/2

Ik/2 −�k/2

)
=



1 1

1 ωk

. . .
. . .

1 ω
k/2−1
k

1 −1

1 −ωk

. . .
. . .

1 −ω
k/2−1
k


.
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With these two notations and noting for square matrices I ⊗ (ABC) = (I ⊗
A)(I ⊗ B)(I ⊗ C), we can rewrite equation (1.40) recursively as

Fn�n = Bn

(
Fn/2

Fn/2

)
= Bn

(
I2 ⊗ Fn/2

)
= Bn

[
I2 ⊗

(
Bn−1

(
I2 ⊗ Fn/4

)
�T

n−1

)]
= Bn

(
I2 ⊗ Bn/2

)(
I4 ⊗ Fn/4

)
(I2 ⊗ �T

n−1)

= Bn

(
I2 ⊗ Bn/2

)(
I4 ⊗ Bn/4

)(
I8 ⊗ Fn/8

)
(I4 ⊗ �T

n−2)(I2 ⊗ �T
n−1)

= · · · , (1.42)

giving rise to the following (note F2 = B2)

Theorem 1.6.14. (Cooley–Tukey FFT factorization).
If n = 2t (power of 2), then the DFT matrix Fn can be factorized as

Fn Pn = (I20 ⊗ Bn)(I21 ⊗ Bn/2)(I22 ⊗ Bn/22 ) · · · (I2t−1 ⊗ Bn/2t−1 )

= (I1 ⊗ Bn)(I2 ⊗ Bn/2)(I4 ⊗ Bn/4) · · · (In/4 ⊗ B4)(In/2 ⊗ B2),

where the permutation matrix Pn is

Pn = (I1 ⊗ �n)(I2 ⊗ �n/2)(I22 ⊗ �n/22 ) · · · (I2t−1 ⊗ �n/2t−1 ).

Remark 1.6.15.

(1) Note that Fk�k swaps the odd-even columns of Fk while �T
k Fk swaps the

odd-even rows of Fk . In practice the transpose of the above permutation is
used when using the FFT i.e. DFT (1.38)

PT
n = (I2t−1 ⊗ �n/2t−1 )T · · · (I22 ⊗ �n/22 )T (I2 ⊗ �n/2)T (I1 ⊗ �n)T ,

which can be done in the initial permutation phase while the main Kro-
necker products are implemented in the second FFT phase. In particular,
�n/2t−1 = �2 = I2 as there is no need to permute to odd-evens for size 2
vectors.

(2) Here the butterfly matrix Bk is more logic, with its elements essentially
defined by ωk = exp(−2π i/k), than �k awkwardly defined by ω2k .

(3) Matrix Pn is essentially determined by a permutation vector rn of size
n i.e. Pn = I (:, rn + 1) or PT

n = I (rn + 1, :). For a small n, one can af-
ford to implement each permutation step by step to find rn . However,
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the better method for getting rn is the so-called bit reversal algorithm
[465]. Let (b0 b1 . . . bt−1)2 be the binary representation of integer
k ∈ [0, n − 1]. Here exactly t binary digits are needed, due to the fact
(111 . . . 11)2 = 20 + 21 + · · · + 2t−1 = 2t − 1 = n − 1. Then by induc-
tion [465], one can show that the kth index in the permutation vector rn

satisfies

rn(k) = (bt−1bt−2 · · · b1b0)2. (1.43)

For example, when n = 2t = 25 = 32, the 5th index k = 5 = (00101)2

corresponds to the 5th index r32(5) = (10100)2 = 20. Similarly
r32(11) = r32

(
(01011)2

) = (11010)2 = 26 and r32(14) = r32
(
(01110)2

) =
(01110)2 = 14. Note the whole vector is

r32 = [0 16 8 24 4 20 12 28 2 18 10 26 6 22 14 30
1 17 9 25 5 21 13 29 3 19 11 27 7 23 15 31].

MATLAB can easily convert a decimal number a to a binary number b (and
back)

>> a = 13, b = dec2bin(a,4), a_back = bin2dec(b)

% Here b = (1101)

Therefore to implement an explicit bit reversal operation to k = 13, do the
following

>> b=dec2bin(k,4), b1=b(4:-1:1), b2=bin2dec(b1)

% b1=(1011) and b2=11

In Maple,10 similar operations can be done as follows

> a := 13; b := convert(a,binary,decimal);

# Here b = (1101)

> a_back := convert(b,decimal,binary);

# a_back = 13

> a1 := convert(1011,decimal,binary);

# a1 = 11

> #------------Cautions! [1,0,1,1] means 1101 and [3,1]

means 13-----

> b1 := convert(13,base,2);

# giving [1,0,1,1]

> b2 := convert([1,1,0,1],base,2,10);

10 C©Waterloo Maple Software, inc. may be found at the Web site: http://www.maplesoft.on.ca/.
See also the Appendix §C.8.
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# giving [1,1] => 11

> b3 := convert([1,0,1,1],base,2,10);

# giving [3,1] => 13

> b4 := convert([1,0,1,0],base,2,10);

# giving [5] => 5

(4) Finally, despite the somewhat complicated mathematics associated with
FFT, the implementation in MATLAB cannot be simpler:

>> F = fft(f), g = ifft(F)

%% Vector f case

>> B = transpose( fft(transpose(fft(A))) )

%% Matrix A case

>> g = transpose( ifft(transpose(ifft(B))) )

%% (transpose NOT ')

Guess what g is in each case.
(5) We also remark that our discussion is on the standard FFT (the complex form

that effectively involves both sine and cosine (trigonometric) functions). It
is sometimes desirable to develop real trigonometric transforms; there exist
four such transforms: The Discrete Sine Transform (DST), The Discrete
Cosine Transform (DCT), The Discrete Sine Transform-II (DST-II), The
Discrete Cosine Transform-II (DCT-II). See [441,465]. It is of interest to
point that all fast algorithms of these transforms are based on the standard
(complex) FFT.

Before we show an example of using DFT and FFT, we comment on com-
plexity.

We can see clearly from Theorem 1.6.14 that, apart from PT
n , Fn has t terms.

Each term applying to a vector requires three arithmetic operations (ignoring
the powers of ωk). Therefore the overall cost from the FFT phase is O(n)t =
cn log n with c ≈ 3.

If the above mentioned bit reversal is directly used for the permutation
phase, there is an additional cost of O(n log n). However, there are many com-
peting algorithms that can work out rn in O(n) operations; here we mention
two such algorithms. In each case, we try to focus on the manners in which the
number of steps t = log n is cleverly avoided. Let R[a] denote the bit reversal
operator e.g. (R[(10100)])2 = (00101)2.

� Method 1 — dimension doubling. Observe that for i = (bt−1bt−2 . . . b1b0)2

and r (i) = ri = (b0b1 . . . bt−2bt−1)2, the first two indices are quite easy i.e.
r (0) = 0 = (0 . . . 0)2 and r (1) = r1 = (R[(0 . . . 01)])2 = (10 . . . 0)2 = 2t−1.
The rest are arranged in t − 1 sequential groups Gi , i = 1, 2, . . . , t − 1 of
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size si = 2i – hence the name dimension doubling. A similar method was in-
dependently proposed in [402]. The crucial result is the following

Theorem 1.6.16. The bit reversal process can arranged in t groups, starting
from group G0 = {0, 1} with r (0) = 0 and r (1) = 2t−1. Then the indices of
group Gk, k = 1, 2, . . . , t − 1, can be recursively generated from

r (i + 2k) = r (i) + 2t−1−k, for i = 0, 1, 2, . . . , 2k − 1.

Consequently the algorithm costs O(n) operations from the estimate

t−1∑
k=1

2k = 2(2t − 2) = 2n − 4.

Proof. Note that for i = 0, 1, 2, . . . , 2k − 1,

i + 2k = 2k + (bt−1 bt−2 · · · b1 b0)2 = ( 0 · · · 0︸ ︷︷ ︸
(t−k−1) digits

0 bk−1 · · · b1 b0︸ ︷︷ ︸
(k+1) digits

)2 + 2k

= ( 0 · · · 0︸ ︷︷ ︸
(t−k−1) digits

1 bk−1 · · · b1 b0︸ ︷︷ ︸
(k+1) digits

)2.

Refer to Table 1.1. So we have the required result

r (i + 2k) = R[(r + 2k)] = (b0 b1 · · · bk−1 1︸ ︷︷ ︸
(k+1) digits

0 · · · 0︸ ︷︷ ︸
(t−k−1) digits

)2

= (b0 b1 · · · bk−1 0︸ ︷︷ ︸
(k+1)

0 · · · 0︸ ︷︷ ︸
(t−k−1)

)2 + (0 · · · 0 1︸ ︷︷ ︸
(k+1)

0 · · · 0︸ ︷︷ ︸
(t−k−1)

)2

= r (i) + 2t−k−1.

� Method 2 — dimension squaring. The second algorithm is due to [203];
see also [313]. Observe that the t digits in i = (bt−1 bt−2 · · · b1 b0)2 can be
equally divided into three parts (or two parts if t is even): the front, middle and
end parts, i.e. i = ( f m e)2. Then all numbers in i = 0, 1, . . . , 2t − 1 can be
split sequentially into N = √

n/2 = 2(t−1)/2 groups (or simply N = √
n = 2t/2

if t is even), where in each group the f part is identical in all τ = n/N members
and the e part is identical across all groups. Refer to Table 1.1. Moreover let
root , of size N , denote the set of all e parts in group 1; one can check that the
f part is indeed drawn from the set root.

Putting these observations and the fact R[(i)2] = R[( f m e)2] =
(R[e] m R[ f ])2 together, one can generate the new order w = rN for root,



Table 1.1. Bit reversal methods 1 (left) and 2 (right) group indices
differently to achieve efficiency, for n = 24 = 16 and n = 25 = 32. Here

‘Bin’ stands for ‘binary’ [ f m e] and ‘Rev’ for ’reverse binary
[R(e) m R( f )], where there is no m for n = 16.

i Bin Rev r (i)

0 000 0 0 000 0
1 000 1 1 000 8

2 001 0 0 100 4
3 001 1 1 100 12

4 01 00 00 10 2
5 01 01 10 10 10
6 01 10 01 10 6
7 01 11 11 10 14

8 1 000 000 1 1
9 1 001 100 1 9

10 1 010 010 1 5
11 1 011 110 1 13
12 1 100 001 1 3
13 1 101 101 1 11
14 1 110 011 1 7
15 1 111 111 1 15

i Bin Rev r (i)

0 00 00 0000 0
1 00 01 1000 8
2 00 10 0100 4
3 00 11 1100 12

4 01 00 0010 2
5 01 01 1010 10
6 01 10 0110 6
7 01 11 1110 14

8 10 00 0001 1
9 10 01 1001 9

10 10 10 0101 5
11 10 11 1101 13

12 11 00 0011 3
13 11 01 1011 11
14 11 10 0111 7
15 11 11 1111 15

i Bin Rev r (i)

0 0000 0 00000 0
1 0000 1 10000 16

2 0001 0 01000 8
3 0001 1 11000 24

4 001 00 00100 4
5 001 01 10100 20
6 001 10 01100 12
7 001 11 11100 28

8 01 000 00010 2
9 01 001 10010 18

10 01 010 01010 10
11 01 011 11010 26
12 01 100 00110 6
13 01 101 10110 22
14 01 110 01110 14
15 01 111 11110 30

16 1 0000 00001 1
17 1 0001 10001 17
18 1 0010 01001 9
19 1 0011 11001 25
20 1 0100 00101 5
21 1 0101 10101 21
22 1 0110 01101 13
23 1 0111 11101 29
24 1 1000 00011 3
25 1 1001 10011 19
26 1 1010 01011 11
27 1 1011 11011 27
28 1 1100 00111 7
29 1 1101 10111 23
30 1 1110 01111 15
31 1 1111 11111 31

i Bin Rev r (i)

0 00 0 00 00 0 00 0
1 00 0 01 10 0 00 16
2 00 0 10 01 0 00 8
3 00 0 11 11 0 00 24
4 00 1 00 00 1 00 4
5 00 1 01 10 1 00 20
6 00 1 10 01 1 00 12
7 00 1 11 11 1 00 28

8 01 0 00 00 0 10 2
9 01 0 01 10 0 10 18
10 01 0 10 01 0 10 10
11 01 0 11 11 0 10 26
12 01 1 00 00 1 10 6
13 01 1 01 10 1 10 22
14 01 1 10 01 1 10 14
15 01 1 11 11 1 10 30

16 10 0 00 00 0 01 1
17 10 0 01 10 0 01 17
18 10 0 10 01 0 01 9
19 10 0 11 11 0 01 25
20 10 1 00 00 1 01 5
21 10 1 01 10 1 01 21
22 10 1 10 01 1 01 13
23 10 1 11 11 1 01 29

24 11 0 00 00 0 11 3
25 11 0 01 10 0 11 19
26 11 0 10 01 0 11 11
27 11 0 11 11 0 11 27
28 11 1 00 00 1 11 7
29 11 1 01 10 1 11 23
30 11 1 10 01 1 11 15
31 11 1 11 11 1 11 31
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i.e. that for all R[e]; this index vector w may be generated by any other bit
reversal algorithm for up to the cost O(

√
n log

√
n) � O(n) operations. So

the idea is to use the new index vector w = rN for one group only, to work
the rest of rn . For both examples in Table 1.1, only the explicit bit reversal
R[e] for the root set e = [00 01 10 11] is needed and the rest is worked out
accordingly.

In details, for group 1 as f = (0 . . . 0), the order indices are obtained by
simply multiplying w (for R[e]) by N since

W (i) = R[(i)2] = (root(i)︸ ︷︷ ︸
e

m 0︸︷︷︸
m f

)2 = w(i)N for i = 0, 1, . . . , τ − 1.

Once this is done, for any other group k ≥ 2, it will be an adding job

R[(i)2] = (root(i ′)︸ ︷︷ ︸
e

m root(k)︸ ︷︷ ︸
m f

)2 = W (i ′) + w(k),

where i = (k − 1)τ + i ′, i ′ = 0, 1, . . . , τ − 1. Overall, the computational cost
is again remarkably about 2τ N = 2n operations, where again N is the number
of groups and τ is the number of members in each group; a computer code is
listed in [203].

In summary, here is how the standard bit reversal algorithm, costing
O(n t) = O(n log n) operations, is compared with Methods 1 − 2 having only
O(n):

Standard : O(n)︸︷︷ ︸
Step 1

+ O(n)︸ ︷︷ ︸
Step 2

+· · · + O(n)︸ ︷︷ ︸
Step t

= O(nt) = O(n log n),

Method 1 : O(2)︸︷︷︸
Step 1

+ O(22)︸ ︷︷ ︸
Step 2

+· · · + O(2t−1)︸ ︷︷ ︸
Step t−1

= O(2t ) = O(n),

Method 2 : O(
√

n)︸ ︷︷ ︸
Step 1

+ O(
√

n)︸ ︷︷ ︸
Step 2

+· · · + O(
√

n)︸ ︷︷ ︸
Step N

= O(n).

Example 1.6.17. (Computation of g16 = F16f16 by FFT).
For a detailed example, consider n = 16 and

f16 = (
4 1 11 11 15 6 8 13 1 1 8 11 0 6 1 7

)T

with ω16 = exp(−2π i/n) = 0.9239 − 0.3827i . We again compute g16 =
F16f16 using the direct DFT and the fast FFT methods.

Firstly, for the direct DFT, we form the 16 × 16 matrix F16 and then compute
g16 = F16f16. To display F16, we define constants: k1 = (1/2 − 1/2i)

√
(2), k2 =

(−1/2 − 1/2i)
√

(2), k3 = (−1/2 + 1/2i)
√

(2), k4 = (1/2 + 1/2i)
√

(2). Then
the results are shown in Tables 1.2, 1.3.
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Secondly, to compare with the above DFT results, we next compute the same
transform using the step-by-step FFT algorithm. As n = 16 = 24, after the
initial permutation, we only need t = log2(n) = 4 steps.

Permutation phase. Directly starting from the natural sequence 0 : 15, we first
obtain in turn

r2 = [0 2 4 6 8 10 12 14 1 3 5 7 9 11 13 15]
r4 = [0 4 8 12 2 6 10 14 1 5 9 13 3 7 11 15]

r16 = [0 8 4 12 2 10 6 14 1 9 5 13 3 11 7 15].

To illustrate the above Method 1 for getting r = rn = r16, we start with t = 4,
r (0) = 0 and r (1) = n/2 = 8:

Group k = 1 : r (2) = r (0 + 2k) = r (0) + 2t−1−1 = 0 + 4 = 4
r (3) = r (1 + 2k) = r (1) + 2t−1−1 = 8 + 4 = 12

Group k = 2 : r (4) = r (0 + 2k) = r (0) + 2t−1−2 = 0 + 2 = 2
r (5) = r (1 + 2k) = r (1) + 2t−1−2 = 8 + 2 = 10
r (6) = r (2 + 2k) = r (2) + 2t−1−2 = 4 + 2 = 6
r (7) = r (3 + 2k) = r (3) + 2t−1−2 = 12 + 2 = 14

Group k = 3 = t − 1 : r (8) = r (0 + 2k) = r (0) + 2t−1−3 = 0 + 1 = 1
r (9) = r (1 + 2k) = r (1) + 2t−1−3 = 8 + 1 = 9
r (10) = r (2 + 2k) = r (2) + 2t−1−3 = 4 + 1 = 5
r (11) = r (3 + 2k) = r (3) + 2t−1−3 = 12 + 1 = 13
r (12) = r (2 + 2k) = r (4) + 2t−1−3 = 2 + 1 = 3
r (13) = r (3 + 2k) = r (5) + 2t−1−3 = 10 + 1 = 11
r (14) = r (2 + 2k) = r (6) + 2t−1−3 = 6 + 1 = 7
r (15) = r (3 + 2k) = r (7) + 2t−1−3 = 14 + 1 = 15,

and obtain the same order r = r16. In this r16 order, the original vector f16 will

be permuted to f̃16 = (
4 1 15 0 11 8 8 1 1 1 6 6 11 11 13 7

)T
.

FFT phase. — computation of g16 = (I1 ⊗ B16)(I2 ⊗ B8)(I4 ⊗ B4)(I8 ⊗
B2)f̃16.
Step 1 should be easy to implement: we form the product g(1) = (I8 ⊗ B2)

f̃16.

As F2 = B2 =
(

1 ω0
2

1 −ω0
2

)
=

(
1 1
1−1

)
, we obtain (Note: ω2 = exp(−2πi/2) = −1)

g(1) = f 2 vector = [5 3 15 15 19 3 9 7 2 0 12 0 22 0 20 6]T .
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In Step 2, we compute g(2) = (I4 ⊗ B4)g(1) (note: ω4 = exp(−2π i/4) = −i )

B4 =

I2

(
1

ω4

)
I2 −

(
1

ω4

)
 =


1 0 1 0
0 1 0 −i
1 0 −1 0
0 1 0 i

 , g(2) = f 4 vector

=


B4

B4

B4

B4

 g(1),

g(2) = [
20, 3 + 15i, −10, 3 − 15i, 28, 3 + 7i, 10, 3 − 7i, 14, 0, −10, 0,

42, 6i, 2, −6i
]
.

In Step 3, compute g(3) = (I2 ⊗ B8)g(2) (note: ω8 = exp(−2π i/8) = (1 − i)/√
2)

B8 =



I4


1

ω8

ω2
8

ω3
8



I4 −


1

ω8

ω2
8

ω3
8





=



1 0 0 0 1 0 0 0
0 1 0 0 0 0.7071(1 − i) 0 0
0 0 1 0 0 0 −i 0
0 0 0 1 0 0 0 −0.7071(i + 1)
1 0 0 0 −1 0 0 0
0 1 0 0 0 0.7071(i − 1) 0 0
0 0 1 0 0 0 i 0
0 0 0 1 0 0 0 0.7071(1 + i)


,

g(3) = f 8 vector =
[

B8

B8

]
g(2) =

[48, 0.1716 + 22.0711i,−10 +10i, 5.8284 − 7.9289i,−8, 5.8284 + 7.9289i,
· · · − 10 − 10i, 0.1716 − 22.0711i, 56, −4.2426 + 4.2426i, −10 + 2i, · · ·
4.2426 + 4.2426i, −28, 4.2426 − 4.2426i, −10 − 2i, −4.2426 − 4.2426i]T .
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Finally in Step 4, compute from (note: ω16 = exp(−2π i/16) = 0.9239 −
0.3827i )

g16 = g(4) = f 16 vector = (I1 ⊗ B16)g(3) = B16g(3)

=



I8



1

ω16

ω2
16

ω3
16

ω4
16

ω5
16

ω6
16

ω7
16



I8 −



1

ω16

ω2
16

ω3
16

ω4
16

ω5
16

ω6
16

ω7
16





g(3) =



104

−5.3717 − 24.3672i

−18.4853 − 4.3431i

3.5323 + 2.3857i

−8 + 28i

8.1245 − 13.4722i

−1.5147 + 15.6569i

5.7149 + 19.7750i

−8

5.7149 − 19.7750i

−1.5147 − 15.6569i

8.1245 + 13.4722i

−8 − 28i

3.5323 − 2.3857i

−18.4853 + 4.3431i

−5.3717 + 24.3672i



.

Clearly this vector g16 from FFT is identical to that from DFT (Table
1.3). The reader may use the supplied Mfile exafft16.m to check the
details.

1.6.2 The fast wavelet transform

The wavelet transform is only part of a much larger subject of wavelet analysis
[152,441]. In Section 8.1, we shall give a brief introduction. Here we con-
sider the standard discrete wavelet transforms (DWTs), based on Daubechies’
compactly supported orthogonal wavelets, for matrix A in (1.1). Refer to
[60,269,390,441]. As wavelets form a basis of L2, given a function f ∈ L2,
it can be written as an infinite linear combination of the wavelets and the
wavelet coefficients uniquely determine the function; for smooth functions,
most coefficients may be small and nearly zero.

For a given vector f, from vector space R
n , one may construct an infinite

periodic sequence of period n and use it as coefficients of a scaling function
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fL (x) in some fixed subspace VL

VL = Vr

⊕
Wr

⊕
Wr+1

⊕
· · ·

⊕
WL−1, (1.44)

of L2 where L is an integer. (The case of L = J, r = 0 is considered in
Chapter 8). Then the new coefficients of fL (x), when expressed in an equiva-
lent wavelet basis, may be denoted by w. The wavelet transform W : f → g
(i.e. g = W f) is essentially a matrix mapping. To discuss W and specify the
matrix structure of W , let m = 2M = N + 1 be the order of compactly sup-
ported wavelets with m = N + 1 lowpass filter coefficients c0, c1, · · · , cN and
M = m/2 vanishing moments. For clarity, we assume that

m−1∑
k=0

ck =
√

2. (1.45)

The factor
√

2 is not difficult to understand if one thinks about the simpler case
of a Harr wavelet with N = 1 and m = 2 (for n = 2)

W =
[ √

2
2

√
2

2√
2

2 −
√

2
2

]
(1.46)

where the filter matrix resembles a specific Givens rotation (1.24) and clearly
(1.45) is satisfied. The orthogonality of W , due to the wavelets being orthogonal,
is a direct consequence of the functional orthogonality reflected in the Fourier
space (see Section 8.1 and [152, Ch.7]). Like the Fourier matrix Fn in DFT,
the DWT matrix W is also in a factorized form and so W is not directly used.
Therefore the so-called fast wavelet transform (FWT) refers to the algorithm of
working out g = W f without forming W . As the overall W is sparse, the FWT
is ‘automatic’ (unlike the DFT case).

Assume n = 2t and r is an integer such that 2r < m and 2r+1 ≥ m. Note
r = 0 for m = 2 (Haar wavelets) and r = 1 for m = 4 (Daubechies order 4
wavelets); see [68,390,441]. Denote by s = f (t) a column vector of A at the
wavelet level t . Then the standard pyramidal algorithm transforms the vector
f (t) to

g = [
(f (r ))T (g(r ))T (g(r+1))T · · · (g(t−1))T

]T

in a level by level manner, that is,

to transform :

to retain :

f (t) →
↘

f (t−1) →
↘

g(t−1)

f (t−2) →
↘

g (t−2)

· · · →
↘

· · ·

f (ν) →
↘

g(ν)

· · · →
↘

· · ·

f (r )

g(r )
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where the vectors f (ν) and g(ν) are of length 2ν . Notice that the sum of these
lengths is n = 2t since

2t = 2r + 2r + 2r+1 + 2r+2 + · · · + 2t−1.

At a typical level ν, f (ν) and g(ν) are collections of scaling and wavelet
coefficients respectively. In matrix form, g is expressed as

g = Pr+1Wr+1 · · · Pt−1Wt−1 Pt Wt f (t) ≡ W f (t), (1.47)

where

Pν =
(

Pν

Jν

)
n×n

, Wν =
(

W ν

Jν

)
n×n

with Pν a permutation matrix of size 2ν = 2t − kν = n − kν , that is, Pν =
I (1, 3, · · · , 2ν − 1, 2, 4, · · · , 2ν), and with W ν an orthogonal (sparse) ma-
trix of size 2ν = 2t − kν = n − kν and Jν is an identity matrix of size kν .
Here kt = 0 and kµ = kµ+1 + 2µ for µ = t − 1, · · · , r + 1. The one level trans-
formation matrix W ν is a compact quasi-diagonal block matrix, whose rows
can be read from the following multiplication [152,§1.6] y = W νx for k =
1, . . . , n

yk =


∑

	

c	−2k̄ x	+1 =
m−1∑
	=0

c	x	+1+2k̄, if k is odd, k̄ = (k − 1)/2,

∑
	

d	−2k̄ x	+1 =
m−1∑
	=0

d	x	+1+2k̄, if k is even, k̄ = k/2 − 1,

(1.48)

implying from y3 = ∑
	 c	x	+3, k̄ = 1 that

(W ν)33 = c0, (W ν)34 = c1, · · · , (W ν)3,m+2 = cm−1,

and from y4 = ∑
	 c	x	+3, k̄ = 1 that

(W ν)43 = d0, (W ν)44 = d1, · · · , (W ν)4,m+2 = dm−1.

For functions, this step corresponds to decomposing a fine level function into
the sum of two coarse level functions.
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For clarity, take the commonly used Daubechies’ order m = 4 wavelets with
m/2 = 2 vanishing moments and display W ν as

W ν =



c0 c1 c2 c3

d0 d1 d2 d3

c0 c1 c2 c3

d0 d1 d2 d3

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

c0 c1 c2 c3

d0 d1 d2 d3

c2 c3 c0 c1

d2 d3 d0 d1



,

where the filtering coefficients {ci , di } are known to be c0 = (1 + √
3)/(4

√
2),

c1 = (3 + √
3)/(4

√
2), c2 = (3 − √

3)/(4
√

2), c3 = (1 − √
3)/(4

√
2) and dk =

(−1)kcm−1−k as usual. Note that (1.45) is satisfied. Letting Ŵk = Pk Wk , an
alternative decomposition of the wavelet matrix W to (1.47) can be defined by

W = Ŵr+1 · · · Ŵt−1Ŵt (1.49)

with

Ŵν =
(

W̆ν

Jν

)
n×n

and

W̆ν =



c0 c1 c2 c3

c0 c1 c2 c3

. . .
. . .

. . .
. . .

c0 c1 c2 c3

c2 c3 c0 c1

d0 d1 d2 d3

d0 d1 d2 d3

. . .
. . .

. . .
. . .

d0 d1 d2 d3

d2 d3 d0 d1



.

Note that such an alternative form can also be written for the general m.

Algorithm 1.6.18. Forward DWT x → x̃ .

(1) Set s0 = x.
(2) For level k = 1, 2, . . . , L
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(a) Let sk
j = ∑m−1

l=0 clsk−1
〈l+2 j−1〉n/2k−1

, j = 1, 2, . . . , n/2k .

(b) Let dk
j = ∑m−1

l=0 dlsk−1
〈l+2 j−1〉n/2k−1

, j = 1, 2, . . . , n/2k .

(3) Accept x̃ = (sL , dL , dL−1, . . . , d1).

Here 〈a〉b = (a − 1) Mod b + 1 = mod(a − 1, b) + 1. See also (4.13). For ex-
ample, 〈256〉256 = 256 and 〈257〉256 = 1.

Here a full DWT step for matrix A in (1.1), transforming column and row
vectors, respectively, will be Ã = W AW T . However in a practical implemen-
tation, one should use the factorizations in (1.47) or (1.49) without forming W
explicitly. Thus the DWT can be done in a fast way so it can ‘automatically’
become the FWT. For a dense vector, the cost of the FWT via (1.47) can be
estimated by

Tv = mn︸︷︷︸
Step 1

+ mn/2︸ ︷︷ ︸
Step 2

+· · · + mn/2t−1︸ ︷︷ ︸
Step t

≈ 2mn

and for a dense matrix

Tm = 2mn2︸ ︷︷ ︸
Step 1

+ 2mnn/2︸ ︷︷ ︸
Step 2

+· · · + 2mnn/2t−1︸ ︷︷ ︸
Step t

≈ 4mn2.

For the inverse FWT, from (1.49), we have

W T = Ŵ T
t Ŵ T

t−1 · · · Ŵ T
r+1 (1.50)

Ŵ T
ν =

(
W̆ T

ν

Jν

)
n×n

and

W̆ T
ν =



c0 cm−2 · · · c2 d0 dm−2 · · · d2

c1 cm−1
. . . c3 d1 dm−1

. . . d3

c2 c0
. . .

... d2 d0
. . .

...
c3 c1 cm−2 d3 d1 dm−2

... c2 cm−1

... d2 dm−1

cm−1
. . . dm−1

. . .

cm−2
. . . dm−2

. . .

cm−1
. . .

. . .
. . . dm−1

. . .
. . .

. . .

cm−4 c0 dm−4 d0

cm−3 c1 dm−3 d1



.
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For functions, this step corresponds to constructing a fine level function from
two coarse level functions. Let z = Ŵ T

ν x with the first half of x corresponding
to the coefficients of a scaling function and the second half of x to that of a
wavelet function (see [152, Section 1.6] and Section 8.1). Then, with n2 = n/2
and k(	) = (k + 1 − 	)/2, for k = 1, . . . , n

zk =
∑

	

(
ck−1−2	x	+1 + dk−1−2	x	+1+n2

)
=

m−1∑
	=0

(
c	xk(	) + d	xk(	)+n2

)
,

(1.51)

where the notation k(	), similar to (8.26), should be interpreted as a whole
integer; a term does not exist (so is zero) if k(	) is not an integer and a term
should be added by n2 if k(	) is a negative integer or zero. More precisely, with
m2 = m/2,

zk =


m2−1∑
j=0

(
c2 j x(k+1−2 j)/2 + d2 j x(k+1−2 j)/2+n2 , if k is odd,

m2−1∑
j=0

(
c2 j+1x(k−2 j)/2 + d2 j+1x(k−2 j)/2+n2 , if k is even.

For instance with m = 4, m2 = 2,

z1 = (c0x1 + d0x1+n2 ) + (c2x0 + d0x0+n2 )=c0x1 + d0xn2+1 + c2xn2 + d0xn,

z2 = (c1x1 + d1x1+n2 ) + (c3x0 + d3x0+n2 )=c1x1 + d1xn2+1 + c3xn2 + d3xn,

z5 = (c0x3 + d0x3+n2 ) + (c2x2 + d2x2+n2 )=c0x3 + d0xn2+3 + c2x2 + d2xn2+3,

z6 = (c1x3 + d1x3+n2 ) + (c3x2 + d3x2+n2 )=c1x3 + d1xn2+3 + c3x2 + d3xn2+2.

Algorithm 1.6.19. Inverse DWT x̃ → x.

(1) Set (sL , dL , dL−1, . . . , d1) = x̃ .
(2) For level k = L , L − 1, . . . , 1

(a) Let sk−1
j =

m/2−1∑
l=0

c2lsk
〈( j+1)/2−l〉n/2k +

m/2−1∑
l=0

d2ldk
〈( j+1)/2−l〉n/2k

for j = 1, 3, . . . , n/2k−1 − 1.

(b) Let sk−1
j =

m/2−1∑
l=0

c2l+1sk
〈 j/2−l〉n/2k +

m/2−1∑
l=0

d2l+1dk
〈 j/2−l〉n/2k

for j = 2, 4, . . . , n/2k−1.
(3) Accept x = s0.
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Figure 1.1. Comparison of FFT ( Ã = FAFH ) and FWT ( Ã = W AW T ) for com-
pressing two test matrices. Clearly FFT is only good at circulant matrix 1 but FWT
is more robust for both examples.

To try out a specific transform, one may use the supplied Mfiles fwt.m and
ifwt.m as follows

>> F = fwt(f,6), g = ifwt(F,6) %% Vector f case (Daub 6)

>> B = fwt(A,4), g = ifwt(B,4) %% Matrix A case (Daub 4)

Guess again what g is in each case. For a matrix, it is known that Ã = W AW T

has a ‘finger’-like sparsity pattern. This will be further considered in Chapter 8.
Finally, in Figure 1.1, we demonstrate the effectiveness of compression by

the FFT and the FWT for two examples of a matrix A with n = 64

Test 1 Ai j = circulant(h), with h = (1, 2, . . . , n)T

Test 2 Ai j = toeplitz(h), with h = (1, 2, . . . , n)T
(1.52)
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where h is the root (column 1) for generating the Circulant and Toeplitz ma-
trices Section 2.5.2. The reader should run the supplied Mfile fft_fwt.m to
reproduce the result.

1.7 Numerical solution techniques for practical equations

As is known, linear systems such as (1.1) often arise from solving other equa-
tions. Here we briefly review a selection of solution techniques for partial
differential equations (PDEs) and nonlinear systems.

Many PDEs of practical interest are of second order. Solution techniques
typically (though not always) reduce one order of differentiation before dis-
cretization via Gauss’ or Green’s theorems or integration by parts. Below we
discuss

(1) the finite element method (FEM)
(2) the boundary element method (BEM)
(3) the finite difference method (FDM)
(4) the finite volume method (FVM)
(5) the global element methods (GEMs).

As each topic involves a huge subject, the reader will be referred to detailed
references (and therein) for special perusal. We shall consider the interior
Helmholtz-like equation as our model PDE (with p = (x, y) ∈ � ⊂ R

2 and
∂� smooth) {

Lu ≡ −
u − k2u = f (p), p ∈ �,

u|∂� = g(p), p ∈ ∂�,
(1.53)

which is assumed to have a unique solution (for a suitable k).

1.7.1 The finite element method (FEM)

The FEM is the most widely used method for solving PDEs since it was invented
in 1950s and matured in 1970s; see [308,282,499]. For (1.53), it does not look
for a so-called classical solution u ∈ C2(�) satisfying (1.53) partly because
computer solutions are hardly in C2(�) anyway. Instead it seeks a ‘weak’
solution u = u(x, y) ∈ V ⊂ H 1(�) such that∫

�

(Lu − f ) vd� = 0, ∀v ∈ H 1(�), (1.54)
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where

H 1(�) =
{
w

∣∣∣∣ ∫
�

(|w|2 + |wx |2 + |wy |2)1/2d� < ∞, w ∈ L2(�)

}
,

(1.55)

V = {
w

∣∣ w ∈ H 1(�), w|∂� = g
}
. (1.56)

To reduce the second-order differentiation in L to first order, the analytical tool
is the Green’s first theorem (assume x1 = x, x2 = y)∫

�

∂u

∂xi
vd� = −

∫
�

u
∂v

∂xi
d� +

∫
∂�

uvni d S (1.57)

or (taking ∂u
∂xi

s instead of u)∫
�


uvd� = −
∫

�

∇u · ∇vd� +
∫

∂�

v
∂u

∂n
d S (1.58)

where n = (n1, n2)T denotes the unit outer normal to the boundary ∂� at p =
(x, y) ∈ ∂� and ∂u

∂n = ∇u · n = ∂u
∂x n1 + ∂u

∂y n2. Note if ∂� is parameterized as
x = x(t), y = y(t), then

n1 = y′(t)/
√

x ′(t)2 + y′(t)2, n2 = −x ′(t)/
√

x ′(t)2 + y′(t)2. (1.59)

In view of (13.14), if ∂� is implicitly defined as G(x, y) = 0, then the unit out
normal is n = ∇G/‖∇G‖2. Using (1.58), our main equation (1.54) becomes

0 =
∫

�

(Lu − f ) vd� = −
∫

�

(

u + k2u + f

)
vd�

=
∫

�

∇u · ∇vd� −
∫

∂�

v
∂u

∂n
d S −

∫
�

(
k2u + f

)
vd�

= a(u, v) − ( f, v),
(1.60)

where v|∂� = 0 is assumed, the innocent looking notation a(u, v) is the well-
known bilinear functional, that proves useful in establishing the existence and
uniqueness of u using the Lax–Milgram theorem, and is defined by

a(u, v) =
∫

�

∇u · ∇vd� − k2
∫

�

uvd�, (1.61)

with ( f, v) = ∫
�

f vd�. The minor issue v|∂� = 0 calls for a new space nota-
tion v ∈ H 1

0 (�), where H 1
0 (�) = {

w
∣∣ w ∈ H 1(�), w|∂� = 0

}
and in fact this

turns out to be quite important as it manages to avoid the ‘difficult’ term ∂u/∂n
coming to the equations (this term will be a big issue for the BEM later).
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Overall, the weak formulation of (1.60) as a basis for FEM is the following

find u ∈ V ⊂ H 1(�) : a(u, v) = ( f, v), ∀v ∈ H 1
0 (�). (1.62)

Remark 1.7.20.

(1) One commonly finds a weak formulation that appears to work for a homo-
geneous boundary condition only e.g. for, instead of (1.53),{

Lu ≡ −
u − k2u = f (p), p ∈ �,

u|∂� = 0, p ∈ ∂�.

This assumes that a function u0 ∈ V , with V in (1.56), has been constructed
first so it can be subtracted out from the main solution. Then u, v ∈ H 1

0 (�).
However, this is only for notational convenience as often one does not
implement a FEM this way.

(2) The space H 1
0 (�) is not required for the case of a Neumann’s boundary

condition i.e. {
Lu ≡ −
u − k2u = f (p), p ∈ �,
∂u
∂n |∂� = g, p ∈ ∂�.

Then the weak formulation becomes

find u ∈ H 1(�) : a(u, v) = ( f, v) +
∫

∂�

gvd S, ∀v ∈H 1(�).

(3) If the above procedure is repeated for a more general PDE (assume x1 =
x, x2 = y)−

2∑
i, j=1

∂

∂x j

(
ai j (p)

∂u

∂x j

)
+

2∑
i=1

bi (p)
∂u

∂xi
+ c(p)u = f (p), p ∈ �,

u|∂� = g, p ∈ ∂�.

Then a similar weak formulation is obtained

find u ∈ V ⊂ H 1(�) : a(u, v) = ( f, v), ∀v ∈ H 1
0 (�).

with a(u, v) = ∫
�

[∑2
i, j=1 ai j

∂u
∂x j

∂v
∂xi

+ ∑2
i=1 bi (p) ∂u

∂xi
v + c(p)uv

]
d�.

(4) The procedure we discussed is the Galerkin formulation. A related but
equivalent form is the so-called Ritz formulation where we do not use the
Green’s theorem and (1.54). Assume (1.53) has a homogenous boundary
condition g = 0. Define J (v) = 1

2 a(v, v) − ( f, v) with a(v, v) as in (1.61)
for (1.53). Then the Ritz formulation is

find u ∈ H 1(�) : J (u) = min J (v), ∀v ∈ H 1
0 (�).
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For the case of matrices, this method resembles the minimization formula-
tion for a linear system, i.e. Theorem 3.4.6 in Section 3.4. There A must be
a SPD; here likewise, a(v, v) must satisfy the strongly elliptic condition

a(v, v) ≥ α‖v‖2
2, for α > 0, ∀v ∈ H 1

0 (�).

We are now to ready to introduce the FEM discretization. First partition a
given domain � into E computationally convenient subdomains �1, . . . , �E ;
in two dimensions (2D) the usual choice is to use triangles, as illustrated in
Figure 1.2 for E = 16. Denote by n the total number of internal nodes, nt the
number of total nodes, and h the maximal side length of the triangulation. The
domain � is approximated by

�h =
E⋃

j=1

� j .

For i = 1, . . . , nt , a FEM will define piecewise polynomials φi (p), in �h , of
the interpolating type

φi (p) =
{

1, if j = i,
0, if j 	= i.

(1.63)

Let P	(�e) denote the set of all polynomials of degree 	 defined in domain
�e. The commonly used piecewise linear functions can be denoted by

V h = {
u

∣∣ u ∈ C(�̄), u|�e ∈ P1(�e), for e = 1, . . . , E
}

(1.64)

which approximates H 1(�) and similarly let H 1
0 (�) be approximated by

V h
0 = {

u
∣∣ u ∈ V h and u∂�∪�h = 0

}
. (1.65)

Note that if we replace the above defined V h
0 subspace by another one made up

of piecewise constants (i.e. not linear), we will obtain the so-called collocation
approach (which is less popular for FEM but more with BEM discussed next).

To proceed with the Galerkin approach, one only needs to make one simple
observation on basis sharing: {φi }nt

1 form the basis for V h while {φi }n
1 form the

basis for V h
0 (note: n < nt ). Thus

u =
nt∑

j=1

u jφ j (p) and v =
n∑

j=1

v jφ j (p). (1.66)

Substituting (1.66) into (1.62) gives rise to (noting {u j }nt
n+1 are known values)

n∑
j=1

u j a(φ j , v) = ( f, v) −
nt∑

j=n+1

u j a(φ j , v).
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Figure 1.2. Sample FEM triangulation of a domain � (n = 5 internal points, nt = 13).

As v must go through all members in V h
0 , it suffices to take all basis functions

v = φi so we obtain the final linear system from solving (1.53):

n∑
j=1

a(φ j , φi ) = ( f, φi ) −
nt∑

j=n+1

u j a(φ j , φi ), for i = 1, . . . , n. (1.67)

Here it should be remarked that the above φ functions are actually sums of those
φ̂ functions defined element-wise (i.e. each φi having a larger support than 1
element); for example, for node 3 in Figure 1.2, our φ2 will denote the sum of
six local basis functions from all neighbouring elements at node 3. This is the
aspect of the local stiffness matrix. For the example in Figure 1.2 with n = 5
and nt = 13, the local 3 × 3 stiffness out of the element enclosed by nodes
1, 3, 4, corresponding to three local basis functions φ̂1, φ̂2, φ̂3, will enter the
global 5 × 5 matrix A in these ‘×’ positions


a(φ̂1, φ̂1) a(φ̂2, φ̂1) a(φ̂3, φ̂1)

a(φ̂1, φ̂2) a(φ̂2, φ̂2) a(φ̂3, φ̂2)

a(φ̂1, φ̂3) a(φ̂2, φ̂3) a(φ̂3, φ̂3)

 →


× © × ×
© © © ©
× © × ×
× © × ×
© © © ©

 .

It should not come as a surprise that these are rows 1, 3, 4 and columns 1, 3, 4.

1.7.2 The boundary element method (BEM)

The boundary element method has a similar starting point to FEM in trying
to find a weak formulation but it also aims to eliminate the domain integrals
using different choices of v trial functions [159,16,277,301,159]. Admittedly,
the standard BEM cannot eliminate the domain term ( f, v) so we have to be
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content with solving a homogeneous problem (1.53) with f = 0 i.e. ( f, v) = 0.
Recently there are attempts to generalize the BEM to solve nonhomogeneous
PDEs (even to general linear PDEs); see [385,428].

The first step in a BEM is to derive a boundary integral equation. To this
end, we begin with the exact setup as in (1.58) and (1.60) with q = (x, y):

0 =
∫

�

(Lu − f ) vd� = −
∫

�

(

u + k2u + f

)
vd�

= −
∫

�

[
u
v + (k2u + f )v

]
d� +

∫
∂�

(
u

∂v

∂n
− v

∂u

∂n

)
d S

= −
∫

�

u
[

v + k2v

]
d� +

∫
∂�

(
u

∂v

∂n
− v

∂u

∂n

)
d Sq

= u(p) +
∫

∂�

(
u

∂v

∂n
− v

∂u

∂n

)
d Sq ,

(1.68)

i.e. with Gk = Gk(p, q) = i
4π

H(1)
0 (kr ) = i

4π
H(1)

0 (k|p − q|) and q ∈ ∂�

u(p) =
∫

∂�

(
Gk

∂u

∂n
− u

∂Gk

∂n

)
d Sq , for p ∈ �, (1.69)

where we have made a particular choice of v = v(q) = vp(q) = Gk(p, q), p ∈
�, with Gk being the so-called fundamental solution or free-space Green’s
function for (1.53) (note this v is highly dependent on the underlying operator)

−
Gk − k2Gk = δ(p − q), (1.70)

and we have used the Green’s second theorem, based on the first theorem in
(1.57), ∫

�

v
ud� =
∫

�

u
vd� +
∫

∂�

(
v
∂u

∂n
− u

∂v

∂n

)
d Sq . (1.71)

Here from the properties of the Hankel functions (associated with the 2D
Helmholtz)

(1)
i

4
H (1)

0 (kr ) = C − 1

2π
log(kr ) + k2r2

16π
+ O(k2r2) as r → 0

(2)
d H (1)

0

dx
(x) = −H (1)

1 and
d H (1)

1

dx
(x) = H (0)

0 − H (1)
1 /x ,

one observes that the Helmholtz operator shares the same type of kernel singu-
larities as the Laplacian since the latter has the fundamental solution

G0 = − 1

2π
log(r ). (1.72)



1.7 Numerical solution techniques for practical equations 47

For the 3D case, the Helmholtz fundamental solution is Gk(r ) =
exp(ikr )/(4πr ) with G0(r ) = 1/(4πr ) for the 3D Laplacian. The computa-
tion for H0 = H (1)

0 (x) = J0(x) + iY0(x) and H1 = H (1)
1 (x) = J1(x) + iY1(x)

at x = 0.234, via Bessel functions, can be done in MATLAB by

>> kind = 1 % First kind Hankel function

>> H0 = besselh(0, kind, x) % giving 0.9864-0.9762i (order 0)

>> H1 = besselh(1, kind, x) % giving 0.1162-2.8732i (order 1)

and in Fortran using NAG routines11

info = 0 !Error indicator

H0 = DCMPLX(s17aEf(x,info),s17aCf(x,info)) !Give 0.9864-0.9762i

H1 = DCMPLX(s17aFf(x,info),s17aDf(x,info)) !Give 0.1162-2.8732i

From (1.69), one can see already that a BEM is advantageously avoiding the
domain � as the solution u can be recovered from boundary data (the Cauchy
data) of u and ∂u/∂n alone. We now proceed to convert (1.69) into a boundary
integral equation (BIE) which states a mapping relationship between the two
kinds of boundary data: u and ∂u/∂n. For this reason, sometimes, a BIE is
called a Dirichlet (i.e. u) and Neumann (i.e. ∂u/∂n) mapping.

To take the domain (observation) point p in (1.69) to the boundary ∂�, we
need to take the limit p− → p ∈ ∂�; here the superscript indicates the direction
approaching ∂� is from the interior �. For later use, define four BIE operators

Single layer (Lkw)(p) =
∫

∂�

Gk(p, q)w(q)d Sq

Double layer (Mkw)(p) =
∫

∂�

∂Gk

∂nq
(p, q)w(q)d Sq

Transposed double layer (MT
k w)(p) = ∂

∂np

∫
∂�

Gk(p, q)w(q)d Sq

Hyper-singular (Nkw)(p) = ∂

∂np

∫
∂�

∂Gk

∂nq
(p, q)w(q)d Sq .

(1.73)

Theorem 1.7.21. (Properties of layer operators [159,323]).

(1) From the interior domain to ∂�,

L−
k w(p) = Lkw(p), p ∈ ∂�,

M−
k w(p) = Mkw(p) − 1

2w(p), p ∈ ∂�,

(MT
k )−w(p) = MT

k w(p) + 1
2w(p), p ∈ ∂�,

N−
k w(p) = Nkw(p), p ∈ ∂�.

11 C©Copyright Numerical Algorithms Group, Oxford, UK – http://www.nag.co.uk



48 Introduction

(2) From the exterior domain to ∂�,

L+
k w(p) = Lkw(p), p ∈ ∂�,

M+
k w(p) = Mkw(p) + 1

2w(p), p ∈ ∂�,

(MT
k )+w(p) = MT

k w(p) − 1
2w(p), p ∈ ∂�,

N+
k w(p) = Nkw(p), p ∈ ∂�.

(3) Operators Lk : H 1/2(∂�) → H 1+1/2(∂�) and
operators Mk,MT

k , (Nk − N0) : H 1/2(∂�) → H 1/2(∂�) are compact
while operator Nk : H 1/2(∂�) → H−1/2(∂�) is bounded.

Here the Sobolev space H τ−1/2(∂�) contains functions of H τ (�) restricted to
the boundary ∂�, with

H τ (�) =
w

∣∣∣∣∣∣ ‖w‖ =
∫

�

(
τ∑

j=0

∣∣D jw
∣∣2

)1/2

d� < ∞, w ∈ L2(�)

 ,

(1.74)

and D j denoting the j th partial derivative [223,323]. So the spaces
H 1/2(∂�), H−1/2(∂�) will contain respectively piecewise linear and constant
elements. Note the case of τ = 1 has been introduced in (1.55).

With the operator notation, equation (1.69) can be written as

u(p) = Lk
∂u

∂n
− Mku for p ∈ �, (1.75)

which can be taken to the boundary using Theorem 1.7.21 to yield a BIE that
is a Fredholm integral equation of the first kind

Lk
∂u

∂n
= 1

2
u(p) + Mku, for p ∈ ∂�. (1.76)

or recognizing u|∂� = g and letting g̃ = 1
2 g(p) + Mk g,

Lk
∂u

∂n
= g̃, for p ∈ ∂�. (1.77)

The good news is that we have obtained a simple BIE (1.77) with the boundary
condition in (1.53) easily satisfied, and we shall discretize (1.77) to obtain
a linear system and hence a numerical solution. But one has the option to
reformulate the badly-conditioned problem (1.77) further as for some resonance
wavenumbers k it does not have a unique solution (assuming g is already suitable
for the solution to exist [159]). One solution [16] is to differentiate (1.76) (and
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then to combine the two equations)

MT
k

∂u

∂nq
= 1

2

∂u

∂np
+ Nku. (1.78)

Note that (1.78) alone can define a second kind equation in ∂u/∂n to solve
(1.53). However a linear combination of (1.77) and (1.78) gives a more robust
formulation

−1

2

∂u

∂np
+ MT

k

∂u

∂nq
+ αkLk

∂u

∂nq
= Nku + αk g̃ = Nk g + αk g̃ ≡ g, (1.79)

or letting q = ∂u
∂n

(I − K)q = g̃, with K = MT
k + αkLk, g̃ = −2g, (1.80)

where αk is a nonzero coupling parameter (usually taken as −ik). Here the BIE
(1.80) is clearly a Fredholm integral equation of the second kind that is better
conditioned; for convenience we shall write

(Kψ)(p) =
∫

∂�

K (p, q)ψ(q)d Sq , p ∈ ∂�. (1.81)

This idea first appeared in 1960s; see [16,159,83]. For the Neumann’s boundary
condition, similar results can be derived:

−1

2
u + Mku + αkNku =

[
Lk + αk

(
1

2
I + MT

k

)]
∂u

∂np
≡ g (known).

(1.82)

When k = 0, the Laplace case modelling the potential theory is often considered
separately; see [504,306,488,222,261,238,262].

The above derivation, using Green’s theorems explicitly, is the so-called
direct BIE formulation. In fact, similar BIEs can be derived using the layer
potentials (1.73) and their properties (Theorem 1.7.21), and directly matching
up the boundary condition, since the single and double layer potentials satisfy
(1.53) in � (and so does a combination of them as a hybrid potential).

We now come to our second step of a BEM to introduce discretizations into
BIEs. For our concerned combined formulation (1.79), this amounts to speci-
fying a computable subspace in H 1(∂�); for the single layer equation one may
choose a subspace in H 0(∂�) = L2(∂�). Divide the boundary domain ∂� into
E subdomains ∂�1, . . . , ∂�E ; if � ⊂ R

2, ∂� is effectively one dimensional
(1D) and if � ⊂ R

3, ∂� will be a 2D manifold. Thus for (1.53), the subdomains
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Figure 1.3. Sample BEM discretization of a domain � (n = nt = 8 boundary points).

∂� j with n = nt end-points are simply segments along the boundary for the
usual piecewise linear approximation (corresponding to the case of triangles for
FEM) as illustrated in Figure 1.3 (compare to Fig 1.2). Here n = E . As with
FEM, let φi ∈ P	(∂�h) be similarly defined by (1.63) over the approximated
domain of ∂�

∂�h =
E⋃

j=1

∂� j =
n⋃

j=1

∂� j .

Then our main approximation will be

q =
n∑

j=1

q jφ j (p) and g =
n∑

j=1

g jφ j (p). (1.83)

Note that, different from the FEM case (1.62), the BEM weak formulation
(1.79) has already done the choice of the trial function v. We need to invent
another bilinear form (in a weak fashion) to seek a projection with a ‘minimal’
residual [24]

Galerkin find u ∈ P1(∂�h) : (r, v) = 0, ∀v ∈ P1(∂�h),

Collocation find u ∈ P1(∂�h) : (r, v) = 0, ∀v ∈ P0(∂�h),
(1.84)

where r is the residual function from (1.80)

r = g̃ − (I − K) q

and the inner product is now defined in ∂�h (rather than in �)

(u, v) =
∫

∂�

u(q)v(q)d Sq .
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Substituting (1.83) into (1.84) yields our linear system

Galerkin:
n∑

j=1

q j

(
(I − K)φ j , φi

)
= (̃g, φi ) for i = 1, . . . , n,

Collocation:
n∑

j=1

q j

(
(I − K)φ j , �i

)
= (̃g, �i ) for i = 1, . . . , n,

(1.85)
where the piecewise constant �i (p) = 1 if p ∈ ∂�i−1 ∪ ∂�i with ∂�−1 =
∂�n (or similarly defined). One may develop a hybrid Galerkin method that is
superior to a normal Galerkin method [238].

In addition to the above two methods, integral equations can be solved by
the so-called Nyström quadrature method (see also Section 4.7)

(I − Kn)φn = g̃, (1.86)

where Kn approximates K and is obtained by direct discretization of K by a
(composite) n-point quadrature rule, e.g. Trapezium or Gaussian rules [24].

Remark 1.7.22.

(1) The BEM clearly has the dimension reduction advantage over the FEM –
the domain discretization is reduced to that of finite boundary part only.
This is especially useful for exterior problems: the boundary condition at
the exterior boundary is exactly met and there is no need to impose a large
artificial boundary for approximate solution or coupling. There are also the-
oretical advantages regarding conditioning, as far as preconditioning and
condition numbers are concerned, as operators from BIEs are usually
bounded while FEM operators, still pro-differential, are unbounded. It
should also be remarked that, for exterior problems, placing a specially-
shaped artificial boundary can lead to interesting coupled operator equations
[504] – combining the advantages of a FEM and a BEM.

(2) Of course, as stated, a BEM is somewhat restrictive. (i) It demands the
knowledge of a fundamental solution to the underlying operator L in (1.53).
Without it, a BEM does not apply. (ii) It cannot allow nonhomogeneous
terms (i.e. f in (1.53)) to exist (this is a genuine requirement – no longer a
convenient assumption). In these two cases, however, a generalized BEM
may be tried [385,428].

1.7.3 The finite difference method (FDM)

The finite difference method is one of the oldest and most well-known methods
for solving PDEs [354]. The method starts with a mesh and derives nodal
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equations in a direct manner. However, it should be noted that for rectangular
domains and regular partitions, a FDM can produce the same linear system as
a FEM with piecewise linear approximations [499].

First discretize a given domain � by placing a suitable mesh with internal
nodes p1, . . . , pn . Then apply the commonly used central finite differences,
assuming hx , hy are the horizonal and vertical mesh sizes respectively at a
node (x, y),

∂u

∂x
≈ u(x + hx ) − u(x − hx , y)

2hx
,

∂u

∂y
≈ u(x, y + hy) − u(x, y − hy)

2hy

(1.87)

∂2u

∂x2 ≈ u(x + hx , y) + u(x − hx , y) − 2u(x)

h2
x

∂2u

∂y2 ≈ u(x, y + hy) + u(x, y − hy) − 2u(x, y)

h2
y

(1.88)

to a PDE at each nodal point to derive the linear system. First derivatives can
also be approximated by one-sided differences

∂u

∂x
≈ u(x + hx , y) − u(x, y)

hx
≡ δ+

x u(x, y)

hx
,

∂u

∂y
≈ δ+

y u(x, y)

hy

∂u

∂x
≈ u(x, y) − u(x − hx , y)

hx
≡ δ−

x u(x, y)

hx
,

∂u

∂y
≈ δ−

y u(x, y)

hy

therefore,

∂

∂x

(
D

∂u

∂x

)
≈ δ+

x

(
D(x − h

2 , y)δ−
x u(x, y)

)
h2

x

= D(x + h
2 , y)(u(x + h, y)−u(x, y))−D(x − h

2 , y)(u(x, y) − u(x, y−h))

h2
x

,

∂

∂y

(
D

∂u

∂y

)
≈ δ+

y

(
D(x, y − h

2 )δ−
y u(x, y)

)
h2

y

= D(x, y + h
2 )(u(x, y + h)−u(x, y)) − D(x, y− h

2 )(u(x, y) − u(x, y−h))

h2
y

.

For the 2D case, one often uses the so-called stencil notation to denote a discrete
equation at a grid point (i.e. the grid equation). Thus the above discretization
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of ∇(D∇u) may be denoted by the five-point stencil


D(x, y + h

2 )

D(x − h
2 , y) −

(
D(x, y+ h

2
) + D(x, y− h

2
) +D(x− h

2
, y) + D(x + h

2
, y)

)
D(x + h

2 , y)

−D(x, y − h
2 )

,

which reduces to the more familiar (discrete Laplacian) form when D ≡ 1

 1
1 −4 1

1

 .

This essentially 2D notation can generalize to 3D if used as a vector of (stacking)
2D stencils [460].

For nonuniform tensor-product meshes (or discretization near nonrectangu-
lar boundaries), one may need to develop more accurate formulae using the
Taylor expansions as only the low-order (one-sided) FD formulae are appli-
cable. Given f (x + h2), f (x − h1), f (x), the approximation to the first-order
derivative by

f (x + h2) − f (x − h1)

h1 + h2
≈ f ′(x) + h2

1 + h2
2

2(h1 + h2)
f ′′(x) + · · · (1.89)

is only first-order accurate while a better approximation using three function
values

h1

(h1 + h2)h2
[ f (x + h2) − f (x)] − h2

(h1 + h2)h1
[ f (x − h1) − f (x)]

≈ f ′(x) + h1h2

6
f ′′′(x) + · · ·

will be second-order accurate, derived from choosing w1, w2 in zeroing out
the coefficient of the second derivative term in the Taylor expansion of
w2 [ f (x + h2) − f (x)] + w1 [ f (x − h1) − f (x)]. (By the same idea, it turns
out that we have to use four function values to design a FD formula of second-
order accurate to approximate f ′′(x)).

Consider solving equation (1.53) on a rectangular domain � as illustrated in
Figure 1.4 where we assume for simplicity h = hx = hy = 1 and g = 0. Then



54 Introduction
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Figure 1.4. Sample FDM discretization of a domain � (n = 15 internal points).

the discrete equations for (1.53) centred at nodes 2, 8 are the following

2u2 − u1 − u3

h2
+ 2u2 − g(x2, y2 − h) − u7

h2
− k2u2 = f (x2, y2) = f2,

2u8 − u7 − u9

h2
+ 2u8 − u3 − u13

h2
− k2u8 = f (x8, y8) = f8,

i.e. − u1 + (4 − k2)u2 − u7 = f2,

−u3 − u7 + (4 − k2)u8 − u9 − u13 = f8.

(1.90)

Overall, the final linear system from solving (1.53) using the sample mesh in
Figure 1.4 can be written as (1.1) with b = f and

A =
 T −I
−I T −I

−I T

 , with T =


d −1

−1 d −1
−1 d −1

−1 d −1
−1 d

 and d = 4 − k2.

(1.91)

The matrix structure of A can be visualized in MATLAB by (as shown in
Figure 1.5)

>> spy(A,'s', 12) % size 12 for larger symbol s='square'



1.7 Numerical solution techniques for practical equations 55

0 2 4 6 8 10 12 14 16

0

2

4

6

8

10

12

14

16

nz = 59

Figure 1.5. Visual display of a sparse matrix from FDM.

It remains to mention upwinding schemes for practical problems such as fluid
flows where a central difference for first order terms may lead to oscillation when
h is not small enough. Consider a modified PDE from (1.53)

−
u + b(x, y)
∂u

∂x
− k2u = f (p), p ∈ �. (1.92)

The usual central difference for b ∂u
∂x is

b
∂u

∂x
≈ b(x, y)

u(x + h, y) − u(x − h, y)

2h
= b(x, y)

h

δ+
x u + δ−

x u

2
,

where u(x, y) is not influencing the result. The so-called upwind difference
scheme is the following

b
∂u

∂x
≈ b

[
1 − sign(b)

2

δ+
x u(x, y)

hx
+ 1 + sign(b)

2

δ−
x u(x, y)

hx

]
. (1.93)

From a matrix point, the scheme ensures that the overall matrix has taken a
positive contribution from this first-order term to the diagonal entry (or towards
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SDD Section 3.3.2)

Aii = (4 − k2) + |b(xi , yi )|.

This makes the upwinding formula easier to remember.

1.7.4 The finite volume method (FVM)

The finite volume method is like a hybrid method of FDM, FEM, and BEM,
because it derives a nodal equation just like the FDM, and solves a PDE using
a weak formulation with a weight and an integration domain resembling (but
differing from) the FEM and BEM; see [473].

The first step is similar to a FDM. Place a discrete mesh over � with internal
nodal points p1, . . . , pn . The aim is also to produce a discrete equation at
each p j .

The second step resembles the FEM or BEM as we shall choose a simple trial
function v = 1 locally in a piecewise manner. The key phrase is control volume
V , which is a small and closed subdomain of � assigning to each nodal point
pi . Let � be the closed boundary of V and � be the area of V (or the volume
of V in three dimensions). Illustrated in Figure 1.6 is a simple example, where
� = ∪ j� j denote the local (artificial) boundaries of V . Note that the union of
all such control volumes V makes up the whole approximation domain �h .
Taking v = 1, we can deduce the following useful identities from the Green’s
first theorem (1.57)

∫
V

∂u

∂xi
d� =

∫
�

uni d S,∫
V

∂2u

∂xi
2 d� =

∫
�

∂u

∂xi
ni d S,∫

V
∇ · (D∇u) d� =

∫
�

D∇u · nd S.

(1.94)

Although a simple rectangular mesh is shown in Figure 1.6, one can equally
use a triangulation just as in Figure 1.2 and this is partly why FVM has become
increasingly popular with many research communities.

The FVM proposes to derive a nodal equation for the PDE (1.53) from the
special weak formulation:

0 =
∫

V
(Lu − f ) vd� =

∫
V

(Lu − f ) d� =
∫

V

(−
u − k2u − f
)

d�.

(1.95)
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Figure 1.6. Sample FVM discretization of a domain � (n = 15 internal points).

Applying the above formulae (1.94) yields

−
∫

�

∇u · nd S −
∫

V

(
k2u + f

)
d� = 0.

We now consider the particular node p8 ∈ �h shown in Figure 1.6 with � =
�e ∪ �n ∪ �w ∪ �s . Note that the unit out normal n can be first computed at
each � j and denote by � j the length of � j . Then (1.95) yields

−
∫

�

∇u · nd S −
∫

V

(
k2u + f

)
d�

=
∫

�w

∂u

∂x
d S +

∫
�s

∂u

∂y
d S −

∫
�e

∂u

∂x
d S −

∫
�n

∂u

∂y
d S −

∫
V

(
k2u + f

)
d�

≈ �w

u8 − u7

hx
+ �s

u8 − u3

hy
− �e

u9 − u8

hx
− �n

u13 − u8

hy
− �

(
k2u8 + f8

)
,

(1.96)

where the last step used the numerical middle-point quadrature rule. Thus from
(1.96), we have obtained the nodal equation at p8 as

−w3u3 − w7u7 + (
w3 + w7 + w9 + w13 − k2

)
u8 − w9u9 − w13u13 = f8,

(1.97)
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where w3 = �s/(hx�), w7 = �w/(hy�), w9 = �e/(hx�), w13 = �n/(hy�).
Clearly if h = hx = hy , then � j = h, � = h2 and w j = 1/h2 so the FVM
produces the same equation as the FDM equation (1.90) at node 8. Ap-
plying the idea of (1.95) to all nodes in �h will lead to the linear system
for u.

Remark 1.7.23.

(1) The FVM appears to be a robust method. Its resemblance to FEM and
FDM brings resembling advantages. On the FEM side, the FVM can work
on any given mesh (not necessarily regular ones). On the FDM side, the
FVM is node based so it is as easy to implement and to verify as the
FDM, more convenient than the FEM in some sense. It should be re-
marked that if one insisted on using the point-wise Gauss–Seidel Newton
methods, the FVM was considered as a ‘matrix-free’ iterative method by
some research communities; clearly convergence cannot be very fast in
general.

(2) A remarkable feature of a FVM is its treatment of convective terms,
removing the need of directly discretizing the first derivatives all together!
For the modified model (1.92), the nodal equation derivation similar to
(1.95) will be

0 =
∫

V

(
−
u + b(x, y)

∂u

∂x
− k2u − f

)
d�

= −
∫

�

∇u · nd S +
∫

�

(ub) d S −
∫

V

(
u

∂b

∂x
+ k2u + f

)
d�.

(1.98)

Clearly ∂u/∂x is eliminated; this is a step that the usual FEM does not
do as nearly well as the elegant FVM. This advantage is even clearer for
constant coefficients e.g. the conservation laws in hyperbolic equations;
see [473].

1.7.5 The global element methods (GEMs)

The GEMs refer to those FEM-like methods that use global functions as trial
functions. These include spectral methods [91,458] and meshless methods
[122]. We shall make a quick summary of them before concluding this chap-
ter. As most of these methods employ basis functions that are more than twice
differentiable, differentiating (rather than integrating) the trial functions is a
common practice in derivation.
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The general framework for such spectral methods to solve Lu = f follows
closely from the FEM u(p) =

n∑
j=1

αkφk(p),

(Lu, ψi ) = ( f, ψi ), for i = 1, . . . , n − 	,

where 	 more equations are reserved to satisfy the boundary conditions; if such
conditions are periodic, 	 may be zero. Here the solution

u = un =
n1∑

j=0

n2∑
	=0

αkφk(p), k = 	(n1 + 1) + j + 1,

with the Fourier spectral methods choosing

φk(p) = φ j,	(x1, x2) = exp
(

i x1( j − n1

2
)
)

exp
(

i x2(	 − n2

2
)
)

and the Chebyshev spectral methods choosing (see (3.45) for a definition)

φk(p) = φ j,	(x1, x2) = Tj (x1)T	(x2).

If ψi are chosen as piecewise constants, the resulting collocation algorithm is
called the pseudo-spectral method.

Positively speaking, these methods offer a lot of advantages for several
special classes of problems where the underlying domain is periodic. When
applicable, a spectral method gives much greater accuracy than a FEM and the
convergence rate can be exponential rather polynomial. It is known that matrices
generated by the spectral methods from solving second order PDE’s can be
dense and ill-conditioned [231,458]. On the other hand, if a fixed accuracy is
aimed at, linear systems generated from the highly accurate spectral methods are
not too large scaled so iterative methods may not be needed but preconditioning
techniques are needed to improve conditioning.

The so-called meshless methods [122], usually based on using radial basis
functions (RBFs) [79], are easier methods to describe and apply than their spec-
tral counterparts. However the power of these methods is different from (and a
bit opposite to) that of spectral methods because the former, for scattered data
interpolation and solving PDEs, is better suited to problems with a less regu-
lar mesh, and to low accuracy requirements. For instance, in oil exploration,
the RBF may offer the only solution of ‘prediction’ of activities in the neigh-
bouring areas if all you have obtained is a set of 10 measures dug at irregular
places.
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Let φ(r ) be a RBF e.g. φ(r ) = 1 + r with r = r (p, q) = |p − q| the same
as with the BEM, and p1, . . . , pn be a sequence of scattered data points in some
closed domain �, on which we shall seek a RBF interpolation

s(p) =
n∑

j=1

α jφ(r j ) with r j = |p − p j |, (1.99)

for a given functions f (p) = f (x, y)

find {α j }′s : s(pi ) = f (pi ), for i = 1, . . . , n.

Using (1.99) and u = s(p), solving an operator equation Lu = f yields a lin-
ear system (which is not difficult to derive). The difficulty lies in establishing
invertibility and sparsifying the dense RBF matrix within the same numerical
accuracy. Notice that the ordering of nodes p j plays no part in the methods and
so comes the name ‘meshless methods’. See [8,122].

1.7.6 Linearization methods

We finally review a large and rich source of linear systems, which are obtained
by linearizing a multidimensional nonlinear system. There are many ways of
proposing a linearization [376]. We only discuss the Newton method; some
more Newton variants can be found in Chapter 14.

Denote a nonlinear system in R
n by

F1(x1, x2, . . . , xn) = 0,

F2(x1, x2, . . . , xn) = 0,

· · ·
Fn(x1, x2, . . . , xn) = 0,


or F(x) = 0. (1.100)

Suppose F is differentiable (if not there are alternative techniques). Then start-
ing from an initial guess x(0), the Newton method computes the next iterate
by

x( j) = x( j−1) − ∆x ( j−1), with J∆x ( j−1) = F(x( j−1))︸ ︷︷ ︸
linear system

, (1.101)
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where the Jacobian matrix, evaluated at x( j−1), is

J =



∂ F1

∂x1

∂ F1

∂x2
· · · ∂ F1

∂xn

∂ F2

∂x1

∂ F2

∂x2
· · · ∂ F2

∂xn

...
... · · · ...

∂ Fn

∂x1

∂ Fn

∂x2
· · · ∂ Fn

∂xn


.

We wish to make an early remark on these linear systems. When the underlying
nonlinear system (1.100) models some kind of stable equilibrium (e.g. in Chap-
ter 14), to maintain stability of the nonlinear system, the eigenvalues of J are
supposed to have negative real parts and this is about the worst scenario for an
iterative method to work (Chapter 3) i.e. iterative solution of (1.101) requires
preconditioning.

1.8 Common theories on preconditioned systems

We have mentioned that the purpose of preconditioning (1.1) by (1.2) or (1.5)
is to ensure that the preconditioned system has better spectral properties, that
are required by the iterative methods in later chapters.

Here we give a short list of common theories on preconditioned systems that a
reader can find in the literature. These theories, while useful and mathematically
interesting, are not always relevant to faster iterative solution.

For a symmetric matrix A ∈ R
n×n , any of the following proves that the

symmetric M is an effective preconditioner.

(1) Conditioned number estimates for a SPD case – κ(M A) ≤ O(1) for
any n.
A common form of conditioned number estimates is presented by

c1xT Mx ≤ xT Ax ≤ c2xT Mx,

where c1, c2 > 0, and M = M1/2 M1/2 and M1/2 are both SPD. This implies
that

κ2(M−1/2 AM−1/2) = κ1(M−1 A) ≤ c = c2/c1.

To explain this result, first note that (setting y = M1/2x and z = M−1/2x)

M−1/2 AM−1/2x = λx implies M−1/2 Az = λM1/2z and also M−1 Az = λz
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so λ(M−1 A) = λ(M−1/2 AM−1/2). Second, the above inequalities may be
written as

c1 yT y ≤ yT M−1/2 AM−1/2 y ≤ c2 yT y, c1 ≤ yT M−1/2 AM−1/2 y

yT y
≤ c2.

Using the min–max theorem (on Rayleigh quotients) for symmetric
matrices,

c1 ≤ λ(M−1/2 AM−1/2) ≤ c2.

(2) Bounding the largest and smallest eigenvalues.

c1 ≤ λmin(M A), λmax(M A) ≤ c2,

where c1, c2 > 0.
(3) Eigenvalue estimates. There exists an fixed integer τ such that for j ≥ τ ,

|λ j (M A) − 1| < ε where ε is some fixed small quantity.

For an unsymmetric matrix A, all of the above are doubtful as a test of
the effectiveness of preconditioner M unless M A ≈ I or ‖M A − I‖ ≈ 0. As
remarked in Chapter 3, the preconditioned system M A must be close to nor-
mality to justify the validity of eigenvalue information.

1.9 Guide to software development and the supplied Mfiles

We first make some general remarks on the general and important issue of
software. Then we comment on the supplied Mfiles for this book and finally
list the specific files developed for this chapter.

� Sources of software and development issues. Producing reliable, accurate
and fast numerical software for solving applied mathematical problems from
any scientific computing discipline is the main aim of computational mathe-
matics. However all three aspects must go through the usual process of research
and development.

The software issue can be a big problem for many readers. Although there
are many good examples and practices of published software, there exist two
extreme practices that are not helpful to the general community and readers at
large.

(1) On one hand, many high level, ‘fast’ and general purpose (some commer-
cial) codes can solve various practical problems. Quite often, the exact de-
scriptions of the mathematics and algorithms used are not always complete.
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So it can be difficult to generalize, adapt or enhance these codes. Besides,
some commercial codes may not have the latest methods available.

(2) On the other hand, increasingly, more and more new research methods and
techniques come to the scene with the claim that they can achieve many
wonderful aims. But, often, an average reader has no way of figuring out
how the methods work exactly as a pseudo-code may not be given or a
method may not be reproduced easily.

Therefore, the first and most crucial issue is to show transparency of a method
or an algorithm so that a reader can either follow a published code or reproduce
it. Sophistication and theory are secondary. The author strongly believes that
developing quality software is easy if one really understands the mathematics
behind it and algorithms in detail.

This book will aim to go beyond the ‘usual practice’ of showing ample
experimental and theoretical results without giving full and useful details i.e.
we illustrate ideas and methods using algorithms as well as pseudo-codes and
inviting a reader to use existing (various pointers to such will be given) or to
develop new codes hopefully with ease. Fortunately for the research community,
the existence of the MATLAB12 script language makes it possible for readers
to share knowledge and algorithms in a portable and readable form. Moreover
for later chapters, where necessary, we shall also give out our own programs
for readers’ benefit. All supplied Mfiles and programs will be available from

http : //www.cambridge.org/9780521838283
http : //www.liv.ac.uk/maths/ETC/mpta

� Guide to the supplied Mfiles for this book. A Mfile can also be written
in such a sophisticated way that even an author may not understand it after a
while! Bearing this mind, we have tried to stick to simplicity whenever possible.
Where simplification at the price of sophistication to illustrate an idea is actually
the main aim, this is clearly stated in the relevant Mfiles. There are three ways
to find out the details of a Mfile (e.g. take file.m for example).

(1) In MATLAB, typing the name file without any parameters will invoke
the self-help comments being shown (we realize that it is quite annoying
for MATLAB to give you error messages on missing parameters). These
self-help comments should explain how to run the Mfile file.

12 MATLAB c© is a registered trademark of MathWorks, Inc. See http://www.mathworks.com
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(2) From the text, near an algorithm, we normally discuss the mathematics
relevant to a Mfile. An index of the entry file.m can be found towards
the end of the book in Appendix D.

(3) Check the last section of each chapter, where supplied Mfiles will be listed
with short descriptions including their level of sophistication. For a Mfile
classified as ‘advanced’, a novice reader should simply run it to further
understanding only and is not expected to modify it.

� Mfiles for Chapter 1.

[1] hess as.m – Implement the Arnoldi decomposition as in Algorithm 1.4.9 in
Section 1.4 (via the Gram–Schmidt approach). The Mfile is moderate, not
complicated. (Readers interested in the other two approaches for completing
the Arnoldi decomposition should consult the Mfiles givens.m and
houses.m as listed in Section 2.7.)

[2] exafft16.m – Compute the FFT of a vector as in Example 1.6.17 in a step-
by-step manner.

[3] mygrid.m – Utility Mfile to supplement to exafft16.m. When used alone,
it prints a mesh grid on an existing graph.

[4] mat prt.m – Utility Mfile to supplement to exafft16.m. When used alone,
it allows one to display a matrix or two matrices side-by-side without wrap-
ping around.

[5] mat prt4.m – Utility Mfile to supplement to exafft16.m. When used alone,
it is similar to mat prt.m but prints 4 digits.

[6] fwt.m – Compute the fast wavelet transform of a vector or a matrix, using
a choice of Daubechies’ compact wavelet filters. It implements the trans-
form ‘matrix’-free version; alternatively one can form the sparse transform
matrices.

[7] ifwt.m – Compute the inverse fast wavelet transform of a vector or a matrix,
reversing fwt.m. (Compare to fwts.m and iwts.m from Chapter 8).

[8] fft fwt.m – Compare the two examples of FWT and FFT transforms in
Figure 1.1.

� Final remarks and main software sites. Most numerical software in sci-
entific computing can be obtained from the Internet in some form, as long as
one knows where and what to look for. This book hopes to serve the purpose
of helping readers who are not yet numerical experts in this direction. To sum-
marize and re-iterate on the main message, the author believes that developing
efficient software is not a hard job if one is in possession of a good numerical
method and that often exposing the ideas behind methods is more important
than going for the nitty-gritty implementation details. Nevertheless, in addition
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to developing a good practice in software writing, sharing software resources
is a positive way forward. Fortunately one can always browse these places for
software.

(1) netlib is like a gold mine for good numerical software that includes codes
from ACM collection and LAPACK. Access via internet

http:/www.netlib.org
or by sending an email with the message send index to

netlib@ornl.org
(2) Professional and commercial packages:

Numerical Algorithm Groups (NAG) at: http://www.nag.co.uk/
and Mathematics and Statistics Libraries (IMSL) at: http://www.vni.com/

(3) Numerical recipes [390] programs (curtseys of Cambridge University
Press)

Numerical Recipes at: http://www.nr.com/
(4) MATLAB exchanges (for techniques such the FEM)

http : //www.mathworks.com/matlabcentral/fileexchange/

Refer also to Appendix E for more lists.
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Direct methods

How much of the matrix must be zero for it to be considered sparse
depends on the computation to be performed, the pattern of the nonzeros,
and even the architecture of the computer. Generally, we say that a matrix
is sparse if there is an advantage in exploiting its zeros.
Iain Duff, et al. Direct Methods for Sparse Matrices. Clarendon Press

(1986)

To be fair, the traditional classification of solution methods as being either
direct or iterative methods is an oversimplification and is not a satisfactory
description of the present state of affairs.

Michele Benzi. Journal of Computational Physics, Vol. 182 (2002)

A direct method for linear system Ax = b refers to any method that seeks the
solution x , in a finite number of steps, by simplifying the general matrix A to
some special and easily solvable form (1.3), e.g. a diagonal form or triangular
form. In the absence of computer roundoff, x will be the exact answer x∗;
however unless symbolic computing is used, computer roundoff is present and
hence conditioning of A will affect the quality of x . Often a direct method is
synonymous with the Gaussian elimination method, which essentially simplifies
A to a triangular form or equivalently decomposes matrix A into a product of
triangular matrices. However one may also choose its closely related variants
such as the Gauss–Jordan method, the Gauss–Huard method or the Purcell
method especially when parallel methods are sought; refer to [143].

The purpose of this chapter is to mainly address the inversion step of a
forward type preconditioner M i.e. solve Mx = b for a given b. Of course,
backward type (inverse based) preconditioners involve a simple matrix vector
multiplication. As far as solving the original system Ax = b is concerned,
an inaccurate (but fast) solution procedure can also be adapted to produce a
preconditioner. Thus many competing direct methods could potentially provide

66
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useful preconditioners; we give a brief but yet comprehensive account of these
methods with these sections.

Section 2.1 The LU decomposition and variants
Section 2.2 The Newton–Schulz–Hotelling method
Section 2.3 The Gauss–Jordan decomposition and variants
Section 2.4 The QR decomposition
Section 2.5 Special matrices and their direct inversion
Section 2.6 Ordering algorithms for better sparsity
Section 2.7 Discussion of software and Mfiles

We first discuss the standard Gaussian elimination method in Section 2.1
and then variants of the Gauss–Jordan (GJ) method in Section 2.3. The material
in Section 2.1 are perhaps well known to most readers while the material in
Section 2.3 may not be familiar to many readers as the GJ method is often stated
in passing in popular texts. The decomposition idea is later used in Section 5.6
in improving the approximate inverse preconditioner. We next briefly review
special matrices that can be inverted analytically in a fast way and thus can be
taken as a candidate for a preconditioner in suitable contexts. These include the
FFT solution of the circulant and Toeplitz matrices. In matrix computing, the
real challenge is to be able to identify these special matrices as part of A that
can be used to justify their usefulness in preconditioning κ(A) or its spectrum.
Finally we consider ordering algorithms using graph theory before discussing
the frequently-used Schur complements approaches which are essentially direct
methods. These include the Duff’s spiral ordering and the DDM ordering.

In matrix computation texts [229,280], the error analysis for Gaussian
elimination with partial pivoting states that the computed solution x̂ satisfies
(A + E)x̂ = b with

‖E |∞ ≤ γ1(n) ρ κ∞(A) u,
‖x − x̂‖∞

‖x‖∞
≤ γ2(n)ρ κ∞(A) u, (2.1)

where u is the unit roundoff (machine precision), γ1(n) and γ2(n) are two
low-order polynomials of n, ρ is the so-called growth factor and κ∞(A) is the
condition number of A. Note κ∞(A) ≤ √

nκ2(A).
Clearly the two important quantities, ρ and κ2(A), determine the overall

accuracy of these direct methods. Firstly, to reduce the effect of ρ, one can
use the so-called pivoting strategies (partial pivoting or complete pivoting); see
[229,280]. In any strategy, pivoting amounts to permuting the linear system (and
possibly the variables). That is, apply permutation matrices P, Q to obtain either
P Ax = Pb (partial pivoting case) or P AQy = Pb with x = Qy (complete
pivoting case). Note that once pivoting is applied, the effect of ρ is reduced.
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Therefore, we may assume that a pivoting permutation has been applied to our
underlying linear system (without essential loss of generality).1 Secondly, the
condition number remains the same after pivoting as κ2(P A) = κ2(P AQ) =
κ2(A) (using norm invariance of orthogonal matrices P, Q – see Section 1.5).
The task of reducing this quantity further is usually called scaling and the
commonly used approach for scaling is to multiply a suitable diagonal matrix
to matrix A (e.g. use the diagonals of matrix A); for symmetric matrices one
may multiply a diagonal matrix to A from both left and right hand sides [229].
This idea of scaling is a simple form of preconditioning for direct methods!
Preconditioning a direct method is often necessary. One can find more examples
of non-diagonal preconditioners in Chapters 4–10.

2.1 The LU decomposition and variants

The method of Gaussian elimination (GE) is well documented in all linear
algebra texts. We shall present the algorithm for sake of later use in contexts of
preconditioning. We pay special attention to those variants of the method that
can be adapted for preconditioner designs. As mentioned, consult other texts
e.g. [229,280] for results of theoretical and error analysis.

2.1.1 The standard L DMT factorization

In the well known LU decomposition, A = LU , one of the lower triangular
matrix L or the upper triangular matrix U has unit diagonals – a choice be-
tween Crout and Doolittle factorizations [23,229,280,298]. Here we present
the L DMT factorization of GE, allowing both L and M to have unit diago-
nals. Then the Crout and Doolittle factorizations A = LU become respectively
L ⇐ L and U ⇐ DM , and L ⇐ L D and U ⇐ M . Note that only in this sec-
tion is M used as an upper triangular matrix (in order to be consistent with the
general literature) while M refers to a preconditioner for matrix A elsewhere.

We first show the traditional ki j form of GE method to simplify matrix A.

Algorithm 2.1.1. (GE method).

(1) Set m = I , x = b.
(2) for k = 1, . . . , n, do
(3) for i = k + 1, . . . , n, do

1 There are two issues here: (1) in theory, a LU decomposition exists if all the principal submatrices
are nonsingular. Note the largest principal submatrix is A itself. (2) In practice, our assumption
also means that the growth factor will not be large for our permuted matrix A; see [280,281].
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(4) mik = aik/akk

(5) xi = xi − mik xk

(6) for j = k, . . . , n, do
(7) ai j = ai j − mikak j

(8) end
(9) end

(10) end
(11) For LU decomposition, accept L = m, U = A;
(12) For L DMT decomposition, take L = m, D = diag(a11 . . . ann), MT =

D−1 A.

Readers interested in checking the details should use the supplied Mfilesg e.m
and ge all.m as directed in Section 2.7. In Algorithm 2.1.1, at step k, all the
multipliers mik = m(i, k) can be collected to define the lower triangular matrix

Mk =



Ik−1

1
−mk+1,k 1

−mk+2,k
. . .

...
. . .

−mn,k 1


= I − mkeT

k with

mk =



Ok−1

0
mk+1,k

mk+2,k
...
mn,k


(2.2)

where ek is the kth unit vector and Ok−1 denotes a size k − 1 zero vector. Note
that the product mkeT

k is only a notation to mean a matrix with an isolated vector
mk in its column k, although mkeT

k is formally a matrix!
There are two amazing facts on this type of matrices. Firstly, the inverse of

Mk is the same as Mk with its multiplier entries flipped signs i.e.

M−1
k = (I − mkeT

k )−1 =



Ik−1

1
mk+1,k 1

mk+2,k
. . .

...
. . .

mn,k 1


= I + mkeT

k .
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Actually there is nothing amazing about this result if you relate it to the
Sherman–Morrison theorem in Section 2.5 with A = I , u = mk and v = ek .

Secondly, one simply packs the multiplier entries if such a matrix with more
entries multiplies with another one with fewer entries, e.g.

I1

m2,1 1
m3,1 1
...

. . .
...

. . .

mn,1 1





I2

1
m4,3 1

m5,3
. . .

...
. . .

mn,3 1



=



1
m2,1 1
m3,1 1

m4,1 m4,3
. . .

...
...

. . .

mn,1 mn,3 1


. (2.3)

Multiplications in the reverse order are different (check this out using the Mfile
ge all.m!).

The whole GE process can be represented by

Mn−1 Mn−2 · · · M1 A = U, or A = LU = L DM, (2.4)

where D = diag(u11, . . . , unn), MT = D−1U and

L = M−1
1 · · · M−1

n−1 =



1
m2,1 1
m3,1 m3,2 1

m4,1 m4,2 m4,3
. . .

...
...

...
...

. . .

mn,1 mn,2 mn,3 · · · mn,n−1 1


.

One may observe that the GE process (Algorithm 2.1.1) literally implements
the factorization L̂ A = U with L̂ = Mn−1 Mn−2 · · · M1 a lower triangular ma-
trix with unit diagonals and the commonly known A = LU (or A = L DMT )
decomposition is only derived from the method.

Note that M = L when A is symmetric so A = L DMT becomes the
Cholesky decomposition A = L DLT .
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2.1.2 Schur complements and the partitioned LU factorization

For high performance computing, block forms of the LU decomposition can
be similarly developed if one views new block entries as ‘entries’ in a scalar
algorithm; see [184,229,280].

We first review the one level Schur complements idea of partitioning A into
2 × 2 blocks

A =
[

A11 A12

A21 A22

]
(2.5)

where A11 ∈ R
r×r ; usually one takes r = n/2. Assuming the principal block

submatrices A11 and A are both nonsingular, a block LU decomposition of A
exists [229,280]. Then by equating corresponding blocks, we can easily find
such a decomposition as follows[

A11 A12

A21 A22

]
=

[
I
L21 I

] [
U11 U12

U22

]
=

[
I
A21 A−1

11 I

] [
A11 A12

S

]
,

(2.6)

where S = U22 = A22 − L21 A12 = A22 − A21 A−1
11 A12 is the so-called Schur

complement of matrix A11 in A. From (2.6), we can find A−1 the inverse of A
in terms of partitioned blocks[

A11 A12

S

]−1 [
I
A21 A−1

11 I

]−1

=
[(

I + A−1
11 A12S−1 A21

)
A−1

11 −A−1
11 A−1

12

−S−1 A21 A−1
11 S−1

]
,

(2.7)

Clearly the assumption that all principal submatrices of A (including A11)
are nonsingular ensures that A−1

11 and S−1 exist since det(A) = det(A11)det(S).
However if A is positive definite (not necessarily symmetric), then much more
can be said of the Schur complement S.

Theorem 2.1.2. (Schur complement). If A ∈ R
n×n is positive definite (PD),

then the block LU decomposition exists for any r such that A11 ∈ R
r×r ,

and

(1) the diagonal blocks A11, A22 are also PD;
(2) the Schur complement S is PD;
(3) if A is additionally symmetric (i.e. SPD), then

(a) λmin(A) ≤ min
{
λmin(A11), λmin(A22), λmin(S)

}
,

max
{
λmax(A11), λmax(A22), λmax(S)

} ≤ λmax(A) for eigenvalues;
(b) κ2(S) ≤ κ2(A) for condition numbers.
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Proof. There is only one main idea from Section 1.5 needed for this
proof, namely, xT Ax > 0 for any x �= 0 ∈ R

n . Suppose an index vector p =
[p1, . . . , pr ] corresponds with a particular principal matrix Ap = A(p, p). For
any x p �= 0 ∈ R

r , map it to x �= 0 ∈ R
n with x(p) = x p and set other com-

ponents of x to 0. Then xT Ax = xT
p Apx p > 0 so Ap is also PD (and hence

nonsingular). Therefore (2.6) exists for this r .

(1) Taking p = [1, . . . , r ] and p = [r + 1, . . . , n] respectively can show that
A11, A22 are also PD.

(2) From the existence of factorization (2.6), S−1 exists so from (2.7) we know
that S−1 is a principal submatrix of A−1. From §1.5, λ(A−1) = 1/λ(A) i.e.
A−1 is PD. The result of part (1) immediately states that S−1 is PD and
hence S is PD.

(3) We apply the above idea for xT Ax to the Rayleigh quotient xT Ax/xT x
(note A is now symmetric). Let x (1) ∈ R

r be an eigenvector for λmin(A11).
Take p = [1, . . . , r ] and map x (1) to x ∈ R

n with x(p) = x (1) and set other
components of x to 0. Then

λmin(A) = min
y �=0

yT Ay

yT y
≤ xT Ax

xT x
= x (1)T

A11x (1)

x (1)T x (1)
= λmin(A11). (2.8)

Similarly

λmax(A) = max
y �=0

yT Ay

yT y
≥ xT Ax

xT x
= x (1)T

A11x (1)

x (1)T x (1)
= λmax(A11).

The proof for A22 is similar if taking p = [r + 1, . . . , n]. Now consider S. The
proof is again similar if we repeat the above argument for the PD matrix A−1:
as S−1 is a principal submatrix of A−1 from (2.7), then we have λmax(S−1) ≤
λmax(A−1) [i.e. λmin(S) ≥ λmin(A)] and λmin(S−1) ≥ λmin(A−1) [i.e. λmax(S) ≤
λmax(A)]. (Alternatively use S = A22 − A21 A−1

11 A12, noting AT
12 = A21, and

take similar partitions on x ∈ R
n). Finally κ2(S) = λmax(S)/λmin(S) ≤ κ2(A).

Here in (2.6), as with most situations in scientific computing, one tries not
to form A−1

11 explicitly unless r is small. In the context of preconditioning, as
we shall see, the Schur complement is usually not formed and there are two
acceptable ways to proceed with using this Schur approach in a multilevel
fashion.

(1) Solve the Schur equation by a preconditioned iterative method. Then A−1
11 v,

for a vector v, will be only a linear solution.
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(2) Approximate A−1
11 by some simple matrix, e.g. of a diagonal or tridiago-

nal form, so that an approximate Schur can be formed explicitly and be
partitioned recursively using more levels.

These ideas will be pursued further in Chapters 7, 9 and 12.
We now briefly review the so-called partitioned LU decomposition [229,280]

in a very clear and elementary way. Similar to (2.6), we assume that the scalar
LU decomposition exists, i.e.2[

A11 A12

A21 A22

]
=

[
L11

L21 L22

] [
U11 U12

U22

]
(2.9)

where A11 ∈ R
r×r , all Li j and Ui j are all unknowns to be determined, L11 and

L22 are lower triangular matrices with unit diagonals, and U11 and U22 are upper
triangular matrices (of course, U12 and L21 can be unknown dense matrices).
On equating the corresponding blocks, we obtain the following

L11U11 = A11, L11U12 = A12,

L21U11 = A21, L22U22 = A22 − L21U12.

Thus the first equation amounts to decomposing the submatrix A11, the second
and third to solving systems with a triangular coefficient matrix, and the last
equation becomes L22U22 = B with B = A22 − L21U12 known after solving
the first three equations. Then the whole procedure of partitions can be repeated
for B.

One may deduce that if r = 1 is maintained, both the partitioned method (2.9)
and the block Schur method (2.6) reverse back to the scalar Algorithm 2.1.1;
however one may prefer to take a large r (say r = n/2) in order to maximize
block matrix operations. When r ≥ 2, the two methods (2.9) and (2.6) are
different; however the former method (2.9) is always equivalent to the GE for
any r .

2.1.3 The substitution free W AZ factorization

As the inverse of a triangular matrix is also of a triangular form, it is hardly
surprising to rewrite A = LU as L−1 AU−1 = I or the W AZ form

W T AZ = I (2.10)

2 Readers who are familiar with the Lanczos method (for tridiagonalization), or the Arnoldi method
(for upper Hessenberg form Section 1.4) or the Gram–Schmidt method (for A = Q R decompo-
sition Section 2.4) should agree that the underlying idea in all these four approaches is identical,
i.e. the entire decomposition method (by way of ‘method of under-determined coefficients’) will
come about as soon as an assumption of existence is made.
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where W T = L−1 is a lower triangular matrix with unit diagonals and Z = U−1

is an upper triangular matrix. The task of a W AZ decomposition is to compute
W and Z without using the LU decomposition. It turns out that this task is not
difficult as columns of W and Z can be worked out together in a manner similar
to the Gaussian elimination.

The following algorithms show how to compute W and Z : in particular the
first algorithm computes the biconjugation decomposition

W AZ = D, or wT
i Az j = Di jδi j , (2.11)

as in [55,211] (similar to A = L DU decomposition) while the second computes
(2.10) as in [510]. The first approach will be discussed again when factorized
approximate inverse preconditioners are introduced in Chapter 5.

Algorithm 2.1.3. (W AZ = D method).

(1) Set matrices W = Z = I .
(2) for i = 1, . . . , n, do
(3) pq = W (:, i)T A(:, i), Dii = pq,
(4) for j = i + 1, . . . , n, do
(5) q j = W (:, j)T A(:, i)/pq
(6) p j = Z (:, j)T A(i, :)T /pq
(7) end for j = i + 1, . . . , n
(8) for j = i + 1, . . . , n, do
(9) for k = 1, . . . , i , do

(10) W (k, j) = W (k, j) − q j W (k, i)
(11) Z (k, j) = Z (k, j) − p j Z (k, i)
(12) end
(13) end
(14) end

Algorithm 2.1.4. (W AZ = I method).

(1) Set W = Z = I .
(2) for i = 1, . . . , n, do
(3) pii = W (:, i)T A(:, i)
(4) for j = i + 1, . . . , n, do
(5) qi j = W (:, j)T A(:, i)/pii

(6) pi j = Z (:, j)T A(i, :)T /pii

(7) for k = 1, . . . , j − 1, do
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(8) W (k, j) = W (k, j) − qi j W (k, i)
(9) Z (k, j) = Z (k, j) − pi j Z (k, i)

(10) end
(11) end
(12) Z (:, i) = Z (:, i)/pii

(13) end

If all the multipliers pi j , qi j in Algorithm 2.1.4 are collected into suitable
matrices, just as with (2.2) for the GE, we can obtain the so-called Zollenkopf
bi-factorization [510]. Specifically letting

Wk =


Ik−1

1
−qk+1,k 1

...
. . .

−qn,k 1

 ,

Zk =


Ik−1

1/pkk −pk,k+1 · · · −pk,n

1
. . .

1

 ,

(2.12)

the Zollenkopf factorization becomes

W T AZ = I, W T = Wn−1Wn−2 · · · W2W1, Z = Z1 Z2 · · · Zn−1 Zn.

(2.13)

Readers interested in trying the details out should use Mfiles waz_fox.m for
W AZ = D,waz_zol.m for W AZ = I andwaz_all.m for (2.13) as shown
in §2.7.

2.2 The Newton–Schulz–Hotelling method

We now introduce a direct method for computing an inverse of a matrix which
has some potential applications to preconditioning of a linear system; see
[59,202]. The method is not truly direct as it uses iterations!

This is the Schulz method [423], sometimes called the Hotelling–Bodewig
method but more commonly known as the Newton–Schulz method in the liter-
ature possibly because the method may be ‘viewed’ as a quasi-Newton method
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for solving the nonlinear system AX = I :

X j+1 = X j − X j
[
AX j − I

]
or in the popular format (for j = 0, 1, 2, . . .)

X j+1 = 2X j − X j AX j . (2.14)

Once convergence is reached, X∗ = limk→∞ Xk = A−1 and a linear system
Ax = b is solved from forming the product x = xk = Xkb. As discussed in
[227], to put its importance into the right prospective, this method was at one
stage in 1940s believed to be much better than the GE following the paper by
Hotelling [286] (before it was shown otherwise). We call the method Newton–
Schulz–Hotelling to reflect the fact that it is referred to in differently combined
names.

As a Newton method, it has a quadratic convergence rate provided the
initial start is sufficiently close to the true solution (here the inverse A−1).
This can be simply demonstrated as follows (by first multiplying A and then
subtracting I )

I − AX j+1 = I − 2AX j + AX j AX j

i.e.

(I − AX j+1) = (I − AX j )
2. (2.15)

Thus the convergence is assumed if the initial guess X0 satisfies ρ(I −
AX0) < 1.

We remark that the method is adequate if dense matrices are used throughout.
In this case, fast matrix–matrix multiplication algorithms should be used; see
the Strassen’s method in [280]. However for sparse matrices or for situations
where only an approximate inverse is desired, one needs to consider if the
intermediate iteration matrices can be kept sparse. Numerical experiments may
be done using the supplied Mfile nsh.m.

2.3 The Gauss–Jordan decomposition and variants

The Gauss–Jordan (GJ) method should be very familiar with most readers as it
is usually used to compute the row-echelon form of a matrix and the inverse of a
square matrix using the method of augmented matrix (i.e. reduce [A | I ] by row
operations to [I | A−1]). However our emphasis here is on the less well-known
aspect of matrix decomposition with a view to later applications to multilevel
preconditioning Section 5.6.
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2.3.1 The standard GJ factorization

The standard GJ method has been well documented in various texts e.g.
[23,298,229,280]. Briefly, on top of the GE, it completes the back substitution
step at the same time. In parallel to Algorithm 2.1.1, we show the following ki j
version of the GJ method.

Algorithm 2.3.5. (GJ method).

(1) Set m = I , x = b.
(2) for k = 1, . . . , n, do
(3) for i = 1, . . . , k − 1, k + 1, . . . , n, do
(4) mik = aik/akk

(5) xi = xi − mik xk

(6) for j = k, . . . , n, do
(7) ai j = ai j − mikak j

(8) end
(9) end

(10) mkk = 1/akk

(11) for j = k, . . . , n, do
(12) ak j = mkkak j

(13) end
(14) xk = mkk xk

(15) end
(16) The solution x = A−1b is obtained.

Readers interested in trying out the details should use Mfiles g_j.m and
gj_ek.m as shown in Section 2.7.

Now we describe the slightly less well known GJ decomposition. Define a
GJ elementary matrix (using the multiplier of Algorithm 2.3.5) by

Ek =



1 −m1k

. . . −m2k

1 −mk−1,k

mk,k

−mk+1,k 1
...

. . .

−mn,k 1


. (2.16)

Then the GJ decomposition is the following

En En−1 · · · E2 E1 A = I or A−1 = En En−1 · · · E2 E1. (2.17)
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One can verify, similar to inverting Ek for the GE, that

E−1
k =



1 −m1k/mkk

. . . −m2k/mkk

1 −mk−1,k/mkk

1/mk,k

−mk+1,k/mkk 1
...

. . .

−mn,k/mkk 1


,

which defines A = E−1
1 E−1

2 · · · E−1
n . Remark that matrices that are a product

of a few selected E j type matrices can be inverted quickly; see one application
in Section 5.6 and another one in [128,497].

Now consider further properties of Ek in relation to the GE decomposi-
tion (2.4). It turns out that the above multipliers mik are identical to those
from Algorithm 2.1.1. Let us first decompose Ek into elementary GE matrices
like (2.2)

Ek = uk�k

=



1 −m1k

. . .
...

1 −mk−1,k

mk,k

1
. . .

1





1
. . .

1
1

−mk+1,k 1
...

. . .

−mn,k 1


(2.18)

where �k and uk commute: Ek = �kuk . Then the GJ decomposition (2.17)
becomes

un�nun−1�n−1 · · · u2�2u1�1 A = I. (2.19)

Next observe an interesting property on commutability of u j and � j i.e. for any
i, j = 1, . . . , n

u j�i = �i u j . (2.20)

(However neither u j ’s nor � j ’s can commute among themselves). Using
(2.20), we can collect all u j ’s in (2.19) to the left (though they cannot pass
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each other)

unun−1 · · · u2u1�n�n−1 · · · �2�1 A = I, or

�n�n−1 · · · �2�1 A = u−1
1 u−1

2 · · · u−1
n−1u−1

n , or

�n�n−1 · · · �2�1 Aunun−1 · · · u2u1 = I.

(2.21)

Clearly the above can be written as a LU decomposition

A = LU with L = �−1
1 �−1

2 · · · �−1
n−1�

−1
n , U = u−1

1 u−1
2 · · · u−1

n−1u−1
n (2.22)

where multiplications to obtain L and U again amount to a simple pack-
ing process as in (2.3). As the LU decomposition is unique, we conclude
that the multipliers mik in Algorithm 2.3.5 are the same as those from
Algorithm 2.1.1.

Likewise, one can also observe that the last equation of (2.21) is simply the
W AZ decomposition as in Section 2.1.3. Hence the GJ method can reproduce
both the GE and the WAZ decompositions.

2.3.2 A block variant of the GJ

Although the GE has two variants of block form Section 2.1.2, namely the
Schur complements and the partitioned block methods, the GJ has one block
variant, i.e. the counterparts of the two variants in Section 2.1.2 merge into
one here.

We now derive the method using the motivation for (2.9), i.e. assume[
E11

E21 I

]
A =

[
E11

E21 I

] [
A11 A12

A21 A22

]
=

[
I U12

U22

]
, (2.23)

where A11 ∈ R
r×r , all Ei j and Ui j are all unknowns (and possibly dense blocks).

Equating corresponding blocks, we obtain

E11 A11 = I, E12 A11 = −A21,

E11 A12 = U12, E12 A12 + A22 = U22.

Clearly this gives a neater solution than (2.9). This idea will be used again in
Section 5.6. As stated earlier, the GJ decomposition is less well known and in
particular the author has not seen any use of the block form (2.23) so far.

2.3.3 Huard and Purcell methods

There are perhaps two reasons why a GJ method is not widely used. Firstly
the flops (floating point operations) count is 50% higher with the GJ than the
GE for solving the same equation Ax = b. However there are better variants
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(i.e. Huard and Purcell [143]) of the GJ method. Secondly the error constant is
believed to be larger when using the GJ with the usual column (partial) pivoting.
However as shown in [176], this is no longer the case if row pivoting is used.

Both the Gauss–Huard and Gauss–Purcell methods are a special version of
the block GJ method (2.23) that have a comparable flops count to the GJ. The
unpivoted versions of Huard and Purcell are identical and the only difference
lies in pivoting involving the right-hand side vector b in a Gauss–Purcell method

where the augmented system [A | b]

(
x

−1

)
= 0 is solved; see [134,143]. Here

we only review the Huard method and leave further discussion in Section 15.5.
Instead of (2.23), we consider a special block form[

E11

I

]
A =

[
E11

I

] [
A11 A12

A21 A22

]
=

[
I U12

A21 A22

]
, (2.24)

where A11 ∈ R
k×k at step k of the Gauss–Huard method. Clearly the matrix E11

is built up recursively to maintain efficiency. The following algorithm shows
the computational details.

Algorithm 2.3.6. (GH method).

(1) Set m = I , x = b and vector s = 0 ∈ R
n−1.

for steps k = 1, . . . , n, do
for rows i = 1, . . . , k − 1, do

(2) mik = aik/akk , vi = −mi,k

(3) xi = xi − mik xk

(4) for j = k, . . . , n, do
ai j = ai j − mikak j

end j
end i

(5) mkk = 1/akk

(6) for columns j = k, . . . , n, do
akj = mkkak j

(7) end j
(8) xk = mkk xk

(9) Set row index r = k + 1
(10) if r ≤ n
(11) for rows i = 1, . . . , k, do
(12) mri = ari , hi = −mri

(13) xr = xr − mri xi

(14) for columns j = k, . . . , n, do
ar j = ar j − mri ar j
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(15) end j
(16) for j = 1, . . . , k (row r = k + 1)

A(r, j) = 0
(17) end j
(18) Save the special product sk = hT v = ∑k

j=1 h jv j for entry
(r, k).

(19) end i
(20) end if

end k
(21) The solution x = A−1b is obtained.

Readers interested in trying the details should use Mfiles g_h.m and
gh_all.m as shown in Section 2.7.

Using the multipliers mik from Algorithm 2.3.6, we can present the under-
lying matrix decomposition. Define

Hk =



1 −m1k

. . .
...

1 −mk−1,k

mk,k

−mk+1,1 · · · −mk+1,k−1 sk 1
. . .

1


. (2.25)

Further the Gauss–Huard decomposition is the following

Hn Hn−1 · · · H2 H1 A = I, or A−1 = Hn Hn−1 · · · H2 H1. (2.26)

On inspecting Hk , to connect the GE and GJ factorizations, we may further
decompose Hk as



1
. . .

1
−mk+1,1 · · · −mk+1,k 1

. . .

1





1 −m1k

. . .
...

1 −mk−1,k

mk,k

1
. . .

1


.

(2.27)

We leave the reader to complete the study whenever such a need arises.
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2.4 The QR decomposition

The QR decomposition of A = Q R, where Q is orthogonal and R is upper
triangular, is a well-documented topic [63,229,437,459,180,280]. Apart from
many theoretical uses, it is an indispensable as well as useful method for least
squares, rank deficient or eigenvalue type problems. Especially for the latter
problem, the use of Q in a QR decomposition for transforming A leads to the
well-known QR method for computing eigenvalues [229] (because, amongst
similar transforms that can ‘simplify’ matrix A, the orthogonal matrices lead
to least perturbation errors Section 1.3). We give a brief description of the QR
decomposition and put a slight emphasis on the Givens approach which we
have modified conveniently.

There are three methods of constructing Q for decomposing A = Q R
with

R =



u1,1 u1,2 u1,3 · · · u1,n−1 u1,n

u2,2 u2,3 · · · u2,n−1 u2,n

u3,3 · · · u3,n−1 u3,n

. . .
...

...
un−1,n−1 un−1,n

un,n


,

while each Q is a product of several orthogonal matrices (in Methods 1, 2) or
is formed directly in a column-by-column fashion (Method 3).

2.4.1 Method 1: Givens plane rotations

Using (1.24), consider to zero out the entry Ã ji of Ã = P(i, j)A for j =
1, 2, · · · , n and i < j :

ã j i = aii sin(θi j ) − a ji cos(θi j ),

by choosing a suitable θ ; here we hope to zero out these particular positions in
turns: ( j, i) = (2, 1), · · · , (n, 1), (3, 2), · · · , (n, n − 1).

Setting ã j i = 0, from aii sin(θi j ) = a ji cos(θi j ), gives us the required for-
mula, similar to (1.25), i.e.

sin(θ ) = r√
1 + r2

, cos(θ ) = 1√
1 + r2

with r = a ji

aii
.
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The final Q matrix will be the product of these rotation matrices:

Q = P(1, 2) · · · P(1, n)︸ ︷︷ ︸
Column 1

P(2, 3) · · · P(2, n)︸ ︷︷ ︸
Column 2

· · · P(n − 2, n − 1) P(n − 2, n)︸ ︷︷ ︸
Column n−2

P(n − 1, n)︸ ︷︷ ︸
Column n−1

.
(2.28)

Use the Mfile givens.m for experiments and viewing individual P(i, j).

2.4.2 Method 2: Householder transformations

Using (1.26), to realize A = Q R, at step k = 1, 2, · · · , n − 1, denote the kth

column of A by x =
(

x̃
x

)
, we take x = A(k : n, 1 : n). All we need to remem-

ber is where to start the active vector x ; refer to (1.27). Here we assume that
A is over-written A = Pj A (to denote intermediate and partially transformed
matrices). Finally the Q matrix is

Q = P1 P2 · · · Pn−1.

Use the Mfile houses.m for experiments.

2.4.3 Method 3: Gram–Schmidt

As in Section 1.4, using column vectors of A and Q, to find Q and R, equate
columns of A = Q R as follows

[a1 a2 · · · an] = [q1 q2 · · · qn]



u1,1 u1,2 u1,3 · · · u1,n−1 u1,n

u2,2 u2,3 · · · u2,n−1 u2,n

u3,3 · · · u3,n−1 u3,n

. . .
...

...
un−1,n−1 un−1,n

un,n


,

and

Column �−→ 1 a1 = q1u11

Column �−→ 2 a2 = q1u12 + q2u22

Column �−→ 3 a3 = q1u13 + q2u23 + q3u33
...

...

Column �−→ n−1 an−1 = q1u1,n−1 + q2u2,n−1 + q3u3,n−1 + . . .

Column �−→ n an = q1u1,n + q2u2,n + q3u3,n + · · ·+ qnun,n
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The basic Gram–Schmidt method is the column approach (note m = n is
obtained if det(A) �= 0):

(1) Since r1 = a1 is given, u1,1 = ‖r1‖2 = ‖a1‖2 and q1 = r1/‖r1‖2.

(2) for j = 2, 3, · · · , n

uk, j = qT
k a j (for k = 1, · · · , j − 1)

r j = a j −
j−1∑
k=1

qkuk, j , β j = ‖r j‖2 =
√

r�
j r j

if β j �= 0, set q j+1 = r j/‖r j‖2 otherwise stop
and accept m ≡ j (rank of A found)

end for j = 2, 3, · · · , n
(3) Q = [q1 q2 · · · qm] is the required orthogonal matrix.

Here note that the computation of q j , a somehow easy task once ui j are found,
comes last at each step.

The modified Gram–Schmidt method is the row version as illustrated by the
following

Step 1 (let ⇓ denote a u term being computed)
Column �−→ 1 a1 = q1u11 ⇓
Column �−→ 2 a2 = q1u12 ⇓ + q2u22

Column �−→ 3 a3 = q1u13 ⇓ + q2u23 + q3u33

...
...

Column �−→ n−1 an−1 = q1u1,n−1 ⇓+ q2u2,n−1 + q3u3,n−1 + . . .

Column �−→ n an = q1u1,n ⇓+ q2u2,n + q3u3,n + · · ·+ qnun,n

Step 2
Column �−→ 2 a2 = q2u22 ⇓
Column �−→ 3 a3 = q2u23 ⇓ + q3u33

...
...

Column �−→ n−1 an−1 = q2u2,n−1 ⇓ + q3u3,n−1 + q4u4,n−1 + . . .

Column �−→ n an = q2u2,n ⇓ + q3u3,n + q4u4,n + · · ·+ qnun,n
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Step 3
Column �−→ 3 a3 = q3u33 ⇓
Column �−→ 4 a4 = q3u34 ⇓ + q4u44
...

...

Column �−→ n−1 an−1 = q3u3,n−1 ⇓ + q4u4,n−1 + q5u5,n−1 + . . .

Column �−→ n an = q3u3,n ⇓ + q4u4,n + q5u5,n + · · ·+ qnun,n

· · ·
Step (n − 1)
Column �−→ n − 1 an−1 = qn−1un−1,n−1 ⇓
Column �−→ n an = qn−1un,n−1 ⇓ + qnunn

Step n
Column �−→ n an = qnun,n ⇓
As the row version has better numerical stability, it is usually the preferred
method:

(1) for j = 1, 2, · · · , n
u j,k = qT

k a j (for k = j, · · · , n)
modify ak = ak − q j u j,k, (for k = 2, · · · , n)

r j = a j , β j = ‖r j‖2 =
√

r�
j r j

if β j �= 0, set q j+1 = r j/‖r j‖2 otherwise stop
and accept m ≡ j (rank of A found)

end for j = 1, 2, · · · , n
(2) Q = [q1 q2 · · · qm] is the required orthogonal matrix.

Note that the first column of Q, q1 = a1/‖a1‖2 computed at Step (1), does not
need to be specified (compare to Arnoldi iterations, Section 1.4, where q1 must
be specified). Use the Mfile mgs.m for experiments.

As commented in [229], the QR decomposition (an essential tool for solving
a least squares problem in Chapter 5) could be used for solving (1.1) reliably but
it is normally not used as it is more expensive than the preferred LU approach
Section 2.1.

2.5 Special matrices and their direct inversion

Returning from investigating general direct solvers, we wish to address the fast
direct solution of a class of specially structured matrices.
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β
1

γ
1

β
2

γ
2

Figure 2.1. Graphical illustration of a banded arrow matrix of type
band(β1, β2, γ1, γ2) (left plot where entries in the closed domain are nonzero),
an example matrix of type (2, 1, 1, 1) (middle plot — × means a nonzero) and an
example matrix of type band(2, 1, 0, 0) (right plot i.e. a band(2, 1) matrix — ×
means a nonzero).

(1) As forward type preconditioners M i.e. M ≈ A, fast solution procedures
for these matrices are essential.

(2) In searching for inverse type preconditioners M i.e. M ≈ A−1, knowing
the sparsity pattern of A−1 (even approximately) is of importance.

In most cases, we shall use the GE method. Among such special matrices, some
are well known (e.g. banded ones) while others may not be so – in the latter
case we try to give more background information for readers’ benefit. If an
exact inverse of a preconditioner can be obtained, the use of a theoretical dense
matrix to precondition a sparse matrix becomes possible [255].

As also stated before, symmetric matrices deserve a special study; refer to
those special techniques which can be found from [28,85,229,280,383] and the
references therein.

A sparse matrix should be stored in a sparse storage scheme. The column-
by-column row index scheme [189] is commonly used while the well-known
Harwell–Boeing [347] storage format is very similar; we give an illustration in
Appendix B using a 6 × 6 example.

2.5.1 Banded arrow matrices

Definition 2.5.7. (Banded arrow matrix). A banded arrow matrix A ∈
R

n×n denoted by type band(β1, β2, γ1, γ2) satisfies ai j = 0, under these condi-
tions

[1] j + β1 < i ≤ n − γ1 (lower bandwidth β1 and lower border γ1);
[2] i + β2 < j ≤ n − γ2 (upper bandwidth β2 and right border γ2).

When γ1 = γ2 = 0, a banded arrow matrix reduces the more familiar banded
matrix of type (β1, β2), denoted by band(β1, β2).

These types of special matrices are illustrated in Figure 2.1.
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In practice, as a sparse matrix, a banded arrow matrix should be stored
in some suitable sparse format [189]. The reason is clearly evident from the
following algorithm for computing the LU decomposition of a banded arrow
matrix, adapted from Algorithm 2.1.1.

Algorithm 2.5.8. (Banded arrow GE method).

(1) Set m = I , x = b.
(2) for k = 1, . . . , n, do
(3) for row i = k + 1, . . . k + β1; (n + 1 − γ1), . . . , n, do
(4) mik = aik/akk

(5) xi = xi − mik xk

(6) for j = k, . . . , k + β2; (n + 1 − γ2), . . . , n, do
(7) ai j = ai j − mikak j

(8) end
(9) end

(10) end
(11) For LU decomposition, accept L = m, U = A;

2.5.2 Circulant and Toeplitz matrices

Both circulant and Toeplitz matrices belong to a special class of matrices that
have useful applications in matrix preconditioning for the simple reason that
Mx = b can be solved in a fast way using FFT Section 1.6. More references
are from [104,465].

A Toeplitz matrix Tn may simply be considered given from some other
applications – such a matrix is determined by its first row and first column only
with each subdiagonal constant:

Tn =



h0 h−1 h−2
. . . h2−n h1−n

h1 h0 h−1
. . . h3−n h2−n

h2 h1 h0
. . .

. . . h3−n

. . .
. . .

. . .
. . . h−1

. . .

hn−2 hn−3
. . . h1 h0 h−1

hn−1 hn−2 hn−3
. . . h1 h0


. (2.29)

Here its generating vector is called root vector:

h = [h1−n, h2−n, . . . , h−1, h0, h1, . . . , hn−2, hn−1]T .
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A circulant matrix may be viewed as a Toeplitz matrix with h− j = hn− j for
j = 1, 2, . . . , n − 1

Cn =



h0 hn−1 hn−2
. . . h1

h1 h0 hn−1
. . . h2

h2 h1 h0
. . . h3

. . .
. . .

. . .
. . .

. . .

hn−1 hn−2 hn−3
. . . h0


(2.30)

where one notes that each column is a copy of the previous one with entries
down-shifted by one position in an overall ‘circular’ fashion. Matrices of type
(2.30) are called circulant matrices where other columns are obtained via down-
shifting from column one and so the root vector is simply this first column:

h = [h0, h1, . . . , hn−2, hn−1]T .

Before we consider the mathematics of how to compute quickly f = Cng
and f = Tng, we briefly review the derivations of Tn and Cn in the context of
convolutions as this aspect can often confuse readers.

� Derivation I. Consider the discretization of the convolution type integral
operator

f (x) =
∫ b

a
k(x − y)g(y)dy, for x ∈ [a, b], g ∈ C[a, b] (2.31)

by the midpoint quadrature rule (taking uniformly distributed x j as the midpoint
of interval j for j = 1, 2, . . . , n)

f j = f (x j ) =
n∑

k=1

k(( j − k)	x)gk for j = 1, 2, · · · , n. (2.32)

Further, taking h� = k(�	x) for � = 0, ±1, ±2, . . . ,±(n − 1), we arrive at
f = Tng. If we redefine the kernel function k(x − y) = k(|x − y|), then f = Cng
is derived.

� Derivation II. Consider convoluting a periodic sequence of period n:

. . . gn−1, g0, g1, . . . , gn−1, g0, . . .

with a finite sequence of filters

hn−1, hn−2, . . . , h2, h1, h0, h−1, h−2, . . . , h2−n, h1−n
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centred at h0. The first convolution sum is f1 = ∑n−1
k=0 h−k gk . We can sketch

the rule for this sum and the others in Table 2.1, where ‘arrow ⇑’ points to
the corresponding filter coefficient in a sum. Clearly we see that relationship
f = Tng holds, and it reads f = Cng if h− j = hn− j .

We first consider how to compute f = Cng quickly, It turns out that the fast
computation becomes apparent once we express Cn as a sum of elementary
permutation matrices.

Define a permutation matrix (for primarily linking columns 1 and 2 of Cn) by

Rn =



0 0
. . . 0 1

1 0
. . . 0 0

0 1
. . . 0 0

. . .
. . .

. . . 0 0

0 0
. . . 1 0


=



0 0
. . . 0 1

1 0
. . . 0 0

0 1
. . . 0 0

. . .
. . .

. . . 0 0

0 0
. . . 1 0



and let h =


h0

h1

h2
...

hn−1

 .

Then one can observe that Rn = (e2, e3, . . . , en, e1) is a simple permutation
matrix and Rnh = Cn(:, 2) = ‘column 2 of Cn’; that is, Rn = I Rn and in words,
Rn permutes the first column to the last column when multiplying to a matrix
from the the right. Consequently, some amazing results follow this simple rule
Rk

n = I Rn . . . Rn:

Rk
n =



n−k︷ ︸︸ ︷ k︷ ︸︸ ︷
0 · · · 0 1

. . . 0
. . .

. . .
. . .

. . .
. . .

. . .

0
. . . 0 0 0 1

1
. . . 0 0 0 0

. . .
. . .

. . .
. . .

. . .
. . .

0 0 1 0
. . . 0


and

Rk
nh= Cn(:, k + 1)

= ‘column k + 1 of Cn’,
Cn = [

h Rnh R2
nh · · · Rn−1

n h
]
.

(2.33)
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Moreover using the notation of Rk
n , we can separate the full contribution of hk

to the circulant matrix Cn into the following elementary matrix sums

Cn =


h0

h0

h0

. . .

h0

 +


h1

h1

h1

. . .

h1



+



h2

h2

h2

h2

. . .

h2


+



h3

h3

h3

h3

h3

. . .

h3



+· · · +


hn−1

hn−1

. . .

hn−1

hn−1


= h0 I + h1 Rn + h2 R2

n + · · · + hn−1 Rn−1
n

=
n−1∑
j=0

h j R j
n .

To study Cn and Rn , we first reveal a simple relationship between Rn and
the DFT matrix Fn (Section 1.6). Denote the vector I = e = (1, 1, . . . , 1, 1)T

and Dn = diag(dn) with dn the second column of Fn given by dn =
(1, ωn, ω2

n, . . . , ωn−1
n )T , where ωn = exp(−2π i/n). As is known §1.6,

Fn = [I dn Dndn D2
ndn · · · Dn−3

n dn Dn−2
n dn]

= [D0
nI D1

nI D2
nI D3

nI · · · Dn−2
n I Dn−1

n I].
(2.34)

Very crucially, note that Dn
n = D0

n = diag(I) as ωn
n = 1. Therefore we have

derived a powerful relationship by the following

DnFn = Dn[D0
nI D1

nI D2
nI D3

nI · · · Dn−2
n I Dn−1

n I]

= [D1
nI D2

nI D3
nI D4

nI · · · Dn−1
n I Dn

n I]

= [D1
nI D2

nI D3
nI D4

nI · · · Dn−1
n I D0

nI]
= Fn Rn.

(2.35)
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Often this result is explained as follows: multiplying Dn to Fn is equivalent to
shifting all columns to the left in a wrap-around manner.

Thus, clearly, Fn Rn = DnFn implies

Fn RnF−1
n = Dn, (2.36)

that is, the DFT matrix Fn can diagonalize the permutation matrix Rn . Therefore
Rn has known eigenvalues and eigenvectors.

Since eigenvalues satisfy λ(R j
n ) = λ(Rn) j , and Rn and R j

n share eigenvec-
tors,3 along the similar lines of proving the Cayley–Hamilton theorem in linear
algebra, we thus have proved the following theorem using (2.36).

Theorem 2.5.9. (Diagonalization of a circulant matrix). The circulant ma-
trix defined by (2.30) can be diagonalised by the DFT matrix Fn:

FnCnF−1
n = Fn

n−1∑
j=0

h j R j
n F−1

n

=
n−1∑
j=0

h j (Fn RnF−1
n ) j =

n−1∑
j=0

h j D j
n = diag(Fnh).

(2.37)

Here the very last equality on the right-hand uses two small tricks: firstly
from (2.34), Fnh = ∑n−1

j=0 h j D j
n I; Secondly vector D j

n I represents the diagonal

of the diagonal matrix D j
n . Equation (2.37) implies that the eigenvalues of

circulant matrix Cn can be obtained by a FFT step to its first column h.
Thus the convolution product f = Cng becomes

f = Cng = F−1
n diag(Fnh) Fng = F−1

n

[
(Fnh). ∗ (Fng)

]
, (2.38)

where the pointwise product x . ∗ y = diag(x)y = [x1 y1, x2 y2, . . . , xn yn]T

and F−1
n will denote an inverse FFT process (see Section 1.6 for FFT imple-

mentation details).

Example 2.5.10. (Fast computation of a circulant matrix product). We
now illustrate using FFT to compute the matrix vector product f = C8u with

C8 =



2 5 8 4 3 7 6 1
1 2 5 8 4 3 7 6
6 1 2 5 8 4 3 7
7 6 1 2 5 8 4 3
3 7 6 1 2 5 8 4
4 3 7 6 1 2 5 8
8 4 3 7 6 1 2 5
5 8 4 3 7 6 1 2


8×8

, u =



1
1
6
7
1
4
1
5


, h =



2
1
6
7
3
4
8
5


.

3 The proof of this result itself is effectively also following the similar lines of proving the Cayley–
Hamilton theorem in linear algebra.
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From the FFT diagonalization method, we first compute

F FT (h) = F8h =



36
−4.5355 + 2.7071i

−9 + 7i
2.5355 − 1.2929i

2
2.5355 + 1.2929i

−9 − 7i
−4.5355 − 2.7071i


,

F FT (u) = F8u =



26
−3.5355 − 4.2929i

−5 + 7i
3.5355 + 5.7071i

−8
3.5355 − 5.7071i

−5 − 7i
−3.5355 + 4.2929i


.

Then after an inverse FFT, we obtain

f = I F FT [F FT (h). ∗ F FT (u)]= I F FT



936
27.6569 + 9.8995i

−4 − 98i
16.3431 + 9.8995i

−16
16.3431 − 9.8995i

−4 + 98i
27.6569 − 9.8995i


=



125
142
116
89

103
145
116
100


.

Here F FT and I F FT are notations for implementing Fn x and F−1
n x steps;

see Section 1.6.

It remains to discuss the fast solution of a circulant linear system Cng = f
for preconditioning purpose. Assume Cn is nonsingular. From (2.37), we know
that

FnC−1
n F−1

n = diag(1./(Fnh)), (2.39)

where ‘./’ refers to pointwise division (similar to notation ‘.∗’). Then we solve
system Cng = f by this procedure

g = C−1
n f = F−1

n diag(1./(Fnh)) Fnf = F−1
n

[
(Fnf./(Fnh)

]
. (2.40)



94 Direct methods

Clearly singularity of Cn is directly associated with any zero component of
Fnh. Another way of checking the singularity of Cn is to study its eigenvalues
from (2.37)

λk(Cn) = (Fnh)k =
n−1∑
j=0

h jw
k j
n =

n−1∑
j=0

h j exp(−2π ik j/n),

for k = 0, 1, · · · , n − 1.

In general, the behaviour of these eigenvalues is determined by a real-valued
generating function f ; see [104] and the many references therein.

We now consider how to compute f = Tng quickly for a Toeplitz matrix
Tn . As Tn cannot be diagonalised by Fn , we associate a Toeplitz matrix with a
circulant one. The common approach is to augment Tn so that it is embedded
in a much larger circulant matrix Cm (here m = 2n) as follows:4

a0 a−1 a−2
. . . a2−n a1−n 0 an−1 an−2

. . . a2 a1

a1 a0 a−1
. . . a3−n a2−n a1−n 0 an−1

. . . a3 a2

a2 a1 a0 a−1
. . . a3−n a2−n a1−n 0 an−1

. . . a3

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

an−2 an−3
. . . a1 a0 a−1 a−2

. . . a2−n a1−n 0 an−1

an−1 an−2 an−3
. . . a1 a0 a−1 a−2

. . . a2−n a1−n 0

0 an−1 an−2
. . . a2 a1 a0 a−1 a−2

. . . a2−n a1−n

a1−n 0 an−1 an−2
. . . a2 a1 a0 a−1

. . . a3−n a2−n

a2−n a1−n 0 an−1 an−2
. . . a2 a1 a0 a−1

. . . a3−n

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

a−2 a−3
. . . a1−n 0 an−1 an−2 an−3

. . . a1 a0 a−1

a−1 a−2 a−3
. . . a1−n 0 an−1 an−2 an−3

. . . a1 a0



, (2.41)

where we have padded one zero in column 1 (to make up an even number
m = 2n). Further, any work on Tn will involve operations with Cm as the latter
can be done very rapidly with FFT.

4 The minimal m that can be allowed is m = 2n − 1. However such a choice will not lead to a
convenient dimension m = 2τ . Similarly if m is too large (say m = 4n), more computations will
have to be carried out later using Cm . Also the extra padded value 0 in (2.41) can be any other
number as this will not enter later computation of f = Tng.
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To compute f = Tng, we need to define g̃ to match the dimension of Cm

g̃ =
(

g
0n

)
, f̃ = Cm g̃ =

(
Tn Ta

Tb Tc

) (
g
0n

)
=

(
Tng
Tbg

)
=

(
f

Tbg

)
,

where 0n denotes a zero vector of size n, and clearly f = Tng is precisely the
first half of vector f̃ once we have formed f̃ . The fast procedure to compute f̃
using FFT is as before

f̃ = F−1
m [(Fm g̃). ∗ (Fmh)] , (2.42)

where h denotes the first column of Cm .

Example 2.5.11. (Fast computation of a Toeplitz matrix product). We now
illustrate using FFT to compute the matrix vector product f = T8u with

T =



2 1 6 7 3 4 8 5
4 2 1 6 7 3 4 8
8 4 2 1 6 7 3 4
9 8 4 2 1 6 7 3
3 9 8 4 2 1 6 7
7 3 9 8 4 2 1 6
4 7 3 9 8 4 2 1
7 4 7 3 9 8 4 2


, u =



0.6868
0.5890
0.9304
0.8462
0.5269
0.0920
0.6539
0.4160


.

Firstly we construct the associated circulant matrix Cm that embeds Tn in
its top left corner of C16. Then we compute fast Fourier transforms of two
vectors, with the root vector h denoting column 1 of C16. Below we display C16,
F FT (h) = F16h and F FT (u) = F16u respectively:

2 1 6 7 3 4 8 5 0 7 4 7 3 9 8 4
4 2 1 6 7 3 4 8 5 0 7 4 7 3 9 8
8 4 2 1 6 7 3 4 8 5 0 7 4 7 3 9
9 8 4 2 1 6 7 3 4 8 5 0 7 4 7 3
3 9 8 4 2 1 6 7 3 4 8 5 0 7 4 7
7 3 9 8 4 2 1 6 7 3 4 8 5 0 7 4
4 7 3 9 8 4 2 1 6 7 3 4 8 5 0 7
7 4 7 3 9 8 4 2 1 6 7 3 4 8 5 0

0 7 4 7 3 9 8 4 2 1 6 7 3 4 8 5
5 0 7 4 7 3 9 8 4 2 1 6 7 3 4 8
8 5 0 7 4 7 3 9 8 4 2 1 6 7 3 4
4 8 5 0 7 4 7 3 9 8 4 2 1 6 7 3
3 4 8 5 0 7 4 7 3 9 8 4 2 1 6 7
7 3 4 8 5 0 7 4 7 3 9 8 4 2 1 6
6 7 3 4 8 5 0 7 4 7 3 9 8 4 2 1
1 6 7 3 4 8 5 0 7 4 7 3 9 8 4 2



,



78
−1.1395 − 5.1186i

−11.0711 − 6i
−6.7124 − 1.2918i

−18 − 2i
7.8840 − 4.1202i

3.0711 + 6i
7.9680 − 7.9470i

−10
7.9680 + 7.9470i

3.0711 − 6i
7.8840 + 4.1202i

−18 + 2i
−6.7124 + 1.2918i

−11.0711 + 6i
−1.1395 + 5.1186i



,



4.7412
1.3307 − 2.8985i
0.2071 − 0.9321i

−0.1394 − 1.1628i
−0.3707 + 0.5812i
1.1218 + 0.0239i
0.1126 − 0.3791i
0.4339 + 0.3959i

0.8549
0.4339 − 0.3959i
0.1126 + 0.3791i
1.1218 − 0.0239i

−0.3707 − 0.5812i
−0.1394 + 1.1628i
0.2071 + 0.9321i
1.3307 + 2.8985i



.
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Then after an inverse FFT, we obtain

xT
1 = (369.8108 − 16.3529 − 3.5085i − 7.8857 + 9.0770i − 0.5668

+ 7.9855i)
x T

2 = (7.8342 − 9.7207i 8.9431 − 4.4337i 2.6203 − 0.4888i 6.6035
−0.2932i)

yT
1 = (−8.54956.6035 + 0.2932i 2.6203 + 0.4888i 8.9431 + 4.4337i)

yT
2 = (7.8342 + 9.7207i − 0.5668 − 7.9855i − 7.8857 − 9.0770i

−16.3529 + 3.5085i)
f = (22.7283 19.8405 17.9882 23.2110 26.1706 27.1592 23.5839 25.1406)T

from using

(
f

Tbu

)
= I F FT [F FT (h). ∗ F FT (u)] = I F FT


x1

x2

y1

y2

 =
(

f
Tbu

)
.

Finally we remark that the use of circulant preconditioners will be discussed
in Chapter 4, and further examples including block forms will be studied in
Chapter 13 for image restoration applications.

Readers who are interested in checking out the details of Examples 2.5.10 and
2.5.11 should use the supplied Mfile circ_toep.m as shown in Section 2.7.

We also remark that other circulant-like matrices may be diagonalized by
other fast transform techniques. See [104] and refer also to Section 4.6.

2.5.3 Special matrices whose inverse can be analytically found

Matrices whose inverse can be analytically found can provide a better and more
efficient preconditioner, as fast numerical solutions are not even needed.

2.5.3.1 (1) Special lower triangular matrices
As is known, the inverse of a lower triangular matrix is still lower triangular.
We consider a case where the inverse is very sparse.

Let all components of two vectors a = (a j )n
1, b = (b j )n

1 ∈ R
n be nonzero.

Then

F−1
1 =


a1b1

a2b1 a2b2

a3b1 a3b2 a3b3
...

...
...

. . .

anb1 anb2 anb3 · · · anbn



−1

=


1

b1a1

− 1
b2a1

. . .

. . . 1
bn−1an−1

− 1
bnan−1

1
bnan


(2.43)
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This result can be easily verified once we extract out two diagonal matrices
diag(a), diag(b) and observe that

T =


1
1 1
1 1 1
...

...
...

. . .

1 1 1 · · · 1

 =


1
−1 1

−1 1
. . .

. . .

−1 1



−1

. (2.44)

2.5.3.2 (2) Special dense matrices
Let all components of vector b = (b j )n

1 ∈ R
n be nonzero. Then

F−1
2 =


b1 b1 b1 · · · b1

b1 b1 + b2 b1 + b2 · · · b1 + b2

b1 b1 + b2 b1 + b2 + b3 · · · b1 + b2 + b3
...

...
...

. . .
...

b1 b1 + b2 b1 + b2 + b3 · · · b1 + b2 + · · · + bn



−1

(2.45)

=



1/b1 + 1/b2 −1/b2

−1/b2 1/b2 + 1/b3 −1/b3

−1/b3
. . .

. . .
. . . 1/bn−1 + 1/bn −1/bn

−1/bn 1/bn

 .

In the particular case, b j = 1, j = 1, . . . , n, we have

1 1 1 1 · · · 1
1 2 2 2 · · · 2
1 2 3 3 · · · 3
1 2 3 4 · · · 4
...

...
...

... · · · ...
1 2 3 4 · · · n − 2
1 2 3 4 · · · n − 1
1 2 3 4 · · · n



−1

=



2 −1
−1 2 −1

−1 2
. . .

. . .
. . . −1
−1 2 −1

−1 1


.

(2.46)
Remark that the matrix on the right-hand side might arise from discretizing
a two-point boundary value problem in 1D with mixed Dirichlet/Neumann
boundary conditions. The matrix is diagonalizable having known eigenvalues
and eigenvectors as used in [389] – of course this matrix is nearly Toeplitz (or
almost circulant, see Section 2.5.2 and Section 4.6).
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To understand (2.45), one only needs to observe that (with T and T −1 from
(2.44))

F2 = T


b1

b2

. . .

bn

 T T and

(T −1)T


a1

a2

. . .

an

 T −1 =



a1 + a2 −a2

−a2 a2 + a3 −a3

−a3
. . .

. . .
. . . an−1 + an −an

−an an

.

A more general type of symmetric dense matrices that have an exact tridiag-
onal inverse is the following: each row (from 2 to n) is proportional to row 1
pointwise; see [242, p. 179].

2.5.3.3 (3) Kroneker tensor products
The Kroneker tensor product A ⊗ B for two matrices A, B has been defined in
Section 1.6. Here we highlight its inversion property which is potentially useful
for preconditioning. The main result is that if A, B are nonsingular, then the
product A ⊗ B is also nonsingular and one can verify that

(A ⊗ B)−1 = A−1 ⊗ B−1. (2.47)

For example, if A =
(

2 2
1 3

)
and if B =

(
4

5

)
, then from A−1 =(

3/4 −1/2
−1/4 1/2

)
and B−1 =

(
1/4

1/5

)
, we obtain that

(A ⊗ B)−1 =


8 8

10 10
4 12

5 15


−1

=


3/16 −1/8

3/20 −1/10
−1/16 1/8

−1/20 1/10

 .

2.5.3.4 (4) Sherman–Morrison types
Theorem 2.5.12. (Sherman–Morrison–Woodburg). Assume A ∈ R

n×n is
nonsingular and (I + V T A−1U )−1 is also nonsingular for some n × m ma-
trices U, V . Then

(A + U V T )−1 = A−1 − A−1U (I + V T A−1U )−1V T A−1. (2.48)
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Proof. Denote by B the right-hand side of (2.48). By direct multiplication,

(A + U V T )B = I + U V T A−1 − (I + U V T A−1)U (I + V T A−1U )−1V T A−1

= I + U V T A−1 − U (I + V T A−1U )(I + V T A−1U )−1V T A−1

= I + U V T A−1 − U V T A−1 = I.

Thus B is the inverse of (A + U V T ).

The main formula can take on a more general form

(A + U GV T )−1 = A−1 − A−1U (G−1 + V T A−1U )−1V T A−1. (2.49)

Note that if m = 1 and (1 + vT A−1u) �= 0 for vector u, v ∈ R
n , the theorem

becomes the simpler Sherman–Morrison formula

(A + uvT )−1 = A−1 − A−1 uvT

(1 + vT A−1u)
A−1, (2.50)

or in the special case A = I

(I + uvT )−1 = I − uvT

(1 + vT u)
. (2.51)

Further, if taking u = −2v/(vT v) for any v ∈ R
n (note the Sherman–Morrison

condition is trivially met: 1 + vT u = 1 − 2 = −1 �= 0), the above becomes the
familiar orthogonality property of the Householder transform [229] of the form
P = I − 2/(vT v)vvT (which is symmetric; see also Section 2.4.2):

(I − 2

vT v
vvT )−1 = I − uvT

(1 + vT u)
= I + 2

vT v

vvT

(−1)
= I − 2

vT v
vvT .

(2.52)

We finally remark that the Sherman–Morrison formula (2.50) can be flexibly
used to define various easily invertible preconditioners e.g. taking A = (a −
b)I , v = (1, . . . , 1)T and u = bv (assuming (a − b) �= 0, a + (n − 1)b �= 0)
gives

a b b · · · b
b a b · · · b
b b a · · · b
...

...
...

. . .
...

b b b · · · a



−1

= (A + uvT )−1 = I

(a − b)
− uvT /(a − b)

a + (n − 1)b
.

(2.53)
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2.6 Ordering algorithms for better sparsity

Efficient treatment of sparse matrices is the key to scientific computing as
differential equations are defined locally and the discretized equations (matri-
ces) do not involve all variables in the whole domain.

A sparse matrix A with random nonzero locations may only be useful for
working out Ax (matrix vector products) efficiently, as matrix vector prod-
ucts are the main operations with iterative methods Section 1.1. However for
preconditioning purpose, sparsity itself is not enough and sparsity patterns are
important in ensuring efficient direct solution.

Graph theory ideas can be used to pre-process a sparse matrix to arrange it
in desirable patterns so that further computations are easy and fast. The subject
can be both abstract and practical but the result is often amazingly good [189].
Although one may use graph theory to study unsymmetric matrices, techniques
resulting from symmetric matrices are useful to general cases so we restrict our
attention to symmetric matrices and undirected graphs.

Given a symmetric sparse matrix A ∈ R
n×n , a Node di is associated with

each row and column (i = 1, 2, · · · , n); an Edge ei j from Node di to Node
d j is associated with a nonzero entry ai j . Then nonzeros in matrix A can be
represented by a sparse graph G(A). On the other hand, once G(A) is given, we
can recover the sparsity pattern of A. On the left plot of Figure 2.2, we display
a six-node graph G(A1); from G(A1), we can work out sparsity of A1 in (2.54).
On the other hand, given the following matrix A2, we can work out G(A2) as
shown on the right plot of Figure 2.2. Here

A1 =



1 1 1 1
1 1 1

1 1 1
1 1 1

1 1 1 1
1 1 1


, A2 =



2 −1 −1
−1 2 −1

−1 2 −1
−1 2 −1

−1 2 −1
−1 −1 2


.

(2.54)

This section will review some re-ordering algorithms that are known to be
effective for preconditioning purposes [48]. Many other ordering algorithms
exist to assist direct solvers [189]; see also Chapter 7.

Definition 2.6.13. (Level sets of a sparse graph G(A)). Given a graph G(A)
with n nodes {1, · · · , n}, the j-th level set of a fixed node i is defined as

L [ j]
i = L [level j]

node i

∖
L [level j−1]

node i
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Figure 2.2. Illustration of sparse graphs: left: G(A1) is given, to find A1; right: A2

is given, to find G(A2).

which is assumed to have m(i, j) members{
L [ j]

i = L [ j]
i (1) , L [ j]

i (2) , · · · , L [ j]
i (m(i, j))

}
,

where 1 ≥ j ≤ �(i) and L [0]
i = {i}. Here �(i) denotes the total number of level

sets (w.r.t. node i) needed to exhaust all n nodes. Further, for graph G(A), we
call

� m(i, 1) the ‘Degree of node i’, which measures how many neighbours node
i has;

� �(i) the ‘Diameter of G(A) with respect to i’, which measures the total
number of level sets (i.e. the depth).

We can expand on the notation as follows

for level 0, L [0]
i = L [0]

i (m(i, 0)) = L [0]
i (1) = {i}

for level 1, L [1]
i =

{
L [1]

i (1), L [1]
i (2), · · · , L [1]

i (m(i, 1))
}

=
{

j : j is a neighbour of L [0]
i

}
\ L [0]

i

for level 2, L [2]
i =

{
L [2]

i (1), L [2]
i (2), · · · , L [2]

i (m(i, 2))
}

=
{

j : j is a neighbour of L [1]
i

}
\ L [1]

i

· · · · · · · · · · · ·
for level �(i), L [�(i)]

i =
{

L [�(i)]
i (1), L [�(i)]

i (2), · · · , L [�(i)]
i (m(i, �(i)))

}
=

{
j : j is a neighbour of L [�(i)−1]

i

}
\ L [�(i)−1]

i .
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Consider the example from the left plot of Figure 2.2 and take i = 2:
m(2, 0) ≡ 1, m(2, 1) = 2, m(2, 2) = 2, m(2, 3) = 1with�(i) = �(2) = 3,

Level 0, L [0]
2 = {2}

Level 1, L [1]
2 = {1, 4}

Level 2, L [2]
2 = {5, 6}

Level 3, L [3]
2 = {3}.

Taking i = 5 gives �(i) = �(5) = 2, m(5, 0) ≡ 1, m(5, 1) = 3, m(5, 2) = 2 and

Level 0, L [0]
2 = {5}

Level 1, L [1]
2 = {1, 3, 4}

Level 2, L [2]
2 = {2, 6}.

2.6.1 Reverse Cuthill–McKee algorithm
for bandwidth reduction

We now introduce the reverse Cuthill–McKee (RCM) algorithm that intends to
re-order the node order rold = {1, 2, . . . , n} as rnew = {r1, r2, . . . , rn} for a
given sparse graph G(A) so that the matrix Anew corresponding to rnew has a
banded structure with a smaller bandwidth (Section 2.5.1).

Algorithm 2.6.14. (Reverse Cuthill–McKee Algorithm).

(1) Define the old node k as the new number 1 node if

m(k, 1) = min
1≤i≤n

m(i, 1) and �(k) = max
1≤i≤n

�(i).

Here the second equation implies that we have found the ‘diameter’ of the
graph G(A); often the first equation is easier to solve.

(2) Once the new node 1 is identified, the rest of new nodes come from its level
sets. Number the nodes in L [ j]

k for j = 1, · · · , �(k) level-by-level. Within
each level-set, number nodes in increasing degree. If two nodes have equal
degrees, name first the node which is closer to the first node of previous
level-set L [ j−1]

k .
(3) Obtain the Cuthill–McKee ordering r = rn, rn−1, · · · , r1 first.

Then RCM uses simply rnew = r1, r2, · · · , rn−1, rn.

Take G(A) from the left plot of Figure 2.2 for example. Four nodes 2, 3, 4, 6
satisfy that �(i) = 2 and �(i) = 3. We take k = 2 as the new node and
obtain the new order r = [2, 1, 4, 5, 6, 3]. Thus an acceptable RCM order
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is rnew = [3, 6, 5, 4, 1, 2]:

Anew = A1(rnew, rnew)

= P A1 PT =



1 1 1
1 1 1
1 1 1 1

1 1 1
1 1 1 1

1 1 1


, P =



1
1

1
1

1
1


. (2.55)

2.6.2 Duff’s spiral ordering algorithm for closed surfaces

The RCM algorithm is often believed to be effective for 1D and 2D problems.
However for 3D problems, the method has be found to be ineffective. While
there exist other techniques [57], our recent experience [268] shows that the
Duff’s spiral ordering algorithm [192] is particularly suitable for 3D problems
that involve a closed surface.

The algorithm, balancing m(i, j) for each level j , can be presented as follows.

Algorithm 2.6.15. (Duff’s spiral ordering algorithm).

(1) Define the old node k as the new number 1 node if

m(k, 1) = min
1≤i≤n

m(i, 1) and �(k) = max
1≤i≤n

�(i),

similarly to Algorithm 2.6.14. From the new node 1 (old k), the ‘first’ point
under consideration, identify the corresponding ‘last’ point k∗,

L [�(k)]
k (m(k, �(k)) ,

in its last level �(k).
(2) Find a middle node km between k and k∗.
(3) Re-order the graph following the level sets of the middle node km to obtain

a spiral order: rspiral = r1, r2, · · · , rn−1, rn. (Note: r1 = km).

For the example on the left plot of Figure 2.2, take k = 2 again. Then k∗ = 3
so km may be either 5 or 1. Now select km = 5. Then a spiral order is rspiral =
[5 4 1 3 2 4].

To see a more realistic example, refer to Figure 2.3. There nodes are presently
ordered in a lexicographical manner. Among the four candidates (1, 5, 21, 25)
for the new node 1, we may take k = 21. Then k∗ = 5 and km = 13. Therefore
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1 2 3 4 5

6 7 8 9 10

11 12 13 14 15

16 17 18 19 20

21 22 23 24 25

Figure 2.3. Spiral ordering illustration for a 25-node graph G(A).

from the level sets of node km = 13 (spiralling anti-clockwise)

Level 0, L [0]
13 = {13},

Level 1, L [1]
13 = {8, 14, 18, 12},

Level 2, L [2]
13 = {3, 9, 15, 19, 23, 17, 11, 7},

Level 3, L [3]
13 = {4, 10, 20, 24, 22, 16, 6, 2},

Level 4, L [4]
13 = {5, 25, 21, 1},

one obtains a spiral order as

rspiral = [13, 8, 14, 18, 12, 3, 9, 15, 19, 23, 17, 11, 7, 4, 10, 20, 24, 22, 16, 6,

2, 5, 25, 21, 1].

2.6.3 Domain decomposition re-ordered block matrices

Domain decomposition method (DDM) is a well-established numerical tech-
nique for parallel solution of partial differential equations [432]. Here we discuss
the use of non-overlapping (single level and multidomain) DDM ideas to work
out a better graph ordering so that a preconditioner of an ideal sparsity structure
can be constructed. That is, we are interested in the substructuring ordering
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(see Figure 7.2) which is closely related to another popular nested dissection
ordering [214,215] (refer to Figures 7.3–7.4).

Consider the finite difference solution of some second-order operator equa-
tion (say the Poisson’s equation i.e. (1.53) with k = 0) defined over a closed
domain (with Dirichlet boundary conditions), using n = 25 internal nodes as
shown on the left plot of Figure 2.4, which is lexicographically ordered. As
is well known [355,413], the usual matrix is of a tridiagonal block structure
(depending on the numerical schemes used)

A =


B X2

X1 B
. . .

. . .
. . . X2

X1 B

 ,

where B is tridiagonal and X j ’s are diagonal. However with the right plot of
Figure 2.4, the DDM ordering defines a better block structure. To describe this

1 2 3 4 5

6 7 8 9 10

11 12 13 14 15

16 17 18 19 20

21 22 23 24 25

1 2 5           6

7           8

9

11 21

20 13 14

22 23 19

18

17

24 25

15 16

10

12

3 4

Figure 2.4. Illustration of graph re-ordering using domain decomposition: Left,
G(A) ordered lexicographically and Right, G(A) ordered by DDM.
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matrix, we first note the DDM ordering (in terms of geometry, not old ordering)
is

rddm =
[
1 2 3 4 �1 �2 �3 �4 �5

]
(2.56)

where in this particular domain partition

1 = [1 2 3 4], 2 = [5 6 7 8], 3 = [9 10 11 12], 4 = [13 14 15 16],

�1 = [17 18], �2 = 19, �3 = [20 21], �4 = [22 23], �5 = [24 25].

Further, in conjunction with the right plot of Figure 2.4, the corresponding
matrix A is shown in Table 2.2.

In general, as n → ∞, a DDM-ordered matrix approaches a large block di-
agonal matrix with small borders (representing interactions of internal bound-
aries) which is on one hand suited for parallel computing as well as direct
solution, and on the other hand amenable to approximation by a banded
block diagonal matrix with small borders for preconditioning purpose. Refer
to [432].

Finally we remark that a very useful re-ordering algorithm due to [190] will
be discussed in Chapter 5 in the context of scaling matrix A for approximate
inverses while Chapter 7 will discuss some other ordering algorithms.

2.7 Discussion of software and the supplied Mfiles

This chapter has surveyed various useful direct solution techniques that are
necessary tools for preconditioning implementations and for designing new
preconditioners. We would encourage readers to try out these methods to gain
further insight. Direct solution techniques have been implemented in virtually
all software for scientific computing; see Appendix E for details.

For readers’ benefit, we have developed several MATLAB r© Mfiles for use
to assist understanding of the material in this chapter. These are listed below
with a short description of their use; we again remark that all Mfiles can be
run by typing a Mfile’s name, using a default setting without specifying any
parameters. The following list also shows what values can be set before calling
the Mfiles.

[1] circ toep.m – Computes f = Cu and v = T g, and solves C f = u
(see Section 2.5.2).

Optionally pre-set vectors r (row), c (column) for generating a Toeplitz
matrix T . Pre-set c (column vector) to specify a user’s own circulant matrix
C . Similarly vectors u and g can be pre-set.
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[2] ge all.m – Computes all elementary matrices M j of a LU decomposi-
tion
Mn−1 Mn−2 · · · M1 A = U and solves Ax = b (see Section 2.1.1). The
Mfile is advanced and generates each individual M j = L−1

j .
Here the square matrix A and the right-hand side vector b may be

pre-set if the default setting for a 7 × 7 matrix is not desired. (This style
of generating named matrices via the MATLAB command eval will be
used in several places, especially in the Mfile mgm_2d.m in Chapter 6.
See also Appendix C.)

[3] gh all.m – Computes all elementary matrices E j and Hj of a Gauss–
Huard (GH) decomposition En Hn−1 · · · H1 E1 A = I and solves Ax = b
(see §2.3). The Mfile is advanced and generates each individual E j , Hj .

Here the square matrix A and the right-hand side vector b may be
pre-set if the default setting for a 7 × 7 matrix is not desired.

[4] givens.m – Use the Givens matrix (1.24) for either the QR decomposi-
tion or the Arnoldi decomposition of A. This is a simple Mfile.

[5] houses.m – Use the Householder matrix (1.26) for either the QR de-
composition or the Arnoldi decomposition of A. This is another simple
Mfile.

[6] mgs.m – Use the modified Gram–Schmidt method for the QR decom-
position of A. (Compare to the Arnoldi decomposition by the Mfile
hess as.m in §1.9.)

[7] gj ek.m – Experiments on the Gauss–Jordan transforms: products and
inverses.

This Mfile is basic and the reader may modify it for more experiments.
[8] g e.m – Computes L and U for A = LU and solves Ax = b (Algo-

rithm 2.1.1).
Here the square matrix A and the right-hand side vector b may be pre-

set if the default setting for a 7 × 7 matrix is not desired. This Mfile is
fairly standard.

[9] g h.m – Computes all elementary matrices Hj of a Gauss–Huard (GH)
decomposition Hn · · · H1 A = I and solves Ax = b (see §2.3). The Mfile
can be compared to gh_all.m.

Here the square matrix A and the right-hand side vector b may be
pre-set if the default setting for a 7 × 7 matrix is not desired.

[10] g j.m – Computes all elementary matrices E j of a Gauss–Jordan (GJ)
decomposition En · · · E1 A = I and solves Ax = b (see Section 2.3). The
Mfile is also advanced. The reader is encouraged to compare with g_h.m
and to check partial products e.g. E7 ∗ E6 ∗ E5 and E4 ∗ E3 ∗ E2 ∗ E1.

Here the square matrix A and the right-hand side vector b may be
pre-set if the default setting for a 7 × 7 matrix is not desired.
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[11] mk ek.m – Experiments on the elementary Gauss transforms: products.
This Mfile is also basic and the reader may modify it for more experi-

ments.
[12] nsh.m – Computes X ≈ A−1 and x = Xb for Ax = b using the Newton–

Schultz–Hotelling method. This Mfile is simple and the reader may mod-
ify it.

[13] waz fox.m – Computes W AZ = D factorization (Algorithm 2.1.3).
Here the square matrix A may be pre-set if the default setting for a 7 × 7
matrix is not desired.

[14] waz zol.m – Computes the Zollenkopf factorization W AZ = I (Algo-
rithm 2.1.4).

[15] waz all.m – Illustrates the Zollenkopf factorization
wn−1 . . . w1 Az1 . . . zn−1zn = I (see (2.13) and Algorithm 2.1.4).

The Mfile is also advanced and generates each individual w j , z j . Here
the square matrix A may be pre-set if the default setting for a 7 × 7 matrix
is not desired.
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Iterative methods

As we will see, iterative methods are not only great fun to play with
and interesting objects for analysis, but they are really useful in many
situations. For truly large problems they may sometimes offer the only
way towards a solution.

Henk A. van der Vorst. Iterative Krylov Methods for Large
Linear Systems. Cambridge University Press (2003)

A similar work [on the fast multipole method] was done in 3D by Rokhlin.
As in 2D, the multistep algorithm was not properly explained.

Eric Darve. Fast Multipole Method, preprint, Paris, France (1997)

An iterative method for linear system Ax = b finds an infinite sequence of
approximate solutions x ( j) to the exact answer x∗, each ideally with a decreased
error, by using A repeatedly and without modifying it. The saving from using
an iterative method lies in a hopefully early termination of the sequence as most
practical applications are only interested in finding a solution x close enough
to x∗. Therefore, it almost goes without saying that the essence of an iterative
method is fast convergence or at least convergence. When this is not possible
for (1.1), we shall consider (1.2) with a suitable M .

This chapter will review a selection of iterative methods for later use as
building blocks for preconditioner designs and testing. No attempt is made to
exhaust all the iterative methods as one can find them in many books and sur-
veys (e.g. [41,464,416]) and most importantly we believe that, when a hard
problem is solved, changing preconditioners is more effective than trying out a
different iterative solver. One should be very sensitive about, and precise with,
convergence requirements, and these should motivate preconditioning when-
ever convergence is a problem. Specifically, we shall review the subject in the
following.

110
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Section 3.1 Solution complexity and expectations
Section 3.2 Introduction to residual correction
Section 3.3 Classical iterative methods
Section 3.4 The conjugate gradient method – the SPD case
Section 3.5 The conjugate gradient normal method – the unsymmetric case
Section 3.6 The generalized minimal residual method – GMRES
Section 3.7 The GMRES algorithm in complex arithmetic
Section 3.8 Matrix free iterative solvers: fast multipole methods (FMM)
Section 3.9 Discussion of software and Mfiles

3.1 Solution complexity and expectations

It is instructive to state the ‘obvious’ question: what are we expecting to achieve
with a fast solver for (1.1), either direct or iterative? If n is the number of
unknowns, it turns out that an optimal method should produce an acceptable
answer in O(n) flops i.e. O(1) flops per unknown. Reducing the constant in
O(1) further (to find the optimal method for a problem) is also interesting but
a less urgent task.

For dense matrix problems, there is a general demand for fast solvers because
this is the case where a direct solver normally needs

|= to store O(n2) entries – a large task but often still bearable
|= to carry out O(n3) flops – often prohibitive for n ≥ 105.

An iterative solver (either the conjugate gradient type in this chapter or the
multilevel type in Chapter 6) can ‘easily’ reduce the complexity to

|= order O(n2) flops – more acceptable for moderately large n.
For idealized problems, the FFT Section 2.5.2, the FMM Section 3.8 and the
fast wavelet methods Section 8.2 can reduce the overall complexity

|= to O(n) or O(n log n) flops – an optimal solution
which may be a driving motivation to develop these fast solvers further. Note that
a dense matrix problem may be solved by an optimal method, after a massive
flops reduction from O(n3) to O(n).

For sparse matrix problems, the general demand for fast solvers is equally
urgent for large scale computing. However, the expectations are similar but
slightly different and occasionally confusing. We highlight these differences.

(i) Although a matrix with less than 50% nonzeros may be classified as sparse
[492], matrices arising from many applications (e.g. PDEs) are often much
sparser and commonly with only O(n) nonzero entries. For instance, a
second-order PDE in a rectangular 2D domain gives rise to only about
O(n) = 5n nonzero entries. This may also be part of the reason why many
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communities wish to compute large-scale systems with n � 106 unknowns
(which is unthinkable with dense matrices in today’s technology).

(ii) Unlike a dense matrix case, for a sparse matrix with O(n) nonzeros, the
direct solution of (1.1) typically requires up

|= to O(n2) flops
and this implies that all fast solvers are ‘optimal’ if converging in a fixed
number of iterations as they have thus reduced the usual complexity

|= to order O(n) flops.
Thus a typical sparse matrix problem may be solved by an optimal method,
after a large flops reduction from O(n2) to O(n).

(iii) Sparse matrices are more likely to be asymptotically ill-conditioned as
n → ∞, especially those arisen from a discretized PDE or PDE systems.
Therefore a direct solver would require preconditioning to ensure solution
accuracy and so does an iterative solver.

3.2 Introduction to residual correction

Many iterative methods can be described in the residual correction framework
(or by repeated use of residual correction). Let x ( j−1) = xold be the current
approximation (e.g. an initial guess when j − 1 = 0 or simply set x (0) = 0).
Then the residual vector of (1.1) is

r = r ( j−1) = b − Ax ( j−1). (3.1)

The residual correction idea seeks the next approximation x ( j) = xnew from

x ( j) = xnew = xold + enew = x ( j−1) + e( j) (3.2)

by using the above residual r and the following correction e( j), with some
residual correction operator L ≈ A,

Le( j) = Lenew = r. (3.3)

Here x ( j) will be the exact solution x∗ if L = A as one can verify that Ax ( j) =
Ax ( j−1) + Ae( j) = Ax ( j−1) + r = b. Eliminating r from (3.3) gives rise to the
generalized Richardson iteration (setting B = L−1)

x ( j) = x ( j−1) + B
(
b − Ax ( j−1)

)
, (3.4)

where B is usually called the preconditioner (that is provided by the underlying
method), although the original Richardson idea is to take B = I (or B = ω j I
with ω j a scalar parameter). The so-called iterative refinement technique [23,80]
is also within this framework. In fact, different iterative methods only differ in
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choosing L (or B) – an operator that can be fixed and explicit, or variable and
implicit.

We note that an alternative (but equivalent) form to (3.4) is the following

L
x ( j) − x ( j−1)

τ j
+ Ax ( j−1) = b,

where τ j is some nonzero scalar, that might be ‘absorbed’ into L.

3.3 Classical iterative methods

Many classical iterative methods, including Jacobi, Gauss–Seidel (GS) and
successive over-relaxation (SOR), are routinely described in text books ever
since the first edition of [467]; see also [264,287]. Although such methods are
only useful for a restricted class of matrix problems, they become the standard
smoothers for the modern multigrid method (Chapter 6). Moreover, in engi-
neering computing, these classical methods are still in wide use [473], as they
are simple.

It should be remarked that all the theories presented in this section are well
known and can be found in these texts [23,80,180,260,264,287,413,467].

3.3.1 Richardson A = M − N

We first consider a general matrix splitting method and discuss its convergence
requirements. Let A = M − N and assume M is invertible. Then equation (1.1)
takes, letting T = M−1 N = I − M−1 A and f = M−1b, a convenient format
for stationary iterations:

Mx = N x + b or x = T x + f. (3.5)

Naturally if M is easy to invert (i.e. solving Mx = y is easy), we can form the
iterations

Mx ( j) = N x ( j−1) + b or x ( j) = M−1 N x ( j−1) + M−1b

= T x ( j−1) + f.
(3.6)

Here T is the iteration matrix for our generic splitting method. We can cast the
second equation in (3.6) into the standard Richardson form (3.4)

x ( j) = M−1 N x ( j−1) + M−1b

= M−1(M − A)x ( j−1) + M−1b

= x ( j−1) + M−1
(
b − Ax ( j−1)

)
.

(3.7)
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The residual correction operator is L = M . To derive an iteration formula for
the error e( j) = x ( j) − x , take the difference of (3.6) and (3.5)

e( j) = x ( j) − x = T
(
x ( j) − x

) = T e( j−1) = · · · = T j e(0). (3.8)

Thus from ‖e( j)‖2 ≤ ‖T ‖ j
2‖e(0)‖2, one can see that a sufficient condition for

(3.6) to converge (i.e. ‖e( j)‖2 → 0 as j → ∞) is ‖T ‖2 < 1. Actually, a more
precise statement can be made [23,80,180]:

Theorem 3.3.1. The necessary and sufficient condition for T j → 0 as j → ∞
is ρ(T ) < 1, with ρ(T ) = max |λ j (T )| the spectral radius of T .

Proof. Let λk be the kth eigenvalue and xk the corresponding normalized eigen-
vector of T , for k = 1, . . . , n. (Note ‖xk‖2 = 1).

To prove the necessary condition, assume lim j→∞ T j → 0. Then T j xk =
λ

j
k xk and x H

k T j xk = λ
j
k x H

k xk = λ
j
k so lim j→∞ λ

j
k = lim j→∞ x H

k T j xk = 0.
Thus |λk(T )| < 1 and, as a result, ρ(T ) < 1.

To prove the sufficient condition, assume that ρ(T ) < 1. Then |λk | < 1
so λ

j
k → 0 and D j → 0 as j → ∞, where D = diag(λ1, . . . , λn). Let T =

X J X−1 be the Jordan canonical form of T with J = D + U and U being
strictly upper triangular (with some 1’s on its super diagonal). Note1 that
T j = X J j X−1 = X

[
diag(λk) + U

] j
and U j = 0 whenever j ≥ n (or more

precisely when j ≥ max �k – the maximum algebraic multiplicity of T ’s eigen-
values).

Consider the binomial expansion of J j , noting U � = 0 if � ≥ n,

J j = (U + D) j = j!
0!( j−0)!U

0 D j + j!
1!( j−1)!U

1 D j−1 + j!
2!( j−2)!U

2 D j−2

+· · · + j!
(n−1)!( j−n+1)!U

n−1 D j−n+1

with j ≥ n (before j → ∞). Here those U � terms for � ≥ n, being 0, are not
shown and the remaining n terms all contain high powers of D with entries
diag(λ j−�

k ) for � = 0, 1, . . . , n − 1. Since lim j ′→∞ λ
j ′
k → 0 this proves that

J j → 0 and T j → 0.

Special cases (4.4) of A lead to stronger and more specific results [467,260]
e.g.

Lemma 3.3.2. If A is monotone (i.e. A−1 ≥ 0) and the splitting A = M − N
is regular (i.e. M−1 ≥ 0 and N ≥ 0), then there holds

ρ(T ) = ρ(M−1 N ) = ρ(I − M−1 A) = ρ(A−1 N )

ρ(A−1 N ) + 1
< 1.

1 This is a simple trick commonly used in the context of similarity transforms and in working with
powers of a matrix e.g. T 2 = T T = X J (X−1 X )J X−1 = X J 2 X−1. For the Jordan decomposi-
tion, refer to Section A.6.
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3.3.2 Jacobi, GS and SOR

We now introduce the three well-known iterative methods, each choosing M , in
the splitting A = M − N , differently. Assuming A has no zeros on its diagonal,
we write

A = D − L̃ − Ũ = D(I − L − U ), (3.9)

where D is the diagonal of A, −L̃ and −Ũ are the strictly lower and upper
triangular parts of A respectively, L = D−1 L̃ and U = D−1Ũ . As L , U do
not share nonzero entries, we see that |L + U | = |L| + |U | after removing any
negative signs. The notation can be illustrated for the following 4 × 4 case:

A =


14 −3 −2 −4
−4 11 −2 −2
−1 −4 15 −9
−3 −3 −4 12

 , D =


14 0 0 0
0 11 0 0
0 0 15 0
0 0 0 12

 , L̃ =


0 0 0 0
4 0 0 0
1 4 0 0
3 3 4 0

 ,

Ũ =


0 3 2 4
0 0 2 2
0 0 0 9
0 0 0 0

 , L =


0 0 0 0

4/11 0 0 0
1/15 4/15 0 0
1/4 1/4 1/3 0

 , (3.10)

U =


0 3/14 1/7 2/7
0 0 2/11 2/11
0 0 0 3/5
0 0 0 0

 .

To experiment on the three methods in this section, the reader may use the
provided Mfile iter3.m as explained in Section 3.9.

� Jacobi method. The Jacobi method chooses M = D, N = L̃ + Ũ for (3.6)

x ( j) = D−1
(
L̃ + Ũ

)
x ( j−1) + D−1b = (L + U ) x ( j−1) + D−1b (3.11)

and can be written in the Richardson form (3.4) or (3.7):

x ( j) = x ( j−1) + D−1
(
b − Ax ( j−1)

)
(3.12)

with the residual correction operator L = M = D and the iteration matrix
T = TJ = L + U .

To establish the convergence i.e. ρ(TJ ) < 1 for a class of special matrices,
we first recall the definition for a strictly diagonally dominant (SDD) matrix A:

|aii | >
∑
j 
=i

|ai j | for i = 1, . . . , n. (3.13)
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Define e = (1, . . . , 1)T as the sized n vector of all ones. It is surprising as well
as trivial to rewrite (3.13), in the notation of (3.9) and e, as a vector inequality:

|D|e >
(|L̃| + |Ũ |) e or e >

(
|L| + |U |

)
e (3.14)

From (1.12), ‖A‖∞ = ‖ |A|e‖∞ for any matrix A. Hence (3.14) implies
‖L + U‖∞ = ‖ (|L| + |U |) e‖∞ < ‖e‖∞ = 1. Thus ρ(TJ ) ≤ ‖TJ ‖∞ < 1 and
the Jacobi method converges for SDD matrices. Note that SDD implies

(I − L)−1 =
∞∑

i=0

Li , (I − U )−1 =
∞∑

i=0

U i , as ‖L‖∞ < 1 and ‖U‖∞ < 1.

(3.15)

If the diagonal dominance is only weak (when the ‘>’ sign in (3.13) becomes
‘≥’), matrix A must be additionally irreducible i.e. there exists no permutation
matrix Q such that

Q AQT =
[

A11 A12

A22

]
(3.16)

to prove ρ(TJ ) < 1; see [467,180].

� Gauss–Seidel method. The GS method chooses M = D − L̃, N = Ũ for
(3.6)

x ( j) = (
D − L̃

)−1
Ũ x ( j−1) + (

D − L̃
)−1

b

= (I − L)−1 U x ( j−1) + (I − L)−1 D−1b
(3.17)

and can be written in the Richardson form (3.4) or (3.7):

x ( j) = x ( j−1) + (
D − L̃

)−1 (
b − Ax ( j−1)

)
(3.18)

with the residual correction operator L = M = D − L̃ and the iteration matrix
T = TGS = (I − L)−1 U .

Remark 3.3.3. The choice of M, N in (3.17) depends on A. For problems
arising from a discretized PDE, a re-ordering of the nodes can fundamentally
change the matrix splitting. Refer to [326,4] and Algorithm 4.3.3.

For SDD matrices, the proof of ρ(TGS) < 1 is again based on using (3.14).
Since ‖TGS‖∞ = ‖ | (I − L)−1 U |e‖∞ ≤ ‖ | (I − L)−1 | |U |e‖∞, we need to
consider the term | (I − L)−1 | in order to make use of (3.14). The trick lies in
the sparsity structure of L that satisfies L j = 0 and |L| j = 0 if j ≥ n. From
(3.15), observe that both (I − L) and (I − |L|) are invertible because ‖L‖ < 1.
So we have (I − L)−1 = ∑∞

i=0 Li = ∑n−1
i=0 Li and (I − |L|)−1 = ∑∞

i=0 |L|i =∑n−1
i=0 |L|i . Then from term by term comparison,

| (I − L)−1 | |U |e ≤ (I − |L|)−1 |U |e.
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It remains to make use of the SDD property (3.14) i.e. (I − |L| − |U |)e > 0 or

|L|(I − |L| − |U |)e + |U |e > |U |e, or |U |e < (I − |L|) (|L| + |U |)e.
Therefore for any integer power i ,

|L|i |U |e < |L|i (I − |L|) (|L| + |U |)e
i.e. (I − |L|)−1 |U |e < (|L| + |U |)e < e.

Thus we have proved that ρ(TGS) ≤ ‖TJ ‖ < 1, provided that A is a SDD matrix.

� Successive over-relaxation (SOR) method. The SOR method chooses M =
D/ω − L̃ , N = D/ω − D + Ũ (for some positive ω) for (3.6)

x ( j) = (
D/ω − L̃

)−1 (
D/ω − D + Ũ

)
x ( j−1) + (

D/ω − L̃
)−1

b

= (I/ω − L)−1 (I/ω − I + U ) x ( j−1) + (I/ω − L)−1 D−1b (3.19)

= (I − ωL)−1
(

(1 − ω)I + ωU
)

x ( j−1) + ω (I − ωL)−1 D−1b

and can be written in the Richardson form (3.4) or (3.7):

x ( j) = x ( j−1) + (
D/ω − L̃

)−1 (
b − Ax ( j−1)

)
(3.20)

with the residual correction operator L = M = D/ω − L̃ and the iteration
matrix T = TSOR = (I − ωL)−1 ((1 − ω)I + ωU ). Here note that the inverse
matrix (I − ωL)−1 (lower triangular with unit diagonal) always exists! A quick
inspection can reveal that the SDD property (3.13) or (3.14) of A (as with GS)
may no longer ensure the same SDD property for (D/ω − L̃) or (I − ωL) if
ω > 1, implying that SDD might not be the eventual sufficient condition for
convergence.

Lemma 3.3.4. If A is SPD, the necessary and sufficient condition for ρ(T ) =
ρ(TSOR) < 1 is 0 < ω < 2.

Proof. For the necessary condition, we assume ρ(TSOR) < 1 and try to
find a condition for ω. We shall use the property �n

j=1λ j (A) = det(A) for
any matrix A. Here det (I − ωL) = det

(
(I − ωL)−1

) = 1 so det(TSOR) =
det

(
(I − ωL)−1

)
det ((1 − ω)I + ωU ) = (1 − ω)n since U is strictly lower tri-

angular. Therefore ρ(TSOR) = |λk(TSOR)| ≥ |ω − 1| so |ω − 1| < 1 i.e. 0 <

ω < 2 is the necessary condition for SOR to converge.
To establish the sufficient condition, we assume 0 < ω < 2 (with A being

SPD) and wish to show ρ(TSOR) < 1. It turns out that the relationship between
TSOR and M = D/ω − L̃ , via TSOR = (Q − I )(Q + I )−1 with Q = A−1(2M −
A) = 2A−1 M − I , is crucial. Let µ = λ(Q) = � + �i be an eigenvalue of Q
with real part � and imaginary part � and it follows that λ(Q + I ) = µ + 1.
Clearly µ 
= −1 or (µ + 1) 
= 0 because A−1 M is non-singular. Hence from
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λ(TSOR) = (µ − 1)/(µ + 1), to prove

|λ(TSOR)| =
(

(� − 1)2 + �2

(� + 1)2 + �2

)1/2

< 1

amounts to showing that � = µ+µ̄

2 > 0 [165,180,298,467].
We note that Qx = µx and M + MT − A = (2/ω − 1)D imply several

equalities:

(2M − A)x = µAx, x H (2M − A)x = µx H Ax,

x H (2MT − A)x = µ̄x H Ax, (
2

ω
− 1)x H Dx = µ + µ̄

2
x H Ax .

Therefore using the assumptions proves � > 0 and completes the proof.

The SOR method can be modified so that the new iteration matrix is sym-
metric and hence has only real eigenvalues which may be useful for some
applications (e.g. in combination with Chebyshev acceleration technique, by
taking a linear combination of previous solutions, to speed up the convergence
of the sequence x (0), x (1), x (2), . . .). This will be the next iterative method.

� Symmetric successive over-relaxation (SSOR) method. The method is
derived from applying a usual SOR step and a second SOR step in its reverse
order (i.e. reverse the role of L and U ). That is,

x ( j+1/2) = (I − ωL)−1 [(1 − ω)I + ωU ] x ( j−1) + b1/2,

x ( j) = (I − ωU )−1 [(1 − ω)I + ωL] x ( j+1/2) + b1,

or combined into

x ( j) = TSSORx ( j−1) + b2,

with b2 = b1 + (I − ωU )−1 ((1 − ω)I + ωL) b1/2, b1/2 = ω (I − ωL)−1 D−1b,

TSSOR = (I − ωU )−1 [(1 − ω)I + ωL] (I − ωL)−1 [(1 − ω)I + ωU ]

= (I − ωU )−1 (I − ωL)−1 [(1 − ω)I + ωL] [(1 − ω)I + ωU ] .

One observes that the SSOR method chooses, with 0 < ω < 2,

M = ω

2 − ω

(
D/ω − L̃

)
D−1

(
D/ω − Ũ

) = D

(2 − ω)ω
(I − ωL)(I − ωU ),

N = M − A = D

(2 − ω)ω
[(1 − ω)I + ωL] [(1 − ω)I + ωU ]
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for equation (3.6)

x ( j) = (I − ωU )−1(I − ωL)−1 [(1 − ω)I + ωL] [(1 − ω)I + ωU ] x ( j−1)

+ (2 − ω)ω(I − ωU )−1(I − ωL)−1 D−1b

≡ TSSORx ( j−1) + b2

(3.21)

and can be written in the Richardson form (3.4) or (3.7):

x ( j) = x ( j−1) + 2 − ω

ω

(
D

ω
− Ũ

)−1

D

(
D

ω
− L̃

)−1 (
b − Ax ( j−1)

)
= x ( j−1) + (2 − ω)ω[D(I − ωL)(I − ωU )]−1

(
b − Ax ( j−1)

) (3.22)

with the residual correction operator L = M = 1
(2−ω)ω D(I − ωL)(I − ωU )

and the iteration matrix T = TSSOR as shown above. Further discussions and
theories (e.g. on choosing an optimal ω) can be found in [165,180,501,264].

Remark 3.3.5. Having written all three (Jacobi, GS and SOR) iterative meth-
ods in the Richardson form (3.7) i.e. with Le = rold approximating Ae = rold,

xnew = xold + Brold

one can see clearly that each method specifies L = M in A = M − N (or
B = L−1) differently and the new solution x ( j) only involves the past solution
x ( j−1); these are simple single-step methods. Although sometimes B is referred
as a preconditioner, there is not much we feel excited about mainly due to
the somewhat stringent convergence requirements (SDD, SPD etc) of these
methods. We believe a true preconditioner would make an otherwise divergent
method converge. Note there are some papers that try to design preconditioners
for these simple methods [174]. The usefulness of these methods to smooth out
the residual vector rk is a different matter which will be discussed in Chapter 6.

In the following sections, we shall review some more sophisticated iterative
methods that either use information of more than one previous solution or in-
volve a non-trivial choice of the residual correction operator L. We shall call all
these iterative methods accelerator techniques for (1.1), which the precondi-
tioning methods presented in this book will try to speed up the iterations further.

3.4 The conjugate gradient method: the SPD case

Although the conjugate gradient (CG) method, originally proposed by [278]
and popularized by [398], may be presented equivalently through the residual
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minimization [464] (in A−1-norm) or Lanczos algorithms [180,228,429], the
clearest and most convincing derivation comes from functional minimization
as in [229]. Our main purpose of this section is to expose the convergence
estimates to provide a concise motivation for preconditioning.

Let A = AT ∈ R
n×n be symmetric positive definite (SPD) and b ∈ R

n . Then
solving Ax = b is equivalent to minimizing the following quadratic function

φ(x) = 1

2
xT Ax − xT b. (3.23)

More precisely, let x∗ = A−1b be the exact solution.

Theorem 3.4.6. The following equivalence holds:

min
x∈Rn

φ(x) = φ(x∗) ⇐⇒ Ax∗ = b.

Proof. For any h ∈ R
n , φ(x + h) − φ(x) = 1

2 hT Ah + hT (Ax − b). For the suf-
ficient condition, from Ax∗ = b and the assumption of SPD, φ(x∗ + h) −
φ(x∗) = 1

2 hT Ah > 0 if h 
= 0. So x∗ is the minimizer. For the necessary con-
dition, assume some x is the minimizer i.e. 1

2 hT Ah + hT (Ax − b) ≥ 0 for all
h. Then we must have Ax − b = 0 or else we can find a particular h to make a
contradiction (i.e. the left hand side negative). The proof is complete.

� Minimization by line searches. We now discuss the idea of line searches
or one-dimensional minimization. Start from any initial guess x0 = x (0) ∈ R

n .
Suppose that a set of direction vectors {p1, p2, · · · , pk, . . .} are available and
linearly independent. We construct a sequence of iterates that minimize φ along
these direction vectors in turns (essentially we are doing dimension reduction).

Specifically, to set xk = xk−1 + αpk at point xk−1, we solve for the best α

from

min
α∈R

φ(xk−1 + αpk). (3.24)

To work out α, use the definition of function φ and the residual vector r j =
b − Ax j :

φ(xk−1 + αpk) = φ(xk−1) + α2

2
pT

k Apk − αpT
k rk−1.

By minimizing the simple quadratic function for α,

α = αmin = pT
k rk−1

pT
k Apk

(3.25)

and φ(xk) = φ(xk−1) − α2

2
pT

k Apk .
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� Steepest descent algorithm. One simple choice of pk is from minimiza-
tion along gradient directions. For any multi-variable function g, locally, the
direction in which it decreases most rapidly is the so-called steepest descent
direction, i.e. p = −∇g (negative gradient)! Note the negative gradient of φ(x)
at point x is the residual vector

p = −∇φ(x) = −
(

∂φ

∂x1
,

∂φ

∂x2
, · · · , ∂φ

∂xn

)T

= b − Ax .

At point xk−1, choosing pk = −∇φ(xk−1) = b − Axk−1 = rk−1 as the next
search direction gives rise to the well-known steepest descent method.

Algorithm 3.4.7. (Steepest descent).

To solve Ax = b, given x0, r0 = b − Ax0, k = 1 and using p1 = r0,

(1) work out the steepest descent vector (residual) at step k ≥ 1, pk = rk−1 =
b − Axk−1;

(2) minimize φ(xk−1 + αpk) with respect to α i.e. αk = pT
k rk−1

pT
k Apk

= r T
k−1rk−1

r T
k−1 Ark−1

;

(3) update the solution xk = xk−1 + αk pk and continue iterations with k =
k + 1.

The fatal weakness of the steepest descent method is uncertainty associated
with the linear independence of the generated search directions p1, p2, . . . .

Without linear independence, the method can be slowly converging because
global minimization may not be achieved based on purely local information
only.

� The conjugate gradient algorithm. The proper way to select suitable search
directions p j ’s is by achieving the global minimization [278,505]:

argmin
x=x0+x̂,x̂∈span{p1,···,pk }

φ(x) = argmin
x=xk−1+αpk ,α∈R

φ(x), (3.26)

where the usual notation argmin (‘somewhat confusing’) defines an argument
e.g. argmin[(x − 2)4 − 3] = 2 as x = 2 is the minimizer of function (x − 2)4 −
3. Starting from x0, suppose we have carried out k − 1 steps of a line search
method to obtain

xk−1 = x0 +
k−1∑
j=1

α j p j ≡ x0 + x . (3.27)
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Here x ∈ span{p1, · · · , pk−1}. For any pk , the next solution will be

xk = xk−1 + αk pk = x0 + x + αk pk = x0 +
k∑

j=1

α j p j

and we consider if and when pk can be selected such that the following problems
are equivalent – this is the functional view as opposed to the argument view
(3.26):

Problem I – global minimization in a dimension k subspace

min φ(x)
x = x0 + x̂, x̂ ∈ span{p1, · · · , pk},

Problem II – local minimization in a dimension 1 subspace

min φ(x)
x = x0 + x + x̂, x̂ ∈ span{pk}.

We expand Problem II and see how pk would interact with other terms:

φ(x) = φ(x0 + x + αpk)

= φ(x0 + x) + α2

2 pT
k Apk − αpT

k rk−1 (Note xk−1 = x0 + x)

= φ(x0 + x) + αpT
k Ax + α2

2 pT
k Apk − αpT

k r0. (Here rk−1 = r0 − Ax)

(3.28)

Observe that, among the four terms, the first term does not interact with the
third and fourth terms through the two unknown quantities α, pk if the second
term representing the interaction between the previous solution x and the next
solution step disappears.

The superb idea of the CG method is decoupling of the previous solution x
and the next solution step, which is achieved by setting pT

k Ax = 0 or by killing
off the second term. Examining the details of condition pT

k Ax = 0 leads to
A-conjugate directions. From (3.27), Ax = ∑k−1

j=1 α j Ap j = APk−1z, where2

Pk−1 = [p1, p2, . . . , pk−1] and z = [α1, α2, . . . , αk−1]T . Then the above con-
dition becomes pT

k Ax = pT
k APk−1z = 0; if this holds for all possible z, then

the condition is simply

pT
k APk−1 = [0 0 · · · 0] i.e. pT

k Ap j = 0, for j = 1, . . . , k − 1. (3.29)

If xT Ay = 0, then x is A-conjugate to y. Here condition (3.29), implying

2 This simple equation contains two fundamental tricks of linear algebra. Firstly, as in the context
of defining linear independence, a linear combination of vectors can be written as a matrix (made
up from the vectors packed into columns) and vector (made up of the coefficients) product;
see Appendix A. Secondly, a matrix and matrix product can be written as a matrix multiplying
individual columns (or rows) of the other matrix as in AB = [Ab1, Ab2, . . . , Abk ] or AB =
[(a1 B)T , (a2 B)T , . . . , (an B)T ]T where A = [aT

1 , aT
2 , . . . , aT

n ]T and B = [b1, b2, . . . , bk ] with
a j row vectors and b j columns vectors.
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pT
i Ap j = 0 when i 
= j , states that {p1, p2, · · · , pk} form a sequence of A-

conjugate vectors.

Remark 3.4.8. The A-conjugate vectors are weighted orthogonal vectors.
Since A is symmetric, let P APT = D = diag(λ1, . . . , λn) with P orthogo-
nal. The A-conjugate definition reads

xT Ay = xT PT D Py = (Px)T D(Py) ≡ x̃ T Dỹ =
n∑

j=1

λ j x̃ j ỹ j = 0,

in contrast to the usual definition xT y = xT PT Py = (Px)T (Py) = x̃ T ỹ =∑n
j=1 x̃ j ỹ j = 0. Clearly when all eigenvalues are identical i.e. λ j ≡ λ, then

the two definitions are the same i.e. A-conjugation implies orthogonalization.
This is why the inner product (x, y)A = xT Ay and the norm (x, x)A = ‖x‖2

A =
xT Ax , based on the SPD matrix A, are widely used in the literature.

Once pT
k Ax = 0, then the minimization of problem (3.28) becomes fully

decoupled

min φ(x) = min
x̄∈span{p1,···,pk−1}

φ(x0 + x̄) + min
α∈R1

{
α2

2
pT

k Apk − αpT
k r0

}
(3.30)

or

min
x=x0+x̂,x̂∈span{p1,···,pk }

φ(x)︸ ︷︷ ︸
Problem I — global

= min
x=x0+x,x∈span{p1,···,pk−1}

φ(x)︸ ︷︷ ︸
Global — previous steps

+ min
α∈R1

{
α2

2
pT

k Apk − αpT
k r0

}
︸ ︷︷ ︸

Problem II — Local step

= φ(x0) +
k∑

j=1

min
α j ∈R

{
α2

j

2
pT

j Ap j − α j pT
j r0

}
,

where the decoupling of global minimization into many single steps is jus-
tified i.e. the xk from (3.26) will be global minimizer in the subspace
x0 + span{p1, · · · , pk} or equally

φ(xk) = min
x=x0+x̂,x̂∈span{p1,···,pk }

φ(x). (3.31)

The construction of pk will make use of the A-conjugate relationship (3.29)
and the usual approach is to take (using p0 = r0)

pnew = pk = rk−1 + βk pk−1 = rold + βk pold. (3.32)

From (3.29), we immediately have βk = − pT
k−1 Ark−1

pT
k−1 Apk−1

. Once pk is computed,
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the local minimization problem is identical to (3.25) i.e. αk = αmin = pT
k rk−1

pT
k Apk

.

Finally we set xk = xk−1 + αk pk to complete step k. Putting all steps together,
the conjugate gradient method (version 0) is obtained. However, the existing
formulae for αk and βk can be much simplified as, currently, too many matrix
vector products are used.

To further simplify αk, βk , we need (3.29) and two important relations:

r T
k pk = 0 and r T

k rk−1 = 0, (3.33)

which can be verified below. As x = xk = xk−1 + αpk is the global as well
as the local minimizer, we must have dφ(xk )

dα
= 0 i.e. we have proved the

first formula
dφ(xk)

dxk

dxk

dα
= −r T

k pk = 0. Now from pk = rk−1 + βk pk−1, rk =
rk−1 − αk Apk , and (3.29), we obtain the second formula r T

k rk−1 = r T
k pk −

βkr T
k pk−1 = −βk

(
r T

k−1 pk−1 − αk pT
k−1 Apk

) = 0. Further with (3.33), we can
reformulate

(1) from pT
k rk−1 = (r T

k−1 + βk pT
k−1)rk−1 = r T

k−1rk−1,

αk = pT
k rk−1

pT
k Apk

= r T
k−1rk−1

pT
k Apk

. (3.34)

(2) from rk−1 = rk−2 − αk−1 Apk−1,

r T
k−1rk−1 = r T

k−1rk−2 − αk−1r T
k−1 Apk−1 = −αk−1r T

k−1 Apk−1

= −αk−1 pT
k−1 Ark−1

and from pk−1 = rk−2 + βk−1 pk−2,

r T
k−2rk−2 = r T

k−2 (rk−1 + αk−1 Apk−1) = αk−1 (pk−1 − βk−1 pk−2)T Apk−1

= αk−1 pT
k−1 Apk−1.

Therefore,

βk = − pT
k−1 Ark−1

pT
k−1 Apk−1

= r T
k−1rk−1

r T
k−2rk−2

. (3.35)

Algorithm 3.4.9. (Conjugate gradient).

To solve Ax = b, given x = x0, r = b − Ax0, k = 1, rnew = ‖r‖2
2 = r T r ,

p = r ,

(1) minimize φ(xk) = φ(xk−1 + αpk) with respect to α i.e. compute αk using
(3.34): αk = rnew/(pT q) with q = Ap and update the solution x = x +
αk p;
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(2) work out the new residual vector at step k, r = b − Ax = r − αkq and set
rold = rnew.

(3) compute rnew = r T r (exit if rnew is small enough) and βk = rnew/rold.
(4) update the search direction p = r + βk p and continue with step (1) for

k = k + 1.

Remark 3.4.10. We remark on the connection of the CG vectors with Lanczos
iterations and the relationships between various notation for the CG analysis.

(1) The Lanczos method, as a special case of the Arnoldi method, Section 1.4,
reduces a symmetric matrix A to a tridiagonal matrix T by orthogonal trans-
forms: U T AU = T or AU = U T . Here we wish to use the already gener-
ated CG vectors r j and p j to produce U, T . Let P = [p1 p2 · · · pn], R =
[r0 r1 · · · pn−1] and D = diag(ρ1, · · · , ρk) with ρi+1 =

√
r T

i ri = ‖ri‖2.

Then from (3.33), r T
i r j = 0, and the fact pT

i Ap j = 0 for i 
= j , we con-
clude that

RT R = D2, PT AP = diag(pT
1 Ap1, · · · , pT

n Apn).

From (3.32),

p1 = r0,

p j = r j−1 + β j p j−1, j = 2, 3, · · · , n,

or
r0 = p1,

r j = p j+1 − β j+1 p j , j = 1, 2, · · · , n − 1,

R = P B,

B =



1 −β2

1 −β3

1
. . .
. . . −βk

1

 .

From the above definition, matrix U = RD−1 is orthogonal as U T U = I .
Moreover, U T AU = D−1 BT (PT AP)B D−1 = T is a tridiagonal matrix.

Therefore, U T AU = Tn×n is the tridiagonalization provided by the CG
method. Moreover, if we use the Lanczos method with q0 = r0/ρ1, the
generated vectors q2, q3, · · · , qk should lead to the same decomposition
(the uniqueness of U T AU = T is determined by the signs of β j ’s).

Observe the difference in deriving the above decomposition. The CG
method requires that A be SPD (i.e. symmetric and positive definite) but it
generates Tn×n . The Lanczos method requires A be symmetric only but it
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can only manage to find Tm×m with m ≤ n depending on the choice of the
first column of U . Refer to [229,180,464].

(2) In the literature, the CG method has been described in several equivalent
formulations. We show that the following three quantities are identical:

�(x) ≡ ‖r‖2
A−1 = ‖x − x∗‖2

A = 2φ(x) + bT A−1b

where Ax∗ = b, r = b − Ax, ‖r‖A−1 = r T A−1r and φ(x) = 1
2 xT Ax −

xT b.

‖r‖2
A−1 ≡ r T A−1r = (bT − xT A)A−1(b − Ax)

= (bT A−1 − xT )(b − Ax)

= xT Ax − 2xT b + bT A−1b

= 2φ(x) + bT A−1b,

‖x∗ − x‖2
A = (x∗ − x)T A(x∗ − x) = [(x∗ − x)T A]A−1(Ax∗ − Ax)

= (Ax∗ − Ax)T A−1(Ax∗ − Ax)

= r T A−1r = ‖r‖2
A−1 .

(3.36)

As A is SPD (and so is A−1), bT A−1b ≥ 0 and hence minimizations of
‖x − x∗‖2, ‖r‖A−1 and φ(x) are identical problems. Recall that the presen-
tation via (3.23) has been for the φ(x) minimization, whose global mini-
mization issue was rigorously addressed.

Convergence rate. We next consider the all important issue of convergence
rate by comparing φ(xk) to φ(x0). From Remark 3.4.10, comparing ‖rk‖A−1 to
‖r0‖A−1 from (3.36) is the same as comparing

�(xk) ≡ 2φ(xk) + bT A−1b

to �(x0) = 2
(
φ(x0) + bT A−1b

)
. To carry out this task, our main theory comes

from the fact that xk is the global minimizer of �(x) = �(x0 + x̂) with x̂ ∈
span(p1, . . . , pk). From the way p j ’s are generated i.e. p j = r j−1 + β j p j−1

and p0 = r0, we see that

span(r0, r1, . . . , rk−1) = span(p1, p2, . . . , pk)

and similarly from x j = x j−1 + α j p j and r j = r j−1 − α j Ap j ,

span(r0, r1, . . . , rk−1) = span(r0, Ar0, . . . , Ak−1r0) ≡ Kk(A, r0)

The later subspace Kk(A, r0) is called the Krylov subspace of order k for the
matrix A and the generating vector r0.

Observe that, although x̂, xk − x0 ∈ Kk(A, r0), xk 
∈ Kk(A, r0) if x0 
= 0; in
this case one considers convergence rates for equation Ae = r0 instead (since
x = x0 + e satisfies Ax = b) and, for simplicity (and without loss of generality),
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one assumes that x0 = 0 to avoid further notation. With x0 = 0, r0 = b so the
Krylov subspace for the solution xk becomes

Kk(A, b) = span(b, Ab, . . . , Ak−1b). (3.37)

Thus with x0 = 0, we shall consider

�(xk)

�(x0)
= ‖xk − x∗‖2

A

‖x0 − x∗‖2
A

= ‖xk − x∗‖2
A

‖x∗‖2
A

. (3.38)

The immediate task is to quantify (3.31). Now for any vector z ∈ Kk(A, b),
we have z = ∑k−1

j=0 γ j A j b. Letting gk−1(ξ ) = ∑k−1
j=0 γ jξ

j be a degree(k − 1)
polynomial and noting that b = Ax∗, one obtains that z = gk−1(A)Ax∗. Then
we can expand �(z) in terms of gk−1(A) and x∗ as follows

�(z) = ‖x∗ − z‖2
A = (x∗ − gk−1(A)Ax∗)T A (x∗ − gk−1(A)Ax∗)

= (x∗)T qk(A)Aqk(A)x∗,
(3.39)

where A = AT is used and qk(ξ ) = 1 − gk−1(ξ )ξ satisfying qk(0) = 1. Be-
fore detailing �(xk), we note that �(x0) = �(0) = ‖x∗ − 0‖2

A = (x∗)T Ax∗ =
bT A−1b. If Qk denotes the set of all degree k polynomials, as each polynomial
corresponds to a different minimizer, we can interpret our global minimizer
z = xk in (3.31) as follows

�(xk) = min
z∈Kk (A,b)

�(z) = min
qk∈Qk

(x∗)T qk(A)Aqk(A)x∗. (3.40)

Here and throughout this chapter, the condition that q(0) = 1 if q(x) ∈ Qk is
imposed on the set Qk .

To simplify (3.40), we need to replace A by A = Q DQT (as A
is symmetric, the eigenvector matrix Q must be orthogonal and D =
diag(λ1, λ2, . . . , λn) ≡ diag(λ j ) contains eigenvalues λ j = λ j (A)). Then3 we
have qk(A) = qk(Q DQT ) = Qqk(D)QT ≡ Q diag(qk(λ j ))QT . Further, (3.40)
can be simplified to

�(xk) = min
qk∈Qk

(x∗)T Q diag(qk(λ j ))QT Q diag(λ j )QT Q diag(qk(λ j ))QT x∗

= min
qk∈Qk

(x∗)T Q diag
(
λ j [qk(λ j )]

2
)

QT x∗

= min
qk∈Qk

y diag(λ j [qk(λ j )]
2 yT (define (x∗)T Q = y)

= min
qk∈Qk

n∑
j=1

λ j [qk(λ j )]
2 y2

j .
(3.41)

3 This trick has been used in the proof of Theorem 3.3.1, i.e. A j = A j−1 A = Q D . . . DQT =
Q D j QT .



128 Iterative methods

Note that �(x0) = (x∗)T Ax∗ = (x∗)T Q DQT x∗ = y DyT = ∑n
j=1 λ j y2

j .
Define

B(λ1, λ2, . . . , λn) ≡ min
qk∈Qk

max
λ j ∈�(A)

∣∣qk(λ j )
∣∣ , (3.42)

where �(A) = {λ1, . . . , λn} is the eigenspectrum of matrix A.

Eigenspectrum bound. Now putting the above two equations together, we
obtain

�(xk) ≤ B(λ1, λ2, . . . , λn)2
n∑

j=1

λ j y2
j = [B(λ1, λ2, . . . , λn)]2 �(x0),

that is,

‖rk‖A−1

‖r0‖A−1
= ‖x∗ − xk‖A

‖x∗ − x0‖A
=

√
�(xk)

�(x0)
≤ B(λ1, λ2, . . . , λn). (3.43)

Condition number bound. Further to simplify B to a much simpler up-
per bound, we shall use cond(A) = κ(A) = κ ≡ λmax/λmin, where interval
[λmin, λmax] contains �(A). Replacing the discrete spectrum �(A) by a contin-
uous spectrum [λmin, λmax] in B leads to the problem:

min
qk∈Qk

max
λ∈[λmin,λmax]

|qk(λ)| (3.44)

and its solution

qk = Tk

(
λmax + λmin − 2λ

λmax − λmin

)/
Tk(µ) with µ = λmax + λmin

λmax − λmin
,

which is a scaled Chebyshev polynomial Tk of degree k. Then one may use
properties of Chebyshev polynomials [403]

|Tk+1(t)| = 2tTk(t) − Tk(t), T0(t) = 1, T1(t) = t,

Tk(a) = cos(k arccos(a)), |Tk(a)| ≤ 1, if |a| ≤ 1,

Tk(a) = (a + √
a2 − 1)k + (a + √

a2 − 1)−k

2
≥ (a + √

a2 − 1)k

2
, if a ≥ 1,

(3.45)
to derive that

B ≤ 1

Tk (µ)
≤ 2

(
1

µ +
√

µ2 − 1

)k

= 2

(√
κ − 1√
κ + 1

)k

. (3.46)

This replaces (3.43) by the well-known (yet slightly over-used) result

‖x∗ − xk‖A

‖x∗ − x0‖A
≤ 2

(√
κ − 1√
κ + 1

)k

. (3.47)

More results on convergence of the CG can be found in [28,303,180,229,413,
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464]. In particular, one may sharpen the estimate (3.47) by considering special
eigenvalue clustering patterns and super-linear convergence rates in certain
cases; see [493,463,358,413].

Remark 3.4.11. We now make some remarks on convergence and precondi-
tioning.

� If x0 
= 0 is used to start the iterations, then we have to re-define x∗ = x∗ −
x0, xk = xk − x0, b = b − Ax0, rk = rk − r0 and re-set x0 = 0 in order to
validate (3.38), (3.43) and (3.47).

� The convergence result (3.47) is quite neat and elegant. However, in practice,
it rarely represents the true convergence behaviour of the CG method unless
for an easy problem with κ ≈ 1. Although this observation is widely known,
many researchers continue to use the reduction of κ = cond(A) for (1.1) to a
smaller κ̃ = cond(P A) for a preconditioned system (1.2) as a main motivation
for preconditioning. For, in many cases, it is difficult to propose a new theory
other than to use the condition number.

� Nevertheless, we do not advocate using preconditioning to reduce the con-
dition number alone as a good motivation. As we see, we encourage readers
to consider using (3.43), rather than (3.47), to design new preconditioners
whenever possible. This is where the real strength of preconditioning lies: we
wish to achieve the idealized situations where a non-uniform distribution of
eigenvalues would enable a hopefully much smaller k � n to be sufficient
for B to satisfy a given tolerance, i.e. a small number of CG steps is sufficient
for any convergence requirement.

� Indeed, as is known, an efficient preconditioner can cluster eigenvalues to an
ideal point 1 (refer to Section 1.5); see [303,463,14]. However from (3.43),
one can expect fast convergence if the preconditioned spectrum is clustered at
more than 1 points (yet still a fixed and small number of points); see [364,297]
for work done this way. In particular, if a preconditioned matrix has only a
small number µ � n distinct eigenvalues, the number of CG iterations is
bounded by a function (almost linear) of µ, independent of n; see [464].

Symmetric preconditioner. This book addresses more of an unsymmetric
matrix problem than a symmetric one because the latter has been better known;
see e.g. [28]. Nevertheless, we hope to clarify two important points in applying
a SPD preconditioner P to (1.1), with a SPD matrix A, before showing the so-
called preconditioned conjugate gradient (PCG) algorithm for SPD systems.

The main point here is that the product matrix P A of two SPD matrices is pos-
itive definite (but unfortunately not symmetric). This is because P A is similar to
a SPD matrix Ã = P1/2 AP1/2 i.e. P A = P1/2 ÃP−1/2, where the SPD matrix
P admits the orthogonal decomposition P = Q�QT and P1/2 = Q�1/2 QT
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is another SPD matrix. Consequently, any ideal eigenspectrum of P A can be
made full use of if we apply a CG method to Ã i.e. to system

Ãy = b̃

with x = P1/2 y and b̃ = P1/2b (to reiterate the point, it is correct to use Ã =
P1/2 AP1/2 but incorrect to relate Ã = P1/2 AP−1/2 to P A). The next technical
point is to avoid forming P1/2 explicitly by simply generating intermediate
vectors differently, e.g. convert the step y = y + α p̃ in Step (1) of Algorithm
3.4.9 to x = x + αp (and effectively we have implemented P1/2 y = P1/2 y +
αP1/2 p̃) – the same trick will be used later in CGNR Algorithm 3.5.13. Refer
to [28,180,229,413].

Algorithm 3.4.12. (Preconditioned conjugate gradient).

To solve Ax = b using preconditioner P, given x = x0, r = b − Ax0, k = 1,
p = Pr, y = Pr, and using rnew = yT r ,

(1) minimize φ(xk) = φ(xk−1 + αpk) with respect to α, i.e. compute αk using
(3.34) i.e. αk = rnew/(pT q) with q = Ap and update the solution x = x +
αk p;

(2) work out the new residual vector at step k, r = b − Ax = r − αkq and set
rold = rnew.

(3) compute y = Pr and rnew = yT r (exit if rnew is small enough) and βk =
rnew/rold.

(4) update the search direction p = y + βk p and continue with step (1) for
k = k + 1.

3.5 The conjugate gradient normal method: the
unsymmetric case

When A is not symmetric (no chance to ask for SPD), the CG method from
previous section does not apply since Theorem 3.4.6 no longer holds. Actually
this is where the fun starts! Many (completing) unsymmetric CG type iterative
solvers exist [41] for solving (1.1), each trying to choose x̂ ∈ Kk(A, r0) differ-
ently in forming the solution xk = x0 + x̂ . The subspace Kk naturally renames
all such methods as the Krylov subspace methods. Among such solvers, we
select only two representatives for subsequent discussion and testing: the CGN
(conjugate gradient normal) and the GMRES (generalized minimal residual)
methods. Further Krylov subspace methods can be found in [41,413,464]. Our
intention in making this decision follows from years of research experience
(see also [366,198]), which suggests that developing better preconditioning
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techniques for an iterative solver is more productive than trying too many or
developing new iterative solvers alone.

We now describe the CGN method. There are two variants, not surprisingly,
one solving the left normal equation (giving rise to the CGNL Algorithm 3.5.14)

AT Ax = AT b (3.48)

and the other solving the right normal equation (to the CGNR Algorithm 3.5.13)

AAT y = b, with x = AT y. (3.49)

Both equations, each having a SPD coefficient matrix whenever A is not sin-
gular, can be solved directly by Algorithm 3.4.9 without forming AT A or AAT

explicitly. We prefer the latter approach based on (3.49).
Firstly for (3.48), a direct application of Algorithm 3.4.9 would compute

the residual rk = AT (b − Axk) which can affect the quality of the search di-
rection pk . A better approach, named as CGLS by [381], is to reformulate the
method so that the original residual rk = b − Axk and the residual for the nor-
mal equation sk = AT rk are both computed. Here we rename the CGLS as the
conjugate gradient left normal algorithm (CGNL) for simplicity. To remove
possibly surprising factors, Algorithm 3.5.14 lists the direct (naive) application
of the CG method and the CGNL side-by-side.

Secondly for (3.49), Algorithm 3.4.9 can also be reformulated to work with
x instead of the intermediate vector y. The resulting method is often associated
with an adapted variant CGNE of the Craig’s method [381]. A similar version
for complex systems AA∗y = b was given in [82] and used by [126]. As before,
we give the conjugate gradient right normal algorithm (CGNR) and the direct
application of CG side-by-side:

Owing to the squaring4 of the 2-norm condition number κ(AT A) =
ρ(AT A) = κ(A)2 as ρ

(
(AT A)T (AT A)

)1/2 = ρ
(
(AT A)2

)1/2
, the use of CGN

methods is often not recommended in view of (3.47). However using (3.43), it
is not difficult to find plenty of examples where the eigenspectrum of AT A (or
AAT ), i.e. singular value distribution of A, has clustering patterns (Section 1.5)
and CGN is at least as effective as other unsymmetric solvers; see also [366].

For later use, we now give a CGN algorithm that takes one or two precondi-
tioners for (1.1):

M2 AM1 y = M2b, x = M1 y. (3.50)

This includes the case of (1.2). Here we only discuss the right normal approach:

M2 AM1(MT
1 AT MT

2 )z = M2b, x = M1 MT
1 AT MT

2 z. (3.51)

4 Note λ(Ak ) = λ(A)k for any integer k (even negative k when λ 
= 0. This can be shown by using
Ax = λx i.e. A2x = AAx = A(λx) = λ2x etc. The simple result is widely used e.g. in the proof
of Theorem 3.3.1.
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Using the above CGNL and CGNR ideas, we propose the following algorithms.

Algorithm 3.5.13. (CGNL).

To solve Ax = b, given x = x0, r = b − Ax0, k = 1 and p = AT r,
(CGNL) (naive CGNL)

Set s = p, and rnew = sT s

(1) q = Ap, (Note: qT q = pT AT Ap)

(2) αk = rnew/(qT q)

(3) Update the solution x = x + αk p

(4) r = b − Ax = r − αkq and

set rold = rnew

(5) Compute s = AT r and rnew = sT s

(exit if rnew is small enough)

(6) βk = rnew/rold

(7) Update the search direction

p = s + βk p and continue

with step (1) for k = k + 1.

Set r = p, and rnew = r T r

(1) q = AT Ap, (pT q = pT AT Ap)

(2) αk = rnew/(pT q)

(3) Update the solution x = x + αk p

(4) r = b − Ax = r − αkq and

set rold = rnew

(5) Compute rnew = r T r

(exit if rnew is small enough)

(6) βk = rnew/rold

(7) Update the search direction

p = r + βk p and continue

with step (1) for k = k + 1.

Algorithm 3.5.14. (CGNR).

To solve Ax = b, with k = 1,
(CGNR) (naive CGNR)

given x = x0, r = b − Ax0 and set

initially p = AT r, and rnew = r T r
given y = y0, r = b − AAT y0 and

set initially p = r , and rnew = r T r

(1) q = Ap

(2) αk = rnew/(pT p)

(3) Update the solution x = x +
αk p

(4) r = b − Ax = r − αkq and

set rold = rnew

(5) Compute rnew = r T r

(exit if rnew is small enough)

(6) βk = rnew/rold

(7) Update the search direction

p = AT r + βk p and continue

with step (1) for k = k + 1.

(1) q = AAT p, (pT q = ‖AT p‖2
2)

(2) αk = rnew/(pT q)

(3) Update the solution y = y +
αk p

(4) r = b − Ax = r − αkq and

set rold = rnew

(5) Compute rnew = r T r

(exit x = AT y if rnew is small)

(6) βk = rnew/rold

(7) Update the search direction

p = r + βk p and continue

with step (1) for k = k + 1.
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Algorithm 3.5.15. (CGNT). (Here T stands for Two preconditioners)

To solve M2 AM1 y = b for x = M1 y through system (3.51), with k = 1, x = x0,
r = b − Ax0 and set initially s = M2r , p = MT

1 AT MT
2 s, and rnew = sT s,

(1) u = M1 p, q = Au,
(2) αk = rnew/(pT p)
(3) Update the solution x = x + αku
(4) r = b − Ax = r − αkq and set rold = rnew

(5) Compute s = M2r and rnew = sT s (exit if rnew is small enough)
(6) Compute βk = rnew/rold and s = MT

1 AT MT
2 s

(7) Update the search direction p = s + βk p and continue with step (1) for
k = k + 1.

It should be remarked that the above three algorithms CGNL, CGNR and
CGNT are applicable to a complex linear system if all the transposes (e.g. xT )
are replaced by conjugate transposes (x H ).

We next introduce a method that does not require solving a normal equation.
(As remarked several times before, there exist many competing iterative solvers
[41,464]).

3.6 The generalized minimal residual method: GMRES

When matrix A in (1.1) is unsymmetric, the previous minimization of φ(x)
in (3.23) and �(x) as in (3.38) is no longer meaningful as Theorem 3.4.6
does not hold. We need to set up a new functional to minimize first. Once a
functional is decided, we have to think of a way to generate suitable search
directions so that global minimization is achieved. We now introduce one such
method, namely GMRES due to [415,413], where the minimizing functional
in the Krylov subspace Kk(A, r0) is chosen as the 2-norm of the residual rk ,
similar to �(x) in (3.38) but with A replaced by I , and the search directions are
implicitly chosen from the Arnoldi iterations (Section 1.4) with global mini-
mization achieved by a least square minimization process. (Note that, to some
extent, the GMRES can cope with a nearly singular matrix A [77], although we
assume that A is non-singular here.) For other unsymmetric methods, refer to
[41,464] and when A is symmetric but indefinite, refer to MINRES method due
to [380].

We consider the restarted GMRES method, GMRES(k), to compute xk =
x0 + x̂k with x̂k ∈ Kk(A, r0). To select x̂k , the first k orthogonal vectors q j from
Arnoldi iterations will be used so that x̂k = ∑k

j=1 q j y j = [q1, q2, . . . , qk]y ≡
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Qk y with y ∈ R
k and span(q1, q2, . . . , qk) ∈ Kk(A, r0). Let q1 = r0/‖r0‖2 be

the starting vector for the Arnoldi decomposition, Section 1.4. In full gener-
ality, allowing the existence of an invariant subspace [229] i.e. Kn(A, r0) =
Km(A, r0), assume Hm = Qm AQT

m or AQm = Qm Hm is formed with Qm =
Qn×m = [q1, q2, . . . , qm] orthogonal and Hm = Hm×m an upper Hessenberg
matrix:

Hm =



h11 h12 · · · h1,m−1 h1m

h21 h22 · · · h2,m−1 h2m

h32 · · · h3,m−1 h3m

. . .
. . .

...

hm,m−1 hmm


, (3.52)

where k ≤ m ≤ n.5 Also note, though QT
m AQm = Hm , A 
= Qm Hm QT

m if m <

n. As k ≤ m, the generated k orthogonal vectors q j satisfy

An×n(Qk)n×k = (Qk+1)n×(k+1)(Hk+1)(k+1)×k = Qk Hk + hk+1,kqk+1eT
k ,

(3.53)

where, with hk+1 = (0, 0, . . . , hk+1,k),

Hk+1 =



h11 h12 · · · h1,k−1 h1k

h21 h22 · · · h2,k−1 h2k

h32 · · · h3,k−1 h3k

. . .
. . .

...

hk,k−1 hkk

hk+1,k


=

[
Hk

hk+1

]
. (3.54)

As mentioned, the GMRES method minimizes the following functional in
the subspace x0 + Kk(A, r0) (compare to (3.38)))

�(xk) = ‖rk‖2
2 = ‖b − Axk‖2

2 = ‖b − A(x0 + Qk y)‖2
2

= ‖r0 − AQk y‖2
2 = ‖r0 − Qk+1 Hk+1 y‖2

2.
(3.55)

5 The restart parameter k cannot exceed m ≤ n. Many descriptions of the method assume m = n
which is not theoretically correct for Arnoldi iterations; in the very special case of r0 = e1, we
can assume m = n as the decomposition A = Q H QT can be obtained by Givens or Householder
transforms Section 1.4. When A = AT , the Arnoldi iterations reduce to Lanczos iterations and a
similar argument follows i.e. m ≤ n.
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So far only the Arnoldi algorithm is used to primarily generate orthogonal
vectors q j . An important observation made in [415] is that the selection of
xk can also make use of the upper Hessenberg matrix Hk+1 produced dur-
ing the same Arnoldi process to simplify (3.55). Noting r0 = q1‖r0‖2, we
need the orthogonal complement Q̂ in R

n of Qk to complete the presentation
where Qn×n = [Qk Q̂] is orthogonal and Q̂ will not be needed in the GMRES
method.

Further using the 2-norm invariance of Q, i.e. ‖QT x‖2 = ‖Qx‖2 = ‖x‖2,
we have

�(xk) = ‖QT r0 − QT Qk+1 Hk+1 y‖2
2

=
∥∥∥∥∥ ‖r0‖2e1 −

(
Hk+1 y

0

)∥∥∥∥∥
2

2
= ‖ ‖r0‖2ê1 − Hk+1 y‖2

2,

(3.56)

where ê1 is the unit vector of dimension k + 1 because the bottom rows are
zero. To find the optimal vector y that solves (3.56), we solve the (k + 1) × k
least squares problem

Hk+1 y = ‖r0‖2ê1. (3.57)

Remark 3.6.16. (The FOM). A sub-optimal (but natural) solution to (3.57)
is obtained from solving the first k equations (for the square matrix Hk)

Hk y = ‖r0‖2ê1(1 : k).

This will give rise to the full orthogonalization method (FOM):

xk = x0 + Qk y, (3.58)

which is simpler but often less efficient than the GMRES.

The above problem (3.57) is usually solved by a QR decomposition method
(see [63,229] and Section 2.4), say by Givens transforms to give

Hk+1
full QR= Pk+1,k+1

(
Rk×k

0

)
reduced QR= Pk+1,k Rk×k . (3.59)

Then (3.57) can be solved to give

y = R−1
k×k

[
PT

k+1,k+1‖r0‖2ê1
]

k
= R−1

k×k PT
k+1,k‖r0‖2ê1,

where [x]k = x(1 : k) denote the vector of the first k components. Putting the
above steps together, we obtain the GMRES(k) algorithm.
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Algorithm 3.6.17. (GMRES(k)).

To solve Ax = b, with iter = 0, e1 = (e1)n×1 and given an initial vector x = x0,

(1) Set x0 = x, iter = iter + 1 and compute r = b − Ax0;
(2) Generate the first vector q1 = r/‖r‖2 and the right-hand side vector

rhs = ‖r‖2e1;
for i = 1 : k,

(3) Start step i of a modified Gran–Schmidt method for Arnoldi:
w = Aqi ;

(4) for � = 1 : i
R(�, i) = wT q�; w = w − R(�, i)q�;

end

(5) R(i + 1, i) = ‖w‖2 and qi+1 = w/R(i + 1, i);
(6) Apply the past Givens rotations to past rows of new column i:

for � = 1 : i − 1,
t = c� R(�, i) + s� R(� + 1, i);
R(� + 1, i) = s� R(�, i) − c� R(� + 1, i);
R(�, i) = t;

end
(7) Compute the Givens rotations:

if |R(i + 1, i)| ≤ 10−16 set ci = 1 and si = 0,
else, set ci = 1/

√
1 + t2 and si = ci t , with

t = R(i + 1, i)/R(i, i), if |t | ≤ 1
or set for t = R(i, i)/R(i + 1, i), si = 1/

√
1 + t2 and ci = si t .

(8) Apply the rotations to the right-hand side
t = ci rhsi , rhsi+1 = si rhsi ; rhsi = t and
then to rows i, i + 1 of column i:
R(i, i) = ci R(i, i) + si R(i + 1, i) and R(i + 1, i) = 0;

(9) Solve the triangular system for y:
R(1 : i, 1 : i)y = rhs(1 : i);

(10) Update the solution: x = x0 + Qy with Q = [q1, q2, . . . , qi ].
(11) Compute the current residual: r = b − Ax and exit if ‖r‖2 is small

enough.
end i

(12) Continue with Step (1).

See the Mfile gmres_k.m.
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We now consider preconditioned GMRES algorithms. For generality and
simplicity, we design one GMRES(k) algorithm for problem (3.51) i.e.

M2 AM1 y = M2b, x = M1 y.

Algorithm 3.6.18. (Preconditioned GMREST(k)). (Here T stands for
Two).

To solve M2 AM1 y = M2b for x = M1 y by GMRES(k), without forming
M2 AM1 explicitly, with i ter = 0, e1 = (e1)n×1 and given an initial starting
vector x = x0,

(1) Set x0 = x, i ter = i ter + 1. Compute r = b − Ax0 and r = M2r;
(2) Generate the first vector q1 = r/‖r‖2 and the right-hand-side vector

rhs = ‖r‖2e1;
for i = 1 : k,

(3) Start step i of a modified Gran–Schmidt method for Arnoldi:
w = M2 AM1qi ;

(4) for � = 1 : i
R(�, i) = wT q�; w = w − R(�, i)q�;

end
(5) R(i + 1, i) = ‖w‖2 and qi+1 = w/R(i + 1, i);
(6) Apply the rotations to past rows of new column i:

for � = 1 : i − 1,
t = c� R(�, i) + s� R(� + 1, i); R(� + 1, i) = s� R(�, i)

− c� R(� + 1, i); R(�, i) = t;
end

(7) Compute the Givens rotations:
if |R(i + 1, i)| ≤ 10−16, set ci = 1 and si = 0,
else

if |t | ≤ 1 for t = R(i + 1, i)/R(i, i), set ci = 1/
√

1 + t2, si = ci t ,
else
compute t = R(i, i)/R(i + 1, i) and set si = 1/

√
1 + t2, ci = si t .

end
end

(8) Apply the rotations to the right-hand side: t = ci rhsi ;
rhsi+1 = si rhsi ;
rhsi = t and then to rows i, i + 1 of column i:
R(i, i) = ci R(i, i) + si R(i + 1, i) and R(i + 1, i) = 0;

(9) Solve the triangular system for y: R(1 : i, 1 : i)y = rhs(1 : i);
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(10) Update the solution: x = x0 + M1 Qy with Q = [q1, q2, . . . , qi ].
(11) Compute the current residual: r = b − Ax and exit if ‖r‖2 is small

enough.
end i

(12) Continue with Step (1).

See the Mfile gmrest_k.m. Note in Chapter 5 (see Algorithm 5.7.16) we
present the flexible GMRES to allow M1 to be different per step. The algorithm
can be adapted to using other types of preconditioners e.g.

M−1
2 AM−1

1 y = M−1
2 b, x = M−1

1 y,

or

M−1
2 M−1

1 Ax = M−1
2 M−1

1 b,

or

AM−1
2 M−1

1 y = b, x = M−1
1 y.

Many other variants of the basic GMRES(k) algorithm can be found from
[413,464].

Minimizing functionals. For the symmetric case, the main three minimizing
functionals in (3.36) are equivalent. For our unsymmetric case, we still have
three similar minimizing functionals that are equivalent. Firstly corresponding
to the normal equation (3.48), define

φ(x) = 1

2
xT AT Ax − xT AT b. (3.60)

Then (3.48) and minx φ(x) are equivalent. Then for the GMRES, we see that
the following equalities hold (analogous to (3.36))

‖r‖2
2 = (bT − xT A)(b − Ax) = xT AT Ax − 2xT AT b + bT b

= 2φ(x) + bT b,

‖x∗ − x‖2
AT A = (x∗ − x)T AT AA(x∗ − x) = (Ax∗ − Ax)T (Ax∗ − Ax)

= (b − Ax)T (b − Ax)
= r T r = ‖r‖2

2.

(3.61)

GMRES convergence rate. In the remainder of this section, we briefly
review the convergence rate of the GMRES algorithm to provide some more
motivating ideas for preconditioning. As explained before, the convergence of
the CG method hinges on the global minimization issue. Here with GMRES,
the main clue lies in the optimal choice of y directly (or x̂, xk indirectly) from
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(3.57): y = ∑k
j=1 y j q j ∈ span(q1, . . . , qk). From the Arnoldi decomposition

§1.4 i.e.

Aq j−1 = q1h1, j−1 + q2h2, j−1 + . . . + q j−1h j−1, j−1 + q j h j, j−1

with q1 = r0/‖r0‖2, we know that

span(q1, . . . , qk) = Kk(A, r0).

Therefore the GMRES solution xk satisfies

�(xk) = ‖b − Axk‖2
2 = �(x0 + y) = min

z∈Kk (A,r0)
�(x0 + z), (3.62)

which will be compared to �(x0) for quantifying convergence. Following the
similar arguments of (3.39)–(3.41), we take x0 = 0.

� I. Eigenvector bound. For any z ∈ Kk(A, r0) = Kk(A, b), we obtain that
z = ∑k−1

j=0 γ j A j b = gk−1(A)b, where gk−1(ξ ) is again the same degree (k − 1)
polynomial determined by γ j . Then

�(z) = ‖b − Az‖2
2 = ‖(b − Agk−1(A)b)‖2

2

= ‖(I − gk−1(A)A)b)‖2
2

= ‖qk(A)r0‖2
2

(3.63)

where qk(ξ ) = 1 − gk−1(ξ )ξ ∈ Qk satisfying qk(0) = 1 as before. As we can no
longer use A = Q DQT , we assume that A is diagonalizable i.e. A = X DX−1.
As with (3.41), qk(A) can again be simplified

qk(A) = qk(X DX−1) = Xqk(D)X−1 = X diag(qk(λ j ))X−1. (3.64)

As with (3.42), define

B(λ1, λ2, . . . , λn) ≡ min
qk∈Qk

max
λ j ∈�(A)

∣∣qk(λ j )
∣∣ .

Hence we can enlarge (3.63) as follows

�(xk)≤B(λ1, λ2,. . . ,λn)2‖X‖2
2‖X−1‖2

2‖r0‖2
2 =κ2(X )2B(λ1, λ2,. . . ,λn)2�(x0),

that is,

‖rk‖2

‖r0‖2
= ‖x∗ − xk‖AT A

‖x∗ − x0‖AT A
=

√
�(xk)

�(x0)
≤ B(λ1, λ2, . . . , λn)κ2(X ). (3.65)

An immediate observation of (3.65) is that a small B (achievable if eigen-
values λ j are clustered; see Section 1.5) is only useful for fast convergence
of the GMRES if κ2(X ) is relatively small i.e. the eigenvectors do not ‘ruin’
the eigenvalues. It turns out that this worst case can happen whenever matrix
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A is highly non-normal [244], i.e ‖AT A − AAT ‖ � 0. To tackle the problem
directly, we have to reduce the effect of non-normality somehow by suitable
preconditioning.

Various ways of deriving alternative bounds, to (3.65), have been attempted –
the starting point is to work with (3.63) and enlarge it differently. One common
approach is to consider bounding the ideal GMRES problem [245,243,198],
without using A = X DX−1 in (3.63),

min
qk∈Qk

‖qk(A)‖2. (3.66)

� II. ε-pseudospectrum bound. Note that the eigenspectrum �(A) is con-
tained in the ε-pseudospectrum �ε(A) for ε ≥ 0, and for any polynomial
qk ∈ Qk

qk(A) = 1

2π i

∫
�

qk(z)(z I − A)−1dz,

where � is any finite union of Jordan curves containing �(A) in its interior.
Let the domain �ε , with boundary ∂�ε , enclose �ε(A) tightly and denote by
L(∂�ε) the contour length of ∂�ε . Then an upper bound is obtained [456,198]
from

‖qk(A)‖2 ≤ 1

2π

∫
∂�ε

|qk(z)|‖(z I − A)−1‖2|dz| ≤ L(∂�ε)

2πε
max
z∈∂�ε

|qk(z)|.
(3.67)

Therefore we have found another bound for (3.62), with x0 = 0,

‖rk‖2

‖r0‖2
≤ L(∂�ε)

2πε
min

qk∈Qk

max
z∈∂�ε

|qk(z)|. (3.68)

In this bound, as ε is small, the size L (reflecting the sensitivity of eigen-
values) determines if eigenvalue distribution can provide useful convergence
indication.

� III. Field of values bound. A further characterization of GMRES conver-
gence [194] is based on field of values6 (FoV) for definite problems satisfying
0 
∈ W(A):

‖rk‖2

‖r0‖2
≤ 2 min

qk∈Qk

max
z∈W(A)

|qk(z)|. (3.69)

As is known [198,318,457], the FoVs almost contain the corresponding ε-
pseudospectrum so the bound suggests fast convergence for GMRES only if
the eigenvalues are not sensitive.

6 Note �(A) ⊂ W(A) but bound (3.71) does not involve κ(X ). See §1.5.
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Non-normality. Finally we comment on non-normality, which strongly
influences the above three convergence results (3.65), (3.68), (3.69) for the
GMRES. One early characterization was to measure the magnitude of the
off-diagonal entries in the Schur decomposition [275]. As any matrix A pos-
sesses a Schur decomposition A = U T U ∗, with U unitary i.e. UU ∗ = I , split
T = � + N where � is the diagonal of T containing all eigenvalues of A. Then
the size

‖N‖F =
√

‖T ‖2
F − ‖�‖2

F =
√

‖A‖2
F − ‖�‖2

F (3.70)

indicates how non-normal the matrix A is; if ‖N‖F = 0, the GMRES con-
vergence bound (3.65) would be identical to the SPD case (3.43) as κ2(X ) =
κ2(U ) = 1. Therefore one anticipates that when ‖N‖F is small, κ2(X ) for the
bound (3.65) will be small so that distribution of eigenvalues becomes relevant
to fast convergence of GMRES. For a diagonalizable matrix A = X DX−1, the
trouble being X X T 
= I , one may decompose X by the QR method to give
X = Q R and get A = Q RD(Q R)−1 = Q(RDR−1)QT . Then we can equally
‘blame’ the off-diagonal entries of R responsible for non-normality. Overall,
it is our belief that a good preconditioner can improve on non-normality and
thus speed up the GMRES method. Indeed the SPAI type preconditioners in
Chapter 5 can reduce the non-normality measure ‖N‖F to some extent.

3.7 The GMRES algorithm in complex arithmetic

So far A is assumed to be a real matrix and generalization of results to the
complex case is usually straightforward. As far as computer programming and
mathematics are concerned, there is no need to convert (1.1), with A = A1 +
i A2, x = x1 + i x2 and b = b1 + ib2, to a real augmented system[

A1 −A2

A2 A1

] (
x1

x2

)
=

(
b1

b2

)
, (3.71)

as recommended by some books (though there may be situations where this is
convenient). This is because a lot of mathematical formulae only require minor
adjustments for a real algorithm to work in complex arithmetic, e.g. for the
CGNT Algorithm 3.5.15 to work with complex arithmetic the required four
changes will be at the initial setup, and steps (2), (5), (6) – essentially replacing
transposes to conjugate transposes, e.g. replacing rnew = sT s by rnew = s H s.

For the complex version of a GMRES method, the changes are also similar
and for this reason the exact details (as shown below) may not be found in many
references. Here we only concentrate on the Given rotations. Recall that a real
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Given rotation matrix is defined by (1.24), in a shorthand notation,

P( j, k) =
[

c s
s −c

]
. (3.72)

Allowing θ to take complex values can satisfy P( j, k)P( j, k) = P( j, k)2 = I
but does not make P( j, k) an unitary matrix since

P( j, k)P( j, k)H =
[

cc̄ + ss̄ cs̄ − sc̄
sc̄ − cs̄ ss̄ + cc̄

]

= I (3.73)

because, with θ = a + ib, at least

cc̄ + ss̄ =|c|2+|s|2 = (cosh(b)2+ sinh(b)2)(sin(a)2+ cos(a)2)=cosh(2b) 
= 1,

though c2 + s2 = cos(θ )2 + sin(θ )2 = (cosh(b)2 − sinh(b)2)(sin(a)2 +
cos(a)2) = 1 (e.g. let θ = 1/3 + 5/7i , then c ≈ 1.196 − 0.254i and
s ≈ 0.414 + 0.734i so c2 + s2 = 1 and |c|2 + |s|2 = cosh(2y) =
cosh(10/7) = 2.206.) Let z = x + yi ∈ C with x, y ∈ R (so z̄ = x − yi)
and set a = √

1 + zz̄ =
√

1 + x2 + y2. A complex Givens rotation matrix
can be defined as in Table 3.1. With the new definition, one can verify that
P( j, k)P( j, k)H = I and, when y = 0, (3.74) reduces to the real case (3.72).
We now consider the typical step (3.59) of decomposing an upper Hessenberg
matrix H into Q R form as in Table 3.1, by choosing z in P( j, j + 1) through7

h̃ j+1, j = zh j j − h j+1, j = 0 i.e. z = h j+1, j

h j j
.

For readers’ benefit, we give the complete complex GMRES(k) algorithm.

Algorithm 3.7.19. (Complex GMRES(k)).

To solve Ax = b, with iter = 0, e1 = (e1)n×1 and given an initial vector x = x0,

(1) Set x0 = x, iter = iter + 1 and compute r = b − Ax0;
(2) Generate the first vector q1 = r/‖r‖2 and the right-hand-side vector

rhs = ‖r‖2e1;
for i = 1 : k,

(3) Start step i of a modified Gran–Schmidt method for Arnoldi: w =
Aqi ;

(4) for � = 1 : i
R(�, i) = wH q�; w = w − R(�, i)q�;

end

7 Reset the matrix P( j, j + 1) to a permutation of two rows j, j + 1 if h j j = 0.
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Table 3.1. A complex Givens rotation matrix P( j, k) and its use in a QR step.

a P( j, k)

≡



a
. . .

a
1 · · · z̄
...

. . .
...

z · · · −1
a

. . .

a


=



a
. . .

a
1 · · · x − yi
...

. . .
...

x + yi · · · −1
a

. . .

a


,

P( j, k) = for
short

1

a

[
1 z̄
z −1

]
.

(3.74)

P( j, j + 1)



r11 · · · r1, j−1 h1 j · · · h1,k−1 h1k

. . .
...

... · · · ...
...

r j−1, j−1 h j−1, j · · · h j−1,k−1 h j−1,k

h j j · · · h j,k−1 h j,k

h j+1, j
. . .

... h j+1,k

. . .
. . .

...
hk,k−1 hkk



=



r11 · · · r1, j−1 h1 j · · · h1,k−1 h1k

. . .
...

... · · · ...
...

r j−1, j−1 h j−1, j · · · . . . h j−1,k

h̃ j j h̃ j, j+1
. . . h̃ j,k

h̃ j+1, j+1
. . . h̃ j+1,k

h j+2, j+1
. . .

...
. . . hkk


.

(3.75)

Note that for a real matrix problem, the above Givens transform reduces to (1.24).
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(5) R(i + 1, i) = ‖w‖2 and qi+1 = w/R(i + 1, i);
(6) Apply the past Givens rotations to past rows of new column i:

for � = 1 : i − 1,
t = c� R(�, i) + s̄� R(� + 1, i);
R(� + 1, i) = s� R(�, i) − c� R(� + 1, i);
R(�, i) = t;

end
(7) Compute the Givens rotations: if |R(i, i)| ≤ 10−16 set ci = 0

and si = 1, else set ci = 1/
√

1 + |t |2 and si = ci t , with
t = R(i + 1, i)/R(i, i).

(8) Apply the rotations to the right-hand side:
t = ci rhsi ; rhsi+1 = si rhsi ;
rhsi = t and then to rows i, i + 1 of column i:
R(i, i) = ci R(i, i) + s̄i R(i + 1, i) and R(i + 1, i) = 0;

(9) Solve the triangular system for y: R(1 : i, 1 : i)y = rhs(1 : i);
(10) Update the solution: x = x0 + Qy with Q = [q1, q2, . . . , qi ].
(11) Compute the current residual: r = b − Ax and exit if ‖r‖2 is small

enough.
end i

(12) Continue with Step (1).

3.8 Matrix free iterative solvers: the fast
multipole methods

Before we present the increasingly popular idea of the fast multipole method
(FMM), we must point out that the FMM is not an iterative method as quite a
lot of readers seem to think. However, the wrong impression is inevitable since
the use of an FMM for (1.1) often involves (and is embedded in) an iterative
method; see [395,365,255,40,500,171].

The FMM is a fast method for computing a dense matrix vector product (or
a large sum of N terms with structured components) whose coefficients can be
associated with an analytical function that admits ‘decaying’ or ‘smooth and
easily computable’ expansions. (A sparse matrix vector product is already fast
so it is not applicable.)

The essential idea of an FMM is to turn element-to-element interactions
to group-to-group interactions, or to put equally, to turn pointwise products
into blockwise products. The somewhat mysterious word ‘multipole’ is in-
deed accurately reflecting the fact that complex analysis is used. Indeed, the
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underlying function (normally real-valued) is taken as the real part of a complex-
valued analytical function and all function expansions are conveniently carried
out with respect to poles in the complex plane (as we know from complex
analysis on Taylor, Maclaurin, or Laurent series). Rearranging the way expan-
sions are computed and avoiding repeated computations lead to a fast method
of O(N log N ) instead of O(N 2) operations. This seems to suggest that the
FMM resembles the FFT in that they both can provide a fast method for ma-
trix vector products. In fact, for regularly distributed data in a special case, the
underlying problem reduces to a Toeplitz matrix computation (Section 1.6) so
a FFT [445,307] and an FMM can solve the problem in similar flops. However
the beauty of an FMM lies in the fact that it can deal with irregular data and
nontrigonometric functions.

Here for a real-valued problem, one may use real-valued expansions in-
stead of involving complex ones at poles to derive an FMM-like method (see
[220]), although the FMM formulation appears simpler and neater with the
help of complex expansions. However, in three dimensions, such pole-like ex-
pansions are directly developed without connecting to theories of complex
functions.

There exist other related fast methods such as the panel-clustering method
[262]) and the H-matrix method [69], that are not discussed here.

We now list two commonly known problems which can be tackled by an
FMM

compute for j = 1, 2, · · · , N : ϕ j =
N∑

k = 1
k 
= j

qk log |p j − pk |, p j ∈ R
2,

compute for j = 1, 2, · · · , N : ϕ j =
N∑

k = 1
k 
= j

qk
nk · (pk − p j )

|p j − pk | , p j ∈ R
2,

(3.76)

each of the matrix-vector product type, q = [q1, q2, . . . , qN ],

ϕ = Aq, (3.77)

where nk = (n1, n2) is the normal vector and qk’s are real. Here dense matrix
problems (3.76) may be viewed as from modelling pairwise particle interactions
[217,248] or from discretizing a BIE (Section 1.7).

A FMM uses a complex formulation, by ‘equating’ a point p = (x, y) in
R

2 with the point z = x + iy in the complex plane C
1. For (3.76), the new
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formulae become

compute for j = 1, · · · , N : ϕ j = �φ j , φ j =
N∑

k = 1
k 
= j

qk log(p j − pk), p j ∈ C
1

compute for j = 1, · · · , N : ϕ j = �φ j , φ j =
N∑

k = 1
k 
= j

qk
nk

p j − pk
, p j ∈ C

1

(3.78)

where nk = n1 + in2 may be absorbed into qk for convenience.

Remark 3.8.20. Before we briefly discuss how an FMM works, some simple
remarks and observations are made here.

(1) The key idea of an FMM is to accurately approximate the distant inter-
actions (or far field contributions) relating to O(N ) work by a finite sum
relating to O(1) work. The technical points of a successful FMM lie in two
acts

� approximating a local cluster of interacting particles . . . . . . . . . . . . .act 1
� flexible shifting of a function expansion from one center z0 to the next z1

. . . . act 2

with minor updates on the coefficients and without changing the accuracy.
Both acts jointly contribute to diminishing the N information. The con-
vergence range is accordingly updated after a shifting. These expansion
centres have nothing to do with the origin of a computational coordinate.
Although the key FMM references [248,405] presented Lemmas of shifting
an expansion apparently to the origin z = 0, the FMM algorithms require
shifting to a centre away from the origin. The minor but crucially important
point is that these Lemmas can be adapted before use; see below.

(2) In generalizing the FMM idea to solve a BIE in other cases (e.g. in three
dimensions), often, one chooses to approximate the kernel by a separable
function [395,406,40]. However, it remains to compare against the simple
degenerate kernel method for BIEs [24] where no projections are actually
needed to solve the BIE.

(3) In various informal discussions, helpful examples of the following types
are frequently used to motivate the ideas of an FMM: compute y = Ax
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with x ∈ C
N and

A =


0 t · · · t
t 0 · · · t
...

. . .
. . .

...
t t · · · t

 ,

or

A =


0 (p1 − p2)2 · · · (p1 − pN )2

(p2 − p1)2 0 · · · (p2 − pN )2

...
. . .

. . .
...

(pN − p1)2 (pN − p2)2 · · · 0

 .

(3.79)

Here the naive O(N 2) work for computing y can be reduced to O(N ) by
changing the order of computation, in a manner analogous to the Horner’s
method (7.14) for polynomials. The reformulated computation becomes
respectively

y j = ψ1(x j ),

y j = ψ2(p j ),

}
for j = 1, . . . , N

where the functions are (a = ∑N
k=1 xk, b = ∑N

k=1 pk xk, c = ∑N
k=1 pk x2

k )

ψ1(z) = −t z + at,

ψ2(z) = az2 − 2bz + c.
(3.80)

Here the N -term summations are respectively replaced by calculations in-
volving a fixed degree p = 1 and degree p = 2 polynomials. In the more
general case, indeed, a fixed degree p polynomial will be used similarly
but approximately. In a more sophisticated way, such a polynomial will
be used for computing a partial sum involving a majority of terms! The
interested reader can further modify the second example by replacing the
power of 2 by other powers say 3 and see how a higher-order polynomial is
found.

(4) Finally we remark that the usual convention on levels in FMM assumes
that the full levels are used. However to be in line with the multigrid set-
ting (Chapter 6) where any levels are beneficial and permitted, one only
needs to re-define the number of boxes n j as shown below in one and two
levels.
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To concentrate on the basic idea of FMM, we consider problem 1 of (3.78),
i.e.

φ(z) =
N∑

k = 1
k 
= j

qk log(z − pk) (3.81)

in the 2D case without any boundary interactions, for z = p1, . . . , pN . We shall
look at m = 1 and 2 levels in details before presenting the main algorithm due
to [248] for the general case. In modelling practices, physical particles are often
allowed to be periodic while BIEs (Section 1.7) generate matrices with wrap
around boundaries (associated with a closed surface); these will only require
minor changes.

A description of the FMM is incomplete (or impossible) without introducing
the underlying theory. Aiming to approximate distant interactions, such multi-
pole expansions have been used by several authors; see [65,248] for historical
details. However, the successful FMM will also have to address how to utilize
such expansions. The following results are mainly based on [248]. Here we
have replaced all references of the origin z = 0 in [248] by a new centre z1 and
added a meaningful heading for each result, so that less imagination is required
of the reader to understand the subsequent FMM algorithm.

� Some elementary expansions. First we point out that the following elemen-
tary Taylor expansions will be extensively used:

log(1 − z) = −
∞∑

k=1

zk

k
, |z| < 1,

1

(1 − z)k
=

∞∑
j=0

 j + k − 1

k − 1

 z j =
∞∑
j=k

 j − 1

k − 1

 z j−k

=
∞∑
j=0

 j − 1

k − 1

 z j−k |z| < 1,

(a + b)n =
n∑

k=0

akbn−kCk
n ,

n∑
k=0

ak(z + z0)k =
n∑

�=0

(
n∑

k=�

akC�
k zk−�

0

)
z�.



(3.82)

where the binomial coefficient C j
k =

(
k
j

)
= k!/( j!(k − j)!) = k(k − 1) · · ·

(k − j + 1)/j! for k ≥ j

(
k
0

)
= 1, and we define Ck

j =
(

j
k

)
= 0 if k > j .
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� The basic far field expansion. As mentioned, far fields relative to a particle
refer to a cluster of particles far away from the underlying particle. Therefore
the particle-to-cluster interaction may be represented by a series expansion.
This idea is shown in the Theorem 2.1 of Greengard and Rokhlin [248, p. 282]
which is the fundamental building block for the FMM.

Theorem 3.8.21. (Multipole expansion with a flexible expansion centre ).
Suppose that τ charges of strengths {qi , i = 1, . . . , τ } are located at points
{pi , i = 1, . . . , τ } with |pi − z0| < r i.e. centred at z0 and with a radius r .
Then we can approximate φ f (z) by

φ̃ f (z) = a0 log(z − z0) +
p∑

k=1

ak

(z − z0)k
, (3.83)

with p ≥ 1 and for any z ∈ C with |z − z0| ≥ cr > 2r ,

a0 =
τ∑

i=1

qi , ak = −
τ∑

i=1

qi

k
(pi − z0)k,

∣∣φ f (z) − φ̃ f (z)
∣∣ ≤ B

c − 1

(
1

c

)p

,

(3.84)
and B = ∑τ

i=1 |qi |.
Proof. Note that log(z − pi ) = log( (z − z0) + (z0 − pi ) ) = log(z − z0) +
log(1 − y) with y = (pi − z0)/(z − z0) and |y| ≤ 1/c < 1. Then using (3.82)
completes the proof. Refer also to [248].

� The general case of �-levels. Let all N = 4L nodes (‘particles’) p j be located
in the square (computational) box �(0) of level 0, which is further divided
into n j × n j boxes �

( j)
k in level j for j = 1, 2, . . . , �. The actual number of

‘particles’ in each box is not important; however for counting flops we assume
a uniform distribution i.e. there are N/n2

j particles in each box on level j , with
n j = 2 j . Clearly

�(0) =
4 j⋃

k=1

�
( j)
k , j ≤ L , (3.85)

as shown in Figure 3.1.
For a given particle z, if the box �

(m)
k on level m contains z, then we write

�(m)
z = �

(m)
k . If the box �

(m)
k is nearest to box �(m)

z , then we call box �
(m)
k a

near-field neighbour of z otherwise a far-field neighbour on level m. If the box
�

(m−1)
k is a far-field neighbour of z i.e. of �(m−1)

z , then all four boxes on level m
of this level-(m − 1) box are also far-field neighbours of z. We further denote
the union of all level m near neighbours of the particle z, excluding �(m)

z , by
�

(m)
near(z). The final notation we need [248] is the so-called interaction list of level
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Figure 3.1. Illustration of near and far fields of two FMM schemes (2D) (z at •).

m for box �(m)
z , which is an union of far-field boxes and is defined by

�
(m)
intera(z) =

{⋃
k

�
(m)
k

∣∣∣∣∣ �
(m)
k is a far-field box and �

(m)
k ⊂ �

(m−1)
k

with �
(m−1)
k a near-field box

}
.

In words, the level m interaction list consists of the children boxes of all near
neighbours of the parent box of �(m)

z . The union of all interaction lists makes
up the so-called far field for particle z or box �(�)

z . The FMM will make full use
of the decomposition property

�(0) = �(�)
z

⋃
�

(�)
near(z)

⋃
�

(�)
intera(z)

⋃
�

(�−1)
intera(z)

⋃
· · ·

⋃
�

(2)
intera(z). (3.86)

Clearly near and far fields complete a covering for the entire interaction list
[262].

Once the interaction lists are set up, the evaluation of (3.81) can be divided
into

φ(z) =
∑

pk∈�(0)\{z}
qk log(z − pk)

=
∑

pk ∈ {�(�)
z \z} ∪ �

(�)
near(z)

qk log(z − pk)

︸ ︷︷ ︸
Near field terms to be evaluated directly

+

∑
pk ∈ ∪�

j=2�
( j)
intera(z)

qk log(z − pk)

︸ ︷︷ ︸
Far fields to be approximated by p + 1 terms.

(3.87)

Here p will be the order of multipole expansions as in Theorem 3.8.21.
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� The special cases of one level and two levels. Before we present the theory
of multipole expansions of [248] and discuss the algorithmic details, we give
an illustration of the simpler cases of one level and two levels. More precisely,
we consider the partition of the whole domain �(0) in (3.85) by

(1) the one-level case: the finest level j = �, n� boxes only;
(2) the two-level case: the fine level j = � and the coarse level j = (� − 1),

with n� and n�−1 boxes respectively.

Here the near and far fields are easier to demonstrate: Figure 3.1 depicts the
cases of n� = 5 (left plot for one level), and n� = 10, n�−1 = 5 (right plot for
two levels). In the left plot of Figure 3.1, the particular z has nine near-field
neighbours (marked ‘N’) and 16 far-field level one neighbours (marked ‘F’). In
the right plot of of Figure 3.1, the set z (denoted by •) again has nine near-field
neighbours and 28 far-field neighbours (21 level-one marked larger ‘F’ and
seven level-two marked smaller ‘F’).

According to (3.87), for Figure 3.1, each sum can be evaluated as follows

(1) the one-level case:

φ(z) =
∑

pk∈�(0)\{z}
qk log(z − pk) =

∑
pk∈∪N\{z}

qk log(z − pk)

+
∑

pk∈∪F

qk log(z − pk).

(2) the two-level case:

φ(z) =
∑

pk∈�(0)\{z}
qk log(z − pk) =

∑
pk∈∪N\{z}

qk log(z − pk)

+
∑

pk∈∪F∪F

qk log(z − pk).

Clearly from the above illustration and expectation, the treatment of far field
interactions via multipole expansions will be a key development. We introduce
the systematic method of shifting these expansions to derive an FMM algorithm.

� Shifting local far field expansions to a coarse level centre of far fields.
We can adapt the Lemma 2.3 of Greengard and Rokhlin [248, p. 283] to the
following

Theorem 3.8.22. (Multipole expansion fine-to-coarse shifting). Suppose
that a local multipole (approximate) expansion has been obtained for some
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Figure 3.2. Illustration of shifting far-field centres. Case (i): shifting far expansions
centred at ⊕ into the new far field centre at • in Theorem 3.8.22 for near field box
�. Case (ii): shifting far field expansions centred at • into the new near field centre
at � in Theorem 3.8.23 for near field box �.

local interacting box � f , centered at z0, as in Theorem 3.8.21

φ̃ f (z) = a0 log(z − z0) +
p∑

k=1

ak

(z − z0)k
.

If z1 is a nearby far field centre of the next coarser level box (as shown in
Figure 3.2), we can further approximate φ f (z) and φ̃ f (z) by

φ̂ f (z) = a0 log(z − z1) +
p∑

�=1

b�

(z − z1)�
, (3.88)

for all z ∈ C with |z − z1| ≥ r + |z0 − z1| ≥ c1r > 2r , where the modified co-
efficients can be generated from ak’s in O(p2) flops

b� =
(

�∑
k=1

ak(z0 − z1)�−k

(
k − 1
� − 1

))
− a0

(z0 − z1)�

�
. (3.89)

Here ∣∣φ f (z) − φ̂ f (z)
∣∣ ≤ B

c1 − 1

(
1

c1

)p

.
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Proof. As before, note that (z − z0) = (z − z1) + (z1 − z0) = (z − z1) (1 − y)
with y = (z0 − z1)/(z − z1) and |y| ≤ 1/c1 < 1. Then using (3.82) completes
the proof. Note that in [248], Lemma 3.2 has a major typo in its formula for b�

which should read a0zl
0/� instead of a0zl

0/0.

� Far fields on an interaction list shifted to near fields on a fine level.
To enable the computed results of far field interactions to be used by near
field boxes (and then by their particles), it is necessary to shift the expan-
sions to the near field centres (without sacrificing the approximation accuracy).
The exact progression across the levels will be done through the interactions
lists.

Theorem 3.8.23. (Multipole expansion for coarse-to-fine shifting).
Suppose that a local multipole (approximate) expansion has been obtained for
some far field interacting box � f , centered at z0 and with a radius R as in
Theorem 3.8.21

φ̃ f (z) = a0 log(z − z0) +
p∑

k=1

ak

(z − z0)k
.

If z1 is a near field centre on the same level (see the illustration in Figure 3.2),
we can describe the potential due to the above charges by a power series

φ̂ f (z) =
p∑

�=0

b�(z − z1)�, (3.90)

for all z ∈ C in a circle centred at z1 with radius R with |z0 − z1| > (c2 +
1)R > 2R, where the modified coefficients can be generated from ak’s in O(p2)
flops

b� =
(

1

(z0 − z1)�

p∑
k=1

ak

(z0 − z1)k

(
� + k − 1

k − 1

)
(−1)k

)
− a0

(z0 − z1)��
, � ≥ 1,

b0 =
p∑

k=1

1

(z0 − z1)�
(−1)k + a0 log(z1 − z0). (3.91)

Here for some generic constant C and p ≥ max{2, 2c2/(c2 − 1)}:∣∣φ f (z) − φ̂ f (z)
∣∣ ≤ C

c2 − 1

(
1

c2

)p

.

Proof. As before, note that (z − z0) = (z − z1) + (z1 − z0) = (z1 − z0) (1 − y)
with y = (z − z1)/(z0 − z1) and |y| ≤ 1/c1 < 1. Then use (3.82) to complete
the proof. Refer to [248].
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Figure 3.3. Illustration of the far field expansion manipulation in an FMM.

Up to now, we have presented all the three major stages of an FMM

� generate all local far field expansions on the finest level � via
Theorem 3.8.21;

� combine these local far field expansions for coarser levels via
Theorem 3.8.22;

� shift far field expansions from coarser levels to all near fields on level � via
interaction lists and Theorem 3.8.23.

Here each initial (far field) expansion refers to an expansion centre z0 and
p + 1 coefficients {a0, a1, . . . , ap} as in Theorem 3.8.21 while the (far field)
expansion in the last stage of an FMM refers to the new expansion centre z1

and p + 1 coefficients {b0, b1, . . . , bp}, as illustrated in Figure 3.3. The ex-
pansions represent the interaction of far field particles (‘*’ points) with the
near field points (‘z’ points). To conform with the common terminology [248],
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we shall call the above expansion with p + 1 terms the p-term expansion for
simplicity.

It remains to discuss the FMM algorithm in the general case of � levels.
We first give a simple one-level version of an FMM for computing (3.81) for
z = p j with j = 1, . . . , N as follows.

Algorithm 3.8.24. (FMM in 1-level). To compute y = Ax, with A as in
(3.77) (with one level, Theorem 3.8.22 is not needed):

Setting-up stage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
(1) Divide the computational box�(0) with N particles on level � into n� × n� =

4� boxes.
(2) Count the number of particles in each fine mesh box, work out its box centre.

• Approximating stage on the fine mesh. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
(3) For each fine mesh box, use Theorem 3.8.21 to work a p-term series expan-

sion. Save all n2
� sets of such coefficients.

• Shifting stage to the near fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
(4) Shift all far field expansions to each near field box centre and add

the corresponding coefficients using Theorem 3.8.23. Save all n2
� sets of

coefficients.
• Summing stage for each particle on the fine mesh . . . . . . . . . . . . . . . . . . .

(5) compute its near field interactions with within all particles in the under-
lying box and the box’s near-field level neighbours and add the far-field
contributions implied in the associated expansion.

For the specific example in Figure 3.1 (left plot), we now estimate the flop
counts using Algorithm 3.8.24 (assuming p is much smaller than N or n
below). Let n = N/n2

� be the number of particles in each box. Then we have
approximately

Algorithm stage Estimated flops Comment

Approximation 25np = N p Done once
Each near-field n For each particle
Each far-field p for each particle

Work for all particles N (9n + 16p) + N p ≈ 1
3 N 2

For the right plot in Figure 3.1, let n = N/n2
� be the number of particles in

each box with n� = 10. Then we can deduce these estimates.
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Algorithm stage Estimated flops Comment

Approximation 100np = N p Done once for F
Shifting 25p2 Done once for F

Each near-field n For each particle
Each far-field p for each particle

Work for all particles N (9n + 28p) + N p + 25p2 ≈ 1
11 N 2

Clearly for this single level algorithm, using only n� = 5, the saving in flops is
more than 60% while the advantage of using two levels is seen from a saving
of about 90%. Within the context of a single level scheme, if the number of
boxes is relatively small, the near field computation dominates. If one increases
the number of boxes, the number of far fields begins to dominate; the optimal
choice is about n ≈ √

N .
However, to the main point, optimal efficiency can be achieved from using

multiple � levels with � = O(log N ). Then the reduction of O(N 2) work to
O(N log N ) implies a saving close to 100%. This will ensure that each near
field box contain O(1) particles.

� The FMM algorithm. We are now ready to state the FMM algorithm. To
clarify on the notation, we summarize the main definitions in Table 3.2. The
crucial concept of interaction lists can be more clearly illustrated in Figures 3.4

Table 3.2. Main definitions for the FMM.

�-levels the computational box �(0) is divided into 4 j smaller
boxes �

( j)
k on level j , where j = 0, 1, . . . , � and

k = 1, 2, . . . , 4 j for each j .
Interaction list (l, i) the set of boxes on level l which are children of all

nearest neighbours of box i’s parent (on level l − 1,
not including the parent itself) and which are well
separated from box i at this level l.

�l,i the p-term multipole expansion about the centre of
box i at level l, describing the potential field
created by the particles contained inside box i
at this level.

�l,i the p-term multipole expansion about the centre of
box i at level l, describing the potential field
created by the particles contained outside box i and
its nearest neighbours at this level. (This is to be built
up recursively from interaction lists).
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Ancestor and coarsest level 1 

1

Box 69 on Finest Level 4 

35 36 37 38 39 4051 55 5667 71 7283 87 8899 100 101 102 103 104115 116 117 118 119 120

69

Parent and Far-field Level 3 

1 2 3 4 5 6
9 1 3 14
17 21 22
25 29 30
33 34 35 36 37 38
41 42 43 44 45 46

19

Parent and Far-field Level 2

4
8
12

13 14 15 16

6

Figure 3.4. The FMM Illustration I of the interaction lists across all levels (for a
specified box). Note the parent’s near neighbours provide the interaction lists.

and 3.5, where we take � = 4 levels and consider the box numbered 69 on level
4. Its parent box is numbered as 19 on the coarser level 3, its grand-parent
box as 6 on level 2 and the ancestor box as 1 on level 1. The two figures are
respectively produced by the supplied Mfiles intera.m and index2.m.8

Clearly one observes that the difference between a box’s near field boxes and
its parent (coarse level) box’s near field boxes is precisely the interaction list.

Algorithm 3.8.25. (FMM in �-levels). To compute y = Ax with A as
in (3.77), given an accuracy tolerance ε and taking p = − logc(ε), c =
4/

√
2 − 1 as in [248,246], the FMM implements the following steps (via a

two-pass process similar to the V-cycling of a MGM):

Upward Pass – from the finest level � to the coarsest level 1

8 Both mfiles were developed based on several original codes, designed by a colleague Dr Stuart
C. Hawkins (E-mail: stuarth@liv.ac.uk, University of Liverpool, UK). Here we adopt the lexico-
graphical ordering but there was also a version with an interesting anti-clockwise ordering.
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48
49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64
65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80
81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96
97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112
113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128
129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144
145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160
161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176
177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192
193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208
209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224
225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240
241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256

Finest and Near-field Level 4

52 53 54
68 70
84 85 86

69

1 2 3 4 5 6 7 8
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17 18 19 20 21 22 23 24
25 26 27 28 29 30 31 32
33 34 35 36 37 38 39 40
41 42 43 44 45 46 47 48
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57 58 59 60 61 62 63 64

Parent and Far-field Level 3
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2

3 4

1

Figure 3.5. The FMM Illustration II of far fields for a specified box: watch the
relationship between its far fields and the parent’s near neighbours.

(1) • Forming the multipole expansions at the finest level �: . . . . . . . . . . . . .
for ibox = 1, 2, . . . , 4�

Form the p-term multipole expansion ��,ibox which represents the po-
tential field due to particles in each box ibox end ibox

(2) •Forming the multipole expansions at all coarse levels: . . . . . . . . . . . . . .
for l = � − 1, . . . , 1

for ibox = 1, 2, . . . , 4l

Form the p-term multipole expansion �l,ibox by shifting the centre of
each child box’s expansion to the current box centre and adding the
corresponding expansion coefficients together, which represents the
potential field due to particles in each box ibox (from the ⊗ boxes to
� in Figure 3.2)

end ibox
end l

Downward Pass – from the coarsest level 1 to the finest level �
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(3) • Combining all far field multipole expansions to local expansions up
to all boxes on the finest level �: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Initialize all expansion coefficients of �l,i by zero i.e. �l,i = (0, . . . , 0).
Assign the level 1 expansion coefficients of �1,i to �1,i as these are the
same.
for l = 1, 2, . . . , �

if l < � (exclude level �)
for ibox = 1, 2, . . . , 4l

Create the p-term multipole expansion �l+1,ibox for ibox’s children
by shifting the centre of expansions from the current box centre to
its children’s box centres, which represents the potential field due to
all far field particles for the child box except the child’s interaction
list (refer to box 6 and its four children 19, 20, 27, 28 in Figure 3.5).

end ibox
end if
if l > 1 (exclude level 1)
for ibox = 1, 2, . . . , 4l

Update the p-term multipole expansion �l,ibox by shifting the centre
of expansions of each member on its interaction list to the current box
centre and adding the corresponding expansion coefficients together,
which represents the potential field due to particles in each box ibox’s
interaction lists and all of its parents (ancestors)’ interaction lists
(refer to Figure 3.3 and Figure 3.2 for the box �)

end ibox
end if

end l
• Evaluating separately the far field and the near field interactions for
particles in each box on the finest level �, before adding them: . . . . . . .
Evaluate the far field expansion ��,i and save it in a vector F.
for ibox = 1, 2, . . . , 4�

For each particle z = p j in box ibox, evaluate the far field potential

Fj = ��,ibox(z) =
p∑

k=0

bibox
k (z − cibox)k (3.92)

where cibox = c(�)
ibox is the centre of box ibox

end ibox
Evaluate the near field potential and save it in a vector B.
for ibox = 1, 2, . . . , 4�

For each particle z = p j in box ibox, directly compute the near field
potential due to all other particles in this box ibox and its nearest
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neighbours:

B j =
∑

pk ∈ {�(�)
z \z} ∪ �

(�)
near(z)

qk log(z − pk) (3.93)

as in (3.87) (refer to box 69 in Figure 3.5 whose eight nearest neighbours
are 52, 53, 54, 68, 70, 84, 85, 86).

end ibox
Complete the FMM by adding the near and far field vectors together

y = Ax = �(B + F). (3.94)

Here we emphasize that each far field expansion �l,ibox at a near field box centre
c(l)

ibox has two contributions: the first one inherited indirectly from the grand-
parent via its parent and the second one inherited directly from the parent. In
[248,246], the first contribution was given a separate notation, namely, �̃l,ibox.
We have avoided this extra notation in the above description by using the word
‘Create’ for the first contribution and the word “Update” to imply the addition
of the second contribution.

For highly nonuniform distributions of the particles, an adaptive algorithm
has to be considered; refer to [246,500]. For application to BIE problems, the
standard FMM algorithm as described has proved efficient.

Finally we show some test results using the FMM algorithm. The FMM
toolbox9 of Mfiles, downloaded fromhttp://www.madmaxoptics.com,
is run to produce the numerical tests. It should be remarked that we are not
implying that the madmaxoptics implementation is following Algorithm 3.8.25
in any way. However, we believe the performance of all FMM variants should
be similar for uniformly distributed source data i.e. p j ’s. We have supplied a
Mfile ch3_fmm.m containing these essential lines

>> x = rand(N,1); y = rand(N,1); q = rand(N,1)*N;

% Sample data

>> D = createsrc2d(x,y, q);

% Data formatting for the FMM toolbox

>> P_f = fmmcoul2d(D, x,y);

% The main step

which called two Mfiles fmmcoul2d.m and createsrc2d.m from the
above toolbox. (The toolbox is comprehensive as it solves many other
problems).

9 The toolbox from c©MADMAX, Inc. is provided free of charge but the user must fill in their
required registration form from http://www.madmaxoptics.com first to use the toolbox.
The detailed usage is clearly explained in the manual document available in the software.
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Firstly we show how the FMM toolbox works for a small problem with
N = 8 source points p = [

p1 p2 p3 p4 p5 p6 p7 p8
]

and interaction strengths
q = [

6 4 6 2 5 1 3 7
]

for problem (3.78):

p =



(7, 7)
(4, 3)
(6, 6)
(4, 1)
(0, 6)
(2, 3)
(0, 1)
(7, 4)


,

A =



0.0000 1.6094 0.3466 1.9033 1.9560 1.8568 2.2213 1.0986
1.6094 0.0000 1.2825 0.6931 1.6094 0.6931 1.4979 1.1513
0.3466 1.2825 0.0000 1.6836 1.7918 1.6094 2.0554 0.8047
1.9033 0.6931 1.6836 0.0000 1.8568 1.0397 1.3863 1.4452
1.9560 1.6094 1.7918 1.8568 0.0000 1.2825 1.6094 1.9851
1.8568 0.6931 1.6094 1.0397 1.2825 0.0000 1.0397 1.6290
2.2213 1.4979 2.0554 1.3863 1.6094 1.0397 0.0000 2.0302
1.0986 1.1513 0.8047 1.4452 1.9851 1.6290 2.0302 0.0000


.

With this datum set, the Mfile ch3_fmm.m produces the identical results from
the direct product Pd = Aq and the FMM Pf = Aq:

D = Coords: [8x2 double] % (x,y)

Monocharge: [8x1 double] % q vector

Dipcharge: [8x1 double] % ETC not used in this test

example

Pd =[
38.3150 40.0308 32.9442 48.8933 52.6448 46.5842 57.7231 36.5610

]T
,

Pf =[
38.3150 40.0308 32.9442 48.8933 52.6448 46.5842 57.7231 36.5610

]T
.

Secondly we give a rough indication of performance by comparing the CPU;
however, this CPU measure is not an entirely reliable way, as clearly shown
below even with different versions of MATLAB r© to judge performance (due
to MATLAB platform and also CPU alone). Nevertheless, the improvements
are quite evident from the comparison. We shall test the Mfile ch3_fmm.m for
some larger runs on a Pentium IV (1.5 GHz) PC and present the experiments
in Table 3.3. Clearly Table 3.3 demonstrates the superiority of the FMM for
computing y = Ax in a speedy way! Similar observations have been made in
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Table 3.3. Speedup of the FMM for dense matrix-vector products y = Ax.

MATLAB Size N Direct cputime FMM cputime Ratio

version 128 0.200 0.291 0.69
6.5 256 0.911 0.020 45.55

512 5.037 0.050 100.74
1024 29.002 0.080 362.53
2048 186.007 0.110 1690.97

version 128 0.0901 0.0200 4.50
7.0β 256 0.3305 0.0501 6.60

512 2.6338 0.0401 65.75
1024 19.0574 0.0701 271.86
2048 159.8799 0.0801 1995.63

the literature in an abundant number of applications; see the recent work by
[249,247,171,500] and the references therein.

Other matrix-free methods exist in the solution of PDEs in computational
mathematics. Many of these may not be classified in the same category as the
efficient FMM. For example, one may avoid forming large matrices by using
Gauss–Seidel Newton methods and nonlinear iterations in CFD (computational
fluid dynamics) problems, or by using explicit time-marching schemes in time-
dependent PDEs, or by using finite differences to approximate the Jacobian
matrix product y = J x = ∇Fx for a nonlinear algebraic system.

Once a fast method for computing y = Ax is available, an iterative solution
of (1.1) will still require a suitable preconditioner. In normal circumstances, the
near fields information of A are sufficient to find a good preconditioner but in
some extreme cases, more entries of A may have to be available to construct a
preconditioner. This will pose a computational challenge.

3.9 Discussion of software and the supplied Mfiles

The topic of iterative methods is vast. We only gave a selected introduction
here, with a view to use these methods to test preconditioning later.

There are many rich sources of software available. We list a few of these.

(1) http://www.netlib.org/ contains a repository of various software including
those from the template book [41] and the TOMS (Transactions on Math-
ematical Software).
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(2) http://www-users.cs.umn.edu/∼saad/software/SPARSKIT/sparskit.html
contains the Sparskit package for solving sparse linear systems.

(3) http://www.nag.co.uk/ contains some iterative solvers (e.g. in part D03).
(4) http://www.mathworks.com has adopted many iterative solvers in its MAT-

LAB releases (e.g. the GMRES [413] and the BiCGSTAB [464]).
(5) http://www.mgnet.org/ contains many pointers to multigrid- and multilevel-

related work and software.
(6) http://www.ddm.org/ contains many multidomain- and multilevel-related

work and software.
(7) http://web.comlab.ox.ac.uk/projects/pseudospectra/ contains the Oxford

pseudospectra gateway on Mfiles for pseudospectra computing.
(8) http://www.ma.umist.ac.uk/djs/software.html contains a suite of Mfiles for

iterative solution of several types of fluid problems, using the precondi-
tioned conjugate gradient and multigrid methods.

(9) http://www.madmaxoptics.com/ contains software for fast multipole meth-
ods for various simulations (e.g. (3.78)). (The developers are also the pi-
oneers of FMM.) We have already mentioned the particular Mfiles in the
FMM toolbox: fmmcoul2d.m and createsrc2d.m for solving the
simple model (3.78).

This chapter is accompanied by several Mfiles for experimenting iterative
methods.

[1] iter3.m – Implement the three well-known relaxation methods: Jacobi,
GS and the SOR. This Mfile is quite elementary. As remarked in the preface,
typing inter3 alone will invoke the help and usage comments.

[2] gmres_k.m – Implement the basic GMRES(k) as in Algorithm 3.6.17.
This is a moderate Mfile.

[3] gmrest_k.m– Implement the preconditioned GMRES(k) as in Algorithm
3.6.18. This is another moderate Mfile and it is similar to the MATLAB
default Mfile gmres.m, although our Mfile gmres_k is simpler without
the extra checking steps.

[4] gmres_c.m – Implement the complex arithmetic GMRES(k) as in Al-
gorithm 3.7.19. This Mfile is new, as the author is not aware of a similar
algorithm to Algorithm 3.7.19.

[5] intera.m – Illustrate how an interaction list for an FMM can be worked
out for a 2D square domain (as noted, this Mfile is developed jointly with
Dr Stuart C. Hawkins, University of Liverpool, UK).

[6] index2.m – Computes the index list for a node’s near neighbours (suitable
for an FMM in a 2D square domain); as with intera.m, this Mfile is
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also developed jointly with Dr Stuart C. Hawkins, University of Liverpool,
UK.

[7] ch3_fmm.m – A driver Mfile used to call the FMM package (the package
itself is not supplied here) from madmaxoptics; the reader needs to
register (free) directly to download the package: see the web address listed
above.
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Matrix splitting preconditioners [T1]:
direct approximation of An×n

The term “preconditioning” appears to have been used for the first time
in 1948 by Turing [461], . . . . The first use of the term in connection with
iterative methods is found in a paper by Evans [200] . . . in 1968.

Michele Benzi. Journal of Computational Physics, Vol. 182 (2002)

For such problems, the coefficient matrix A is often highly nonsymmetric
and non-diagonally dominant and hence many classical preconditioning
techniques are not effective. For these problems, the circulant precondi-
tioners are often the only ones that work.

Raymond Chan and Tony Chan. Journal of Numerical
Linear Algebra and Applications, Vol. 1 (1992)

In ending this book with the subject of preconditioners, we find our-
selves at the philosophical center of the scientific computing of the
future . . . Nothing will be more central to computational science in the
next century than the art of transforming a problem that appears in-
tractable into another whose solution can be approximated rapidly. For
Krylov subspace matrix iterations, this is preconditioning.

Lloyd Nicholas Trefethen and David Bau III.
Numerical Linear Algebra. SIAM Publications (1997)

Starting from this chapter, we shall first describe various preconditioning
techniques that are based on manipulation of a given matrix. These are classi-
fied into four categories: direct matrix extraction (or operator splitting type),
inverse approximation (or inverse operator splitting type), multilevel Schur
complements and multi-level operator splitting (multilevel methods). We then
discuss the similar sparse preconditioning techniques in the wavelet space.

This chapter will discuss the direct extraction techniques for constructing
Forward Type preconditioners (or operator splitting type). Essentially the
preconditioner M in (1.5), either dense (but structured Section 2.5) or sparse

165
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(and easily solvable), will arise from a direct splitting of A

M = A − C or A = M + C, (4.1)

where M is obtained either algebraically or graphically; in the latter case non-
zeros in M, C do not normally overlap. Specifically we present the following.

Section 4.1 Banded preconditioner
Section 4.2 Banded arrow preconditioner
Section 4.3 Block arrow preconditioner from DDM ordering
Section 4.4 Triangular preconditioner
Section 4.5 ILU preconditioner
Section 4.6 Fast circulant preconditioner
Section 4.7 Singular operator splitting preconditioners
Section 4.8 Preconditioning the fast multipole method
Section 4.9 Numerical experiments
Section 4.10 Discussion of software and Mfiles

4.1 Banded preconditioner

A banded matrix band(α, β) Section 2.5.1, including the diagonal matrix
band(0, 0), provides us with one of the easiest preconditioners. The idea is
widely used. Also one can develop a block version, i.e. a block diagonal matrix
of a banded form with diagonal blocks.

While a banded matrix as a preconditioner can be identified or constructed
easily, some other forms that may be permuted to a banded matrix are also of
interest but harder to identify. We consider a specific class of permutations that
have applications for matrices arising from PDEs and leave the reader with a
Mfile bandb.m for further experiments.

Lemma 4.1.1. Let A be a dense b × b block matrix with k × k blocks. If all the
block entries are in turn in block diagonal form with its blocks having identical
sparsity structures i.e.

diag(Dk1×k1 , · · · , Dk�×k�
),

then matrix A can be permuted to a block diagonal matrix and the permuta-
tion will naturally follow sequential ordering of the corresponding blocks i.e.
A(p, p) is block diagonal with

p = [1, 1 + k, · · · , 1 + (b − 1)k, 2, 2 + k, · · · , 2 + (b − 1)k, · · · ,
k, k + k, · · · , k + (b − 1)k].

The proof will follow from a direct construction. Note that this result is quite
simple from a graphical point of view. However if the exact permutation is
written down, the notation will confuse the ideas (see the quote on page xvi).
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Figure 4.1. Illustration of Lemma 4.1.1 for two examples.

Figure 4.1 considers two examples (using bandb.m) where k = 4, k j ≡ 4 in
the first example with each small block of up to the type band(1, 2) and k =
6, k j ≡ 1 in the second example. Here the second example presents a typical
matrix from using an ADI (alternating direction implicit) method for solving a
PDE using a FDM [386].

The success of a banded preconditioner M = B ultimately depends on the
nature of A. If ‖A − B‖∞ is small or B is dominant in A, such a preconditioner
should be the first choice. For indefinite problems, this is unlikely to be the case
and one good approach seems to achieve such banded dominance in another
transformed space (Chapter 8) where off-diagonal elements (or information
from A − B) are utilized.

4.2 Banded arrow preconditioner

Banded arrow preconditioners represent a slightly more sophisticated version
of a banded preconditioner. As demonstrated in Section 2.5.1, this kind of
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preconditioners are easily invertible.1 Strictly speaking, the type of matrices
that have a dominant banded arrow part is quite limited. Here by a banded
arrow preconditioner, we mean all matrices that can be permuted to possess a
dominant banded arrow part.

Aiming to design a suitable M such that ‖A − M‖ is ‘small’, for some
problems with ‘features’, we can identify a number of rows and columns of
A that must be included in M . Upon permutation, the resulting matrix will
be a banded arrow matrix. In [205], we proposed a method that detects such
nonsmooth local features. It is based on taking the differences of adjacent rows
and columns and taking out those whose vectors norms are relatively larger
than the average. An algorithm can be stated as follows.

Algorithm 4.2.2. (Banded arrow preconditioner).

(1) For matrix An×n, take the differences of adjacent rows and save the 1-norm
of the different vectors (there are (n − 1) of them). Identify those vectors
whose norms are some percentage (say 10%) larger than the average.
Record the corresponding row indices r1, r2, . . . , ra.

(2) Similarly obtain column indices c1, c2, . . . , cb from checking the differences
of all columns.

(3) Optionally combine the row and column indices into a single list for sym-
metric permutation.

(4) Permute matrix A to Ã so that the interested rows and columns are set to
the end.

(5) Use the matrix M from splitting band(α, β, a, b) off Ã as the banded arrow
preconditioner.

It turns out that the algorithm is suitable for at least two problems: (i) BIEs
(Chapter 11) defined over a geometrically singular boundary where large col-
umn variations near the singularities can be detected. (ii) Elasto-hydrodynamic
lubrication modelling (Section 12.5).

4.3 Block arrow preconditioner from DDM ordering

In Section 2.6.3, we have briefly discussed how a DDM ordering (on a
single level and multi-domain discretization) can lead to a globally block

1 In the context of designing preconditioners, one talks about ‘inversion’ in x = M−1 y and in
practice this should be understood as solving Mx = y for x .
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diagonal matrix A with arrow patterns. There are many applications of this
idea. For example, one can design and study iterative substructuring meth-
ods if implementing a DDM approach by a stationary iteration scheme and
using Schur complements (Chapter 7). See [111,432]. As better efficiency is
achieved with multilevel DDM, study and implementation of reliable mul-
tilevel DDM preconditioners lead to many on-going2 research results and
challenges [111,494,432] when one goes much beyond the usual model
problems.

For single level preconditioners’ design, two approaches are of interest.

(1) Block diagonal preconditioners
(2) Block diagonal arrow preconditioners.

Here the first approach may be considered as a special case of (2). However this
approach includes the famous example of red-black ordering and multicolour
ordering methods for PDEs [413,189].

Algorithm 4.3.3. (Multicolour ordering algorithm).

Given a set of nodes {1, 2, . . . , n} of a graph G(A) for a sparse matrix A and
a maximal number � of colours,

(1) Initialize the colour vector c(1 : n) = 0.
for j = 1, 2, . . . , n

(2) Find the list L of adjacent nodes to node j (from Ai j �= 0 and A jk �=
0);

(3) Find the existing colour list C = c(L) of the nodes in L;
(4) Find the smallest colour index l ∈ [1, �] that is not in C;
(5) Set c( j) = l;

end j
(6) Obtain the new order r from ordering vector c sequentially.

We have supplied a Mfile multic.m for experimenting this algorithm.

Example 4.3.4. For the 15 × 15 matrix A (in Table 4.1), we may use
multic.m to work out a new and re-ordered matrix A1 = A(r, r ) that is more
amenable to obtaining a block diagonal preconditioner as shown in Table 4.1.

2 The site http://www.ddm.org provides much useful information on the latest developments on
the subject.
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Table 4.1. Multicolour ordering for a 15 × 15 matrix A
(4 colours).

A =



1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 1 0 0 0 0 0 0 0 0 0 0
1 1 1 0 1 1 0 0 0 0 0 0 0 0 0
0 1 0 1 1 0 1 1 0 0 0 0 0 0 0
0 1 1 1 1 1 0 1 1 0 0 0 0 0 0
0 0 1 0 1 1 0 0 1 0 0 0 0 0 0
0 0 0 1 0 0 1 1 0 1 1 0 0 0 0
0 0 0 1 1 0 1 1 1 0 1 1 0 0 0
0 0 0 0 1 1 0 1 1 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0 1 1 0 1 0 0
0 0 0 0 0 0 1 1 0 1 1 1 1 1 0
0 0 0 0 0 0 0 1 1 0 1 1 0 1 0
0 0 0 0 0 0 0 0 0 1 1 0 1 1 1
0 0 0 0 0 0 0 0 0 0 1 1 1 1 1
0 0 0 0 0 0 0 0 0 0 0 0 1 1 1



,

A1 =



1 0 0 0 0 0 1 0 0 0 1 0 0 0 0
0 1 0 0 0 0 1 1 0 0 0 1 0 1 0
0 0 1 0 0 0 0 0 1 0 1 0 0 1 0
0 0 0 1 0 0 0 1 0 1 0 0 0 0 1
0 0 0 0 1 0 0 0 1 0 0 1 1 0 1
0 0 0 0 0 1 0 0 0 1 0 0 1 0 0
1 1 0 0 0 0 1 0 0 0 1 0 0 1 0
0 1 0 1 0 0 0 1 0 0 0 1 0 0 1
0 0 1 0 1 0 0 0 1 0 0 1 0 1 0
0 0 0 1 0 1 0 0 0 1 0 0 1 0 1
1 0 1 0 0 0 1 0 0 0 1 0 0 1 0
0 1 0 0 1 0 0 1 1 0 0 1 0 1 1
0 0 0 0 1 1 0 0 0 1 0 0 1 0 1
0 1 1 0 0 0 1 0 1 0 1 1 0 1 0
0 0 0 1 1 0 0 1 0 1 0 1 1 0 1



.

The order r =
[

1 4 6 10 12 15 2 7 9 13 3 8 14 5 11

]
, in 4

colour groups (as boxed), is obtained from the usage

>> [r b c] = multic(A,4)

For the second approach, the arrow parts (bottom rows and far right columns)
should be ‘slim’ enough to be comparable to the maximal block size in the main
diagonal.
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We remark that preconditioners resulting from single level domain decom-
position are simple to use but apparently not optimal: if the number of sub-
domains is less, the block preconditioners may be efficient but the block size
is large and it inherits the same (unfriendly) matrix structure as the original
matrix. On the other hand, if the number of subdomains is large, one can see
that the preconditioners will be cheaper but provide increasingly less effective
preconditioning. If using multilevels, then the issues of effective relaxation and
convergence have to be addressed. Although it has been widely recognized to
use a multilevel DDM algorithm as a preconditioner (i.e. not to achieve any
convergence), much research is still needed to assess the overall algorithmic
issues in accelerating a Krylov subspace method.

4.4 Triangular preconditioners

As triangular matrices are easy to invert, using them to precondition (1.1) is
a natural idea to consider. If such a triangular matrix M is extracted from A,
the resulting algorithm is identical to solving the stationary iteration equation
(3.5) (also Section 3.3.1) by another iterative solver (e.g. a Krylov subspace
method)

(I − T )x = M−1b, M = A − N . (4.2)

Using such a M as a preconditioner for solving (1.1) was proposed some
decades ago [201,44]. The proposal makes sense as ‖A − M‖ can be ‘mini-
mized’ if we choose, following (3.9), either M = −L̃ or M = −Ũ . It is not
difficult to propose even a mixed scheme where M is chosen to take values
along a row or a column in a step-by-step and adaptive manner in order to
minimize again ‖A − M‖, i.e. M can take the following form

M =



a11 a12 a13 · · · a1n

a22

a32 a33 · · · a3n
...

. . .

an2
. . . ann

 , (4.3)

which has a dense vector of a decreasing size along its row or column just like
a triangular matrix. Indeed, M can be permuted to a triangular matrix and so
M is easily invertible.
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In the following example, we can split A = M + R as follows

2 5 1 8 6 3
1 7 1 1 1 1
1 −2 2 1 1 1
1 1 4 4 3 8
1 5 6 1 1 3
1 6 5 1 1 3


=



2 5 1 8 6 3
7

−2 2
1 4 4 3 8
5 6 1 3
6 5 3


+


1 1 1 1 1
1 1 1 1
1
1 1
1 1 1



=



1
2 − 131

42 − 11
3 −1 13

6
1
7
1
7

1
2

73
84

37
24

1
4 − 3

4
1
12

− 1
2 1 −1

− 11
21 − 5

6
1
3



−1

+ R,

where one can check that M(r, r ) is triangular with the order r = [1 4 5 6 3 2].
While these triangular preconditioners are simple and inexpensive to apply

(even with a SSOR(ω)-like variant), they cannot give us robustness as it is not
trivial to control ‖A − M‖ unless A is ‘simple’. A generalization of this idea
of triangular preconditioners leads to a class of so-called incomplete LU (ILU)
factorization methods, where we choose M = LU ≈ A but allow L , U to take
values not just at nonzero entries of A directly.

4.5 ILU preconditioners

The ILU type preconditioners are widely used and newer and better variants
frequently emerge [304,66,349,413]. Historically such preconditioners were
proposed for specially structured and positive definite matrices, rather than for
general matrices. Possibly for this reason, while useful, these methods still
have some difficulties in providing robustness and reliability for general and
especially indefinite problems.

� A class of special matrices suited for ILU. Without going into too much
detail, we first present a brief review of classes of special matrices (SPD like)

� M-matrices
� Stieltjes matrices
� H-matrices
� Generalized diagonally dominant matrices (GDD)
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for which ILU preconditioners are suitable and theories are well developed.
Interested readers should consult [28,413,467] for further details of various
sufficient conditions and properties.

Definition 4.5.5. (M-matrix). A matrix A = (ai j ) ∈ R
n×n is called a M-matrix

if ai j ≤ 0 for i �= j and A−1 > 0 (i.e. (A−1)i j > 0).

Definition 4.5.6. (Stieltjes matrix). A matrix A = (ai j ) ∈ R
n×n is called a

Stieltjes matrix if ai j ≤ 0 for i �= j and A is SPD (so aii > 0).

Definition 4.5.7. (H-matrix). A matrix A = (ai j ) ∈ R
n×n is called a H-matrix

if its comparison matrix H = H (A) = (Hi j ) defined by

Hi j =
{ |aii |, i = j,

−|ai j |, i �= j,

is a M-matrix (i.e. H−1 > 0).

Definition 4.5.8. (Generalized diagonally dominant matrix). A matrix A =
(ai j ) ∈ R

n×n is called a generalized diagonally dominant matrix (GDD) if for
some vector x > 0 ∈ R

n [or generalized strictly diagonally dominant matrix
(GSDD) if valid with strict inequality]

|aii |xi ≥
∑
j �=i

|ai j |x j , i = 1, 2, . . . , n.

We highlight some properties on their relationships [28,260]:

� A is SDD via (3.13) =⇒ GSDD
� A is SDD and aii > 0 ∀ i =⇒ A is SPD
� A is GSDD ⇐⇒ A is a H-matrix
� A is monotone i.e. A−1 ≥ 0 ⇐⇒ Ax ≥ 0 implies x ≥ 0
� ai j ≤ 0 for i �= j and A is GSDD =⇒ A is a M-matrix
� ai j ≤ 0 for i �= j and A is SPD =⇒ A is a Stieltjes matrix
� ai j ≤ 0 for i �= j and A is =⇒ All principal minors of A

a M-matrix are positive
� A is a M-matrix in (2.6) =⇒ The Schur complement S

is also a M-matrix



(4.4)

To appreciate that these matrices are special, one may use one additional prop-
erty of a M-matrix, that if ai j ≤ 0 (for i �= j) then A is a M-matrix if and only
if Re(λ(A)) > 0, to see that indefinite matrices are nowhere near a M-matrix.
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� General ILU algorithms. In an implicit manner, the ILU preconditioners
attempt the matrix splitting M with sparse triangular matrices L , U (Lii = 1)

M = LU = A − Ẽ (4.5)

with the aim of finding a lower triangular L and an upper triangular U such that

min
L , U

‖LU − A‖. (4.6)

Although theoretically the optimal L , U may be dense, even for a general sparse
matrix, we can impose some pattern restrictions on L , U to maintain efficiency.
If A is a dense matrix, we may make a suitable threshold on entries of A before
considering an ILU preconditioner.

In practice, one finds that for solving (1.1) using (4.6), it is sometimes ben-
eficial to consider the LU factorization (approximation) of a permuted matrix
P AQ and such permutations P, Q amount to finding a different nodal ordering
(geometrically or algebraically using a matrix graph) for a sparse matrix; see
[189,413].

One simple idea that works remarkably well for some problems is to let L , U
take nonzero values only at the nonzero positions of A, i.e. keep the sparsity
patterns of A and L + U the same. This is the so-called ILU(0) method with no
fill-ins allowed (0-level fill-in). Let S(A) denote the nonzero pattern of indices
in A, e.g. all (i, j) ∈ S(A).

Algorithm 4.5.9. (ILU(0) preconditioner).

To find incomplete L , U factors for a sparse matrix A ∈ R
n×n, use the matrix

B to keep L , U and set initially bi j = ai j

for i = 2, . . . , n
for k = 1, . . . , i − 1 and (i, k) ∈ S(A)

(1) compute the multiplier bik = bik/bkk

for j = k + 1, . . . , n and (i, j) ∈ S(A)
(2) set bi j = bi j − bikbk j

end j
end k

end i

For some tests, the reader may try the supplied Mfile ilu_0.m.
To allow a controlled increase of fill-ins, there exists the ILU(p) precondi-

tioner where p specifies how many levels of fill-ins are permitted [413] but these



4.5 ILU preconditioners 175

methods, while interesting to consider and efficient to implement, do not offer
robustness in term of reliability and fast convergence. Within the same category
of methods, one finds MILU (modified ILU) where any discarded elements on
a row are lumped together and added to the diagonal position of factor U ; see
[296,413] and the many references therein.

We now discuss the more robust ILU preconditioner based on thresholding
namely the ILUT(p, τ ) with p specifying a fixed number of nonzero elements
and τ a threshold tolerance (for discarding small elements).

Algorithm 4.5.10. (ILU(p, τ ) preconditioner).

To find the incomplete L , U factors for a sparse matrix A ∈ R
n×n, use the

matrix B to contain L , U and set initially bi j = ai j

(1) compute the 2-norms of all rows of matrix A and save them in vector v.
for i = 1, . . . , n

(2) Take row i of A and save it in vector w = B(i, :).
for k = 1, . . . , i − 1 and wk �= 0

(3) compute the multiplier wk = wk/bkk

(4) Apply the L threshold: if |wk |/vi < τ , set wk = 0 for this k.
(5) Update row k if going ahead: if wk �= 0, set w = w − wk B(k, :) for

all nonzeros.
end k

(6) Apply the U threshold: if |w j |/vi < τ , set w j = 0 for all j .
Update bi j = w j for up to p largest nonzeros w j ’s in each of the first L

range j = 1, . . . , (i − 1) and the second U range j = i, . . . , n.
end i

If some diagonal elements become too small, it may be necessary to introduce
partial pivoting into the algorithm. To test the algorithm using the supplied
Mfile ilu_t.m, try τ = 0.1 and p = 3.

There have been many recent results on developing block forms of the ILU
type preconditioners suitable for parallel computing [311,67,394] and on more
robust versions that are less dependent on parameters p, τ [66]. The work
[66] is specially interesting as it links the usual idea (of regarding ILU as
an operator splitting) to that of approximate inversions (in studying ILU for
the inverse matrix; see next Chapter) in designing new methods for a suitable
threshold parameter τ . The use of ILU in the Schur complements methods will
be discussed in Chapter 7.
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4.6 Fast circulant preconditioners

The FFT (Section 1.6) method provides one of the fastest techniques for solution
of the Poisson’s equation defined over a rectangular domain [180,Ch.6]. For
other matrix problems from different applications, the same method may be
considered by looking for a circulant approximation M out of matrix A (i.e.
split A = M − N ) and to use M as a ‘dense’ but structured preconditioner.
No matter what a given matrix A is, a circulant matrix M is the easiest matrix
to invert Section 2.5.2 as the complexity is low with FFT. As demonstrated
in Section 2.5.2, circulant matrices (easily diagonalizable by FFT) are also
Toeplitz matrices. For a complete account of fast solvers for Toeplitz problems,
refer to [307].

� Analytical properties of a Toeplitz matrix. The analytical study (in the
vast literature on the topic) of these matrices is usually based on investigating
properties of its generating function for the Toeplitz coefficients (with θ ∈
[0, 2π ])

f (θ ) =
∞∑

k=−∞
hk exp(ikθ ) = lim

n→∞

n−1∑
k=1−n

hk exp(ikθ ) (4.7)

where the function f (θ ) fully defines the Toeplitz matrix with entries

hk = 1

2π

∫ π

−π

f (θ ) exp(−ikθ )dθ,

using its first (2n + 1) coefficients. To constraint the infinite sequence {hk}, we
require it be square summable

∞∑
k=−∞

|hk |2 < ∞

or be absolutely summable in a stronger assumption (or f in the Wiener class)
∞∑

k=−∞
|hk | < ∞, (4.8)

(note
∑ |hk |2 < (

∑ |hk |)2). A Toeplitz matrix is Hermitian iff f is real or
h−k = h̄k . In the Hermitian case, there is a close relationship between λ(Tn)
and f (θ ):

Lemma 4.6.11. ([241,104,250]). Let Tn be any Toeplitz matrix with f from
(4.7) being its generating function in the Wiener class. Then matrix Tn is uni-
formly bounded i.e.

‖Tn‖2 ≤ 2| f |max.
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If Tn is additionally Hermitian, then

λ(Tn) ⊂ [ fmin, fmax].

The proof of the first result requires the result (12.4) i.e. splitting a general
matrix into a Hermitian part plus a skew-Hermitian part (with the latter part
having a factor −i = 1/ i) while the proof of the second result uses the Rayleigh
quotient (2.8) and Fourier series properties.

� Strang’s circulant approximation of a Toeplitz matrix. Strang [439] and
Olkin [373] were one of the earliest to propose the use of a circulant precon-
ditioner for a Toeplitz matrix (see (2.29) in Section 2.5.2) with elements from
the top right to the bottom left

Tn = T (h1−n, h2−n, . . . , h−1, h0, h1, . . . , hn−2, hn−1). (4.9)

The Strang approximation of Tn is the following

c j =
{

h j , j ≤ n/2,

h j−n, j > n/2,
j = 0, 1, . . . , n − 1,

to construct the circulant matrix

Cn =



c0 cn−1 cn−2 · · · c1

c1 c0 cn−1
. . . c2

c2 c1 c0
. . . c3

...
. . .

. . .
. . .

...

cn−1 cn−2 cn−3
. . . c0


(4.10)

Such a preconditioner C satisfies the optimality [104]

min
C :circulant

‖C − T ‖1 = ‖Cn − Tn‖1 and min
C :circulant

‖C − T ‖∞ = ‖Cn − Tn‖∞.

However the approximation using such a C to approximate T might be known
much earlier [250,241] (though not used for preconditioning) but the precise
theory for the preconditioned matrix C−1T (i.e. the eigenspectra of C−1T clus-
ter at 1 for large n) was established much later (see the references in [104,250]).

� T. Chan’s circulant approximation of a Toeplitz matrix. While the
Strang’s preconditioner Cn aims to approximate the middle bands of matrix Tn

well (optimal in 1-norm and ∞-norm), the T. Chan’s preconditioner achieves
the F-norm optimality

min
C :circulant

‖C − T ‖F = ‖Cn − Tn‖F , (4.11)
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and involves all the subdiagonals

c j = jh j−n + (n − j)h j

n
, j = 0, 1, . . . , n − 1, (4.12)

to construct the matrix Cn as in (4.10). Note (4.12) can be written in a convenient
vector form (root vector of Cn)


c0

c1
...
cn−1

 = 1

n
w ·


0
a1−n

a2−n
...
a−1

 + 1

n
(1 − w) ·


a0

a1

a2
...
an−1

 , w =


0
1
2
...
n − 1

 .

It is worth noting that the T. Chan’s circulant preconditioner, taking the
form,

c� = 1

n

n∑
j=1

a[( j+�−1)mod n]+1, j for � = 0, 1, . . . , n − 1 (4.13)

is also optimal in F-norm approximation for a general non-Toeplitz matrix
A = (akj ). Here the operator mod, though simple at stand-alone, is often con-
fusing in many mathematical contexts; here in MATLAB r© command notation,
the first index in (4.13) should read 〈 j + � − 1〉n + 1 =mod( j + � − 1, n) + 1.
When matrix A is Toeplitz, formula (4.13) reduces to (4.12). There exist a large
collection of research papers that are devoted to developing circulant related
dense preconditioners for matrices arising from discretizing a PDE (elliptic,
parabolic and hyperbolic types); see [104] and the references therein. Of par-
ticular interest is the addition of a small quantity of magnitude ρn−2 onto
the diagonals of the circulant approximation to improve the conditioning of
the preconditioned system C−1 A — a trick used by many numerical methods
(modified ILU, stability control in time-stepping methods, viscosity methods
for hyperbolic equations).

Both the Strang’s and T. Chan’s preconditioners are illustrated in the supplied
Mfile circ_pre.m, which the reader may use to approximate other non-
Toeplitz matrices as long as its first row and column are ‘representative’ of the
overall matrix (e.g. when the underlying matrix A arises from discretization
of a constant coefficient PDE). In the default examples of circ_pre.m, one
can observe that the Strang’s preconditioner C approximates A better than T
Chan’s in the Toeplitz example 1 but for the second PDE example, the T. Chan’s
preconditioner is better and the Strang’s preconditioner happens to be singular
for this case. Of course, the second application is far beyond its original usage for
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a Toeplitz context. A general theory with precise conditions for preconditioners
(based on other norms) e.g.

min
C :circulant

‖I − C−1T ‖F or min
C :circulant

‖I − C−1/2T C−1/2‖F

are discussed in [104,289,462,310].
We also remark that while FFT can diagonalize a circulant matrix, other

noncirculant (but circulant like) matrices must be diagonalized by other fast
transforms At = W T AW including

Fast sine transform (DST I) W jk =
√

2

n + 1
sin

(
jkπ

n + 1

)
,

Fast cosine transform (DC T II) W jk =
√

2ck

n
cos

(
( j − 1/2)(k − 1)π

n

)
,

Fast Hartley transform W jk = 1√
n + 1

[
sin

(
2( j − 1)(k − 1)π

n + 1

)
+ cos

(
2( j − 1)(k − 1)π

n + 1

)]
,

(4.14)

where 1 ≤ j, k ≤ n, c1 = 1/2 and ck = 1 for k > 1. Note that both since and
cosine transforms have other variants [393,484,440] including

(DC T I) W jk =
√

2c j ckcn+1− j cn+1−k

(n − 1)
cos

(
( j − 1)(k − 1)π

n − 1

)
, (4.15)

(DST II) W jk =
√

2cn+1−k

n
sin

(
( j − 1/2)(k − 1)π

n

)
, (4.16)

(DC T III) W jk =
√

2c j

n
cos

(
( j − 1)(k − 1/2)π

n

)
, (4.17)

(DC T IV) W jk =
√

2

n
cos

(
(2 j − 1)(2k − 1)π

4n

)
. (4.18)

Refer to [441,104,440,393] and experiment with the supplied Mfile
schts.m.

� Geometry-induced circulant matrix. In the literature, often, the reader
meets beginning statements like ‘let us consider the solution of a Fredholm
integral equation of the convolution type’ (as in Section 2.5.2) and may feel
helpless as any real life problem is harder than this idealized (or contrived)
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model problem. Indeed this is true. It is therefore instructive to look at spe-
cific situations where such an equation is ‘born’ naturally. These situations turn
out to be associated with simple geometries and simple kernel functions and
we shall make full use of this observation. For complex geometries, by using
geometric embedding techniques, we try to design an operator splitting that
gives rise to a convolution part for preconditioning purpose. For very complex
kernel functions, we split the kernel function to produce a convolution operator
again for preconditioning purpose. In either case, we arrive at a circulant pre-
conditioner. We give a few examples below and the intention is that the reader
will be sufficiently motivated to think about this clever technique whenever
applicable.
Boundary integral operators. All boundary integral operators of practical use
appear to possess a convolution kernel (of some function of r = |p − q|) in
the physical domain but not normally the computational domain. In fact, both
the Jacobian function J and the distance function (depending on the boundary
geometry) can ruin the convolution setting: J is not of convolution type unless
it is a constant and r is not of convolution type unless the boundary is special.
Therefore one way to seek a circulant preconditioner is to take a nearby domain
whose boundary can be mapped to an interval [a, b] in 1D or [a, b] × [c, d] in
2D to ensure the Jacobian to be constant and the kernel to remain a convolution
type. In 1D, the only boundary satisfying these requirements is the familiar
circle 
c because with


c :

{
x = x(t) = a cos(t),
y = y(t) = a sin(t),

0 ≤ t ≤ 2π,

J =
√

x ′(t)2 + y′(t)2 = a is a constant and the kernel stays convoluting

|p − q| = a
√

(cos(s) − cos(t))2 + (sin(s) − sin(t))2 = a
√

2(1 − cos(s − t))

= a

√
4 sin2(

s − t

2
) = 2a

∣∣∣ sin(
s − t

2
)
∣∣∣. (4.19)

Although domain embedding (similar to the so-called capacitance matrix
method [84,391]) is an analytical and numerical technique in its own right,
we may use domain embedding in the general sense to approximate the bound-
ary 
. The mathematical statement is the following

min

c

max
p∈


∣∣∣∣∫



k(p, q)u(q)dS(q) −
∫


c

k(p, q)u(q)dS(q)

∣∣∣∣
Here 
c does not have to enclose 
 (especially when 
 is polygonal). Once
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c is identified, one may construct a circulant preconditioner from discretizing∫

c

k(p, q)u(q)dS(q) directly.
Kernel function splitting. Consider the example of the single layer operator
(1.73) in 2D (for either the Laplacian (1.72) or the Helmholtz case) that
admits

−2π

∫
∂�

K (p, q)ψ(q)dSq =
∫

∂�

log |p − q|ψ(q)dSq +
∫

∂�

R1(p, q)ψ(q)dSq

= J̄
∫ 2π

0
log |s − t |ψ(t)dt +

∫ 2π

0
log |s − t |(J (t) − J̄ )ψ(t)dt (4.20)

+
∫ 2π

0
log

√
(
x(s) − x(t)

s − t
)2 + (

y(s) − y(t)

s − t
)2 J (t)dt

+
∫ 2π

0
R1(s, t)ψ(t)J (t)dt =

∫ 2π

0
log |s − t |ψ(t)dt +

∫ 2π

0
R2(s, t)ψ(t)dt .

Here J̄ denotes a constant that approximates the Jacobian J (t), R1 and R2

combined other terms together. Clearly the first part in the last equation of
(4.20), of convolution form, will lead to a circulant matrix. In view of (4.19) for
a circular boundary, one may rewrite the above splitting differently to associate
with a circulant boundary case

−2π

∫
∂�

K (p, q)ψ(q)d Sq = J̄
∫ 2π

0
log

∣∣∣∣sin
s − t

2

∣∣∣∣ ψ(t)︸ ︷︷ ︸
mimic a circulant ∂�

dt

+ J̄
∫ 2π

0
log

|s − t |∣∣sin s−t
2

∣∣ψ(t)dt +
∫ 2π

0
R3(s, t)ψ(t)dt,

(4.21)

as done in [497] and the references therein.
Wiener–Hopf equations. The half line Wiener–Hopf integral equation

u(s) +
∫ ∞

0
k(s − t)u(t)dt = f (s), 0 ≤ s < ∞, (4.22)

with k(t) ∈ L1(R) and f ∈ L2(R+), arises from many applications. The usual
discretization is on the finite section equation [121]

uτ (s) +
∫ τ

0
k(s − t)uτ (t)dt = f (s), 0 ≤ s ≤ τ. (4.23)
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Here the approximated finite section operator can be written as

(Aτ u)(s) =
{∫ τ

0 k(s − t)u(t)dt, 0 ≤ s ≤ τ,

0, t > τ.

A circulant integral operator suitable for preconditioning is defined by

(Cτ u)(s) =
∫ τ

0
cτ (s − t)u(t)dt, 0 ≤ s ≤ τ, (4.24)

where cτ is periodic and conjugate symmetric (to be specified below)

cτ (s + τ ) = cτ (s) and cτ (−s) = cτ (s), −τ ≤ s ≤ τ.

Then Cτ is a compact and self-adjoint operator in L1[−τ, τ ] and the following
preconditioned equation may be proposed [225]

(I + Cτ )−1(I + Aτ )uτ (s) = (I + Cτ )−1 f (s), 0 ≤ s ≤ τ, (4.25)

with the spectra of the circulant preconditioned operator (I + Cτ )−1(I + Aτ )
clustered at 1 due to the compactness of Aτ and the convergence of Cτ − Aτ →
0 as τ → ∞. (See Lemma 4.7.12).

The construction of Cτ follows a continuous analog of the Strang and T.
Chan Toeplitz preconditioners, yielding two methods

(C1u)(s) =


∫ τ

0
sτ (s − t)u(t)dt, 0 ≤ s ≤ τ,

0, t > τ.

sτ (t) = k(t), −τ/2 ≤ t ≤ τ/2,

(C2u)(s) =


∫ τ

0
cτ (s − t)u(t)dt, 0 ≤ s ≤ τ,

0, t > τ.

cτ (t) = τ − t

τ
k(t) + t

τ
k(t − τ ), −τ/2 ≤ t ≤ τ/2.

(4.26)

Similar development for constructing a circulant preconditioner has also been
carried out for the case of non-convoluting kernels [104].

4.7 Singular operator splitting preconditioners

Circulant preconditioners can be computed or inverted in O(n log n) operations
using FFT and they are the definite ones to consider if the underlying operator
is weakly singular. For strongly singular operators or operators with geometric
singularities or for higher dimensional problems (say 3D), approximation based
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circulant preconditioners will not work as singularities must be separated to
recover compactness.

We now consider how to develop operator splitting preconditioners, that are
simple and can be inverted in O(n) operations, for singular integral equations.
Operator splitting is a widely used technique in solving singular BIEs; see
[127,128,285,497] and the references therein. There are two main approaches.
Both make use of the following elementary lemma (from functional analysis).

Lemma 4.7.12. Let linear operators A and C be defined in a normed space
with A bounded and C compact. Then

1. operator A−1C is also compact;
2. operator D = A − C has a bounded inverse if D is injective.
3. from property 1, D = A(I − A−1C) is bounded provided λ(A−1C) �= 1.

The first splitting approach (similar to the previous section) is based on ex-
panding the singular kernel into a principal term of simple forms and a smooth
part of remaining terms, giving rise to two splitting operators: the latter part
gives rise to a compact operator while the former to a bounded operator. Fur-
ther because of the simple forms in the kernel, fast algorithms (e.g., the FFT;
see [104] and [497]) are used to invert the former operator which serves as a
preconditioner.

Here we apply the second idea of operator splitting, previously used in
[127]. This is based on domain decomposition rather than domain embedding
or kernel decomposition. Let � ∈ R

2 denote3 a closed domain that may be
interior and bounded, or exterior and unbounded, and 
 = ∂� be its (finite part)
boundary that can be parameterized by p = (x, y) = (x(s), y(s)), a ≤ s ≤ b.
Then a boundary integral equation that usually arises from reformulating a
partial differential equation in � can be written as

αu(p) −
∫




k(p, q)u(q)d
 = f (p), p ∈ 
, (4.27)

or

αu(s) −
∫ b

a
k(s, t)u(t)dt = f (s), s ∈ [a, b], (4.28)

i.e., simply,

(α I − K)u = f. (4.29)

3 The 3D case can be described similarly; see [16,131,15].
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Here u may be a density function; see [16,24]. We do not assume that α �= 0
so our methods will work for both first and second kind boundary integral
equations of the Fredholm type. For the latter type, α = 1/2 at smooth points
on 
. We assume that K is the full operator (not just a principal part); for the
Helmholtz equation this refers to the unique formulation which is valid for
all wavenumbers (see [16] and Chapter 11). To solve the above equation nu-
merically, we divide the boundary 
 (interval [a, b]) into m boundary elements
(nonintersecting subintervals Ii = (si−1, si )). On each interval Ii , we may either
approximate the unknown u by an interpolating polynomial of order τ that leads
to a collocation method or apply a quadrature method of τ nodes and weights wi ,
that gives rise to the Nyström method. Both discretization methods approximate
(4.29) by

(α I − Kn)un = f, (4.30)

where we can write

Knu = Knun =
m∑

j=1

[
τ∑

i=1

wi k(s, t ji )u ji

]
, un(t ji ) = u(t ji ) = u ji , and n = mτ.

We use the vector u to denote u ji ’s at all nodes. By a collocation step in (4.30),
we obtain a linear system of equations

(α I − K )u = f , or Au = f , (4.31)

where matrices K and A are dense and unsymmetric (in general). The condition-
ing of A depends on the smoothness of kernel function k(s, t). A strong singular-
ity (as t → s) leads to noncompactness of operatorK and consequently the iter-
ative solution of (4.31) requires preconditioning. [a, b] = ⋃m

i=1 Ii . Accordingly
we can partition the variable u and vector u as follows: u = (u1, u2, . . . , um)T

and u = (u1, u2, . . . , um)T . Similarly writing the operator A in matrix form,
we obtain the splitting A = αI − K = D − C with D = I + K) and

K =



K1,1 K1,2 K1,m

K2,1 K2,2 K2,3

K3,2
. . .

. . .
. . .

. . . Km−1,m

Km,1 Km,m−1 Km,m

 .

Observe that all singularities of A are contained in the above operator and
so the smooth operator C is compact. Note also that, after discretization, the
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corresponding matrix out of K is

K =



K1,1 K1,2 K1,m

K2,1 K2,2 K2,3

K3,2
. . .

. . .
. . .

. . . Km−1,m

Km,1 Km,m−1 Km,m

 .

Also define matrix B = α I − K and C = K − K . Then from the above lemma,
it can be shown that the operator D is bounded. Since the operator B−1C is
also compact, we can use P = D as an operator preconditioner and P = B
as a matrix preconditioner. Note that in [127] we propose a small ε based
decomposition to define a minimal operator splitting that corresponds to a
diagonal preconditioner for special cases.

Thus the solution of Au = f is reduced to that of P−1 Au = P−1 f , i.e.,
[I − P−1C]u = P−1 f . Here B is in general a block quasi-tridiagonal matrix
and the solution of Bx = y is via B = LU , where L , U are of the same spar-
sity structure as B apart from the last row of L and the last column of U ;
see [17,128].

We remark that our techniques of constructing P , for singular operators,
may be viewed as efficient regularization methods. Therefore from properties
of compact operators, the preconditioned matrix (I − P−1C) and its normal
matrix should have most of its eigenvalues clustered at 1. Many other sparse
preconditioners (e.g. approximate inverses [253] (or Chapter 5), ILU type pre-
conditioners) do not possess the latter property of the normal matrix having
clustered eigenvalues because of the unsymmetric nature of the matrix (where
λ(P−1 A) and σ (P−1 A) are not related).

For the case of nonsmooth boundaries, one can adjust the operator splitting
accordingly to include the singularities in D; see [132,420].

4.8 Preconditioning the fast multipole method

The FMM as introduced in Section 3.8 provides a fast and matrix-free method
to compute y = Ax . As matrix A is not accessible and only a ‘banded’ part
of A (falling into near fields) are computed, the natural way to precondition
equation (1.1) is to accept this natural splitting to define a preconditioner
[240,365].

Fortunately for many problems where the FMM is applicable, the underlying
kernel function is singular so the near fields defined operator splitting provides
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a sufficient preconditioner. In fact, the full near fields may not be needed; see
Section 5.8.

However for non-singular kernels or even smooth kernels (associated with
infinite problems) [96], it remains a challenge to design an efficient FMM while
extracting enough far field preconditioning information (that is normally not
available). A related situation is to how to design a suitable FMM with proper
preconditioners for oscillating kernels when oscillating basis functions are used
e.g. [121,387].

4.9 Numerical experiments

To demonstrate some of the algorithms presented, we set aside four test
matrices (supplied as matrix0.mat, matrix1.mat, matrix2.mat,
matrix3.mat respectively)

(1) Matrix 0 with γ = 1/4 and Matrix 1 with γ = 1: The problem arises
from discretizing an indefinite PDE with coefficients similar to other ‘hard’
problems in [411]

−
(

γ + sin 50πx

2

)
uxx −

(
γ + sin 50πx sin 50πy

2

)
uyy

+ 20 sin 10πx cos 10πyux − 20 cos 10πx sin 10πyuy − 20u = f (x, y),
(x, y) ∈ [0, 1]2.

(2) Matrix 2: This test matrix comes from solving the PDE

(a(x, y)ux )x + (b(x, y)uy)y + ux + uy = sin(πxy),

with discontinuous coefficients defined as [116,483,107]:4

a(x, y) = b(x, y) =


10−3 (x, y) ∈ [0, 0.5] × [0.5, 1]
103 (x, y) ∈ [0.5, 1] × [0, 0.5]
1 otherwise.

(3) Matrix 3: This is a complex matrix arising from using piecewise constants
to discretize the boundary integral equation (1.82) i.e.

−1

2
u + Mku + αkNku = g (known),

on a boundary (a generalized peanut shape) as described in [205].

4 We thank W. L. Wan [483] for providing the original test data from the work [116], from which
the second problem is extracted.
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Figure 4.2. GMRES(50) results (t_dete.m) comparing banded arrow precondi-
tioners with ILU preconditioners for Problem 1, which is mildly indefinite. With the
help of detect.m, ILU(0) works fine. For matrix0, none of the four methods
will work.

To test the effectiveness of Algorithms 4.2.2 and 4.5.10 when used with
GMRES, we compare them with the unpreconditioned case and show some
results in Figures 4.2–4.4. Clearly one observes that ILUT performs the best
for problems which is not indefinite. The detection algorithm via detect.m
may help an ILUT preconditioner as well as operator splitting types. The exact
Mfiles used are given as t_band.m and t_dete.m.

4.10 Discussion of software and the supplied Mfiles

This chapter discussed the traditional forward type preconditioners with the
operator splitting ones problem-dependent and ILU-related ones widely used.
Many codes exist. The MATLAB default command luinc implements sev-
eral variants of the ILU method. Efficient Fortran codes can be found in the
following.
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Figure 4.3. GMRES(50) results (t_band.m) comparing banded arrow precon-
ditioners with ILU preconditioners for Problem 2. Discontinuity alone presents no
problems with the ILUT preconditioner while no preconditioning (‘*’) does not
work.

� The Sparskit package:

http://www-users.cs.umn.edu/∼saad/software/SPARSKIT/sparskit.html

or directly ftp : //ftp.cs.umn.edu/dept/sparse/

� The ILUM package:

http : //cs.engr.uky.edu/∼jzhang/bilum.html

This book has supplied the following Mfiles for investigation.

[1] banda.m – Extract a banded arrow matrix for preconditioner. Both the
diagonal and the bordering bands are allowed to vary.

[2] bandb.m – Extract a banded block matrix for preconditioner. Both the
bandwidths and the block size are allowed to vary.

[3] bandg.m – Extract a far-field banded block matrix for preconditioner.
(For the five-point Laplacian, this can extract the other far-field entries
corresponding to the other derivative.)



4.10 Discussion of software and the supplied Mfiles 189

20 40 60 80 100 120 140 160 180 200
Cgce steps

R
es

id
ua

ls

10
0

10
−1

10
−2

10
−3

10
−4

10
−5

10
−6

Complex BIE matrix

Figure 4.4. GMRES(50) results (t_dete.m) comparing banded arrow precon-
ditioners with ILU preconditioners for Problem 3.

[4] circ_pre.m – Illustrate how the Strang and T Chan’s approximations
work for a Toeplitz matrix. The methods are also tested for a general
matrix.

[5] detect.m – Detect locations of large features in a matrix for use in
banda.m.

[6] t_band.m and t_dete.m – Two driver mfiles for testing the data files:
matrix0.mat, matrix1.mat, matrix2.mat, matrix3.mat
to display results in the format of Figures 4.2–4.4.

[7] ilu_0.m – Implement the Algorithm 4.5.9 for computing the ILU(0)
preconditioner. (The same ILU factorization can also be obtained from
the MATLAB command luinc.)

[8] ilu_t.m – Implement the Algorithm 4.5.10 for computing the ILU
preconditioner by thresholding.

[9] multic.m – Implement the multicolour ordering Algorithm 4.3.3 for a
permutation vector.

[10] schts.m – Illustrates various fast since/cosine transforms and their
property of diagonalization of special matrices.
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We comment that if a reader has a different matrix to be tested, it is only a
matter of commenting out the line relating to load of a matrix A to enable a
new matrix to be used.

Finally although ILU is the well-known choice for preconditioners, it should
be remarked all incomplete factorizations might be developed for precondition-
ing purpose, e.g. the QR factorization [37] and the LQ factorization [411] (with
LQ mimicking the transpose of QR).



5

Approximate inverse preconditioners [T2]:
direct approximation of A−1

n×n

In the last few years we have studied preconditioning techniques based
on sparse approximate inverses and have found them to be quite effective.

B. Carpentieri, et al. SIAM Journal on Scientific Computing,
Vol. 25 (2003)

The objective is to remove the smallest eigenvalues of A which are known
to slow down the convergence of GMRES.

Jocelyne Erhel, et al. Journal of Computational and Applied
Mathematics, Vol. 69 (1996)

The most successful preconditioning methods in terms of reducing the
number of iterations, such as the incomplete LU decomposition or
symmetric successive relaxation (SSOR), are notoriously difficult to im-
plement in a parallel architecture, especially for unstructured matrices.

Marcus J. Grote and Thomas Huckle. SIAM Journal on Scientific
Computing, Vol. 18 (1997)

This chapter will discuss the construction of Inverse Type preconditioners (or
approximate inverse type) i.e. for equation (1.2)

M Ax = Mb

and other types as shown on Page 3. Our first concern will be a theoretical
one on characterizing A−1. It turns out that answering this concern reveals
most underlying ideas of inverse type preconditioners. We shall present the
following.

Section 5.1 How to characterize A−1 in terms of A
Section 5.2 Banded preconditioner
Section 5.3 Polynomial pk(A) preconditioners
Section 5.4 General and adaptive SPAI preconditioners

191
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Section 5.5 AINV type preconditioner
Section 5.6 Multi-stage preconditioners
Section 5.7 The dual tolerance self-preconditioning method
Section 5.8 Mesh near neighbour preconditioners
Section 5.9 Numerical experiments
Section 5.10 Discussion of software and Mfiles

5.1 How to characterize A−1 in terms of A

Computing A−1 exactly is a harder job than solving (1.1) in general. However,
to solve (1.1) efficiently, we have to think about ways of estimating A−1 (as
A−1 provides the ultimate preconditioner) while falling short of computing
A−1 directly. We now address the question of characterizing A−1 in terms of
the given matrix A, before considering any specific method. We first discuss
the general approaches and then the subsequent applications in preconditioners’
design. In line with the general notation in the literature, we shall use S(A) to
denote the sparsity (nonzeros’) pattern of matrix A and we are interested in
S(A−1) or S(|A−1| > ε) for some ε if S(A−1) is dense.

� Cayley–Hamilton theorem. We first identify a spanned Krylov-like sub-
space where A−1 lies. Using the Cayley–Hamilton theorem, matrix A satisfies
the characteristic polynomial

An + an−1 An−1 + · · · + a1 A + a0 I = 0. (5.1)

Hence, if A is non-singular, multiplying A−1 to (5.1) gives

A−1 ∈ span(I, A, A2, . . . , An−1). (5.2)

In terms of characterizing the sparsity pattern, we get

S(A−1) ⊆ S
(
(I + A)n−1

)
. (5.3)

Similarly applying the same idea for the normal matrix AT A as in [290,147],
yielding

A−1 ∈ span
(

AT , (AT A)AT , (AT A)2 AT , . . . , (AT A)n−1 AT
)
. (5.4)

The association of S(A−1) with S(AT ) may not always be a good idea because
S(A−1) = S(AT ) if A is orthogonal (or diagonal) and S(A−1) �= S(AT ) if A is
triangular.
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Having narrowed down the choices, the above results have not yet made the
job of computing A−1 much easier. One hopes for such a subspace to be much
smaller and definitely to remove the need of having to compute up to An−1.

� Neumann’s series approach. An alternative way of expressing A−1 is to
use the geometric series for ρ(B) < 1 (refer to Theorem 3.3.1)

(I − B)−1 = I + B + B2 + B3 + · · · (5.5)

assuming either

(1) B = I − A, A−1 = (I − (I − A))−1 = (I − B)−1 or
(2) B = I − A/ω, A−1 = ω (I − (I − A/ω))−1 = (I − B)−1 for some scalar

constant ω.

Here we note that to find sufficient conditions for the assumption ρ(B) < 1
to be valid, we require A be definite (i.e. �(λ(A)) be of the same sign which
includes both positive definite or negative definite cases) due to the counter
examples

A1 =
−0.5

0.2
−0.5

 for (1) and A2 =
 1 −1

−1 1 −1
−1 1

 for (2),

because ‖A1‖ < 1, ρ(A1) < 1 but ρ(B) = ρ(I ± A1) > 1, and ρ(A2/100) <

1 but ρ(B) = ρ(I ± A2/100) > 1.

Lemma 5.1.1. If A is a definite matrix, then there exists a scalar constant ω

such that ρ(B) < 1 for B = I − A/ω.

Proof. Without loss of generality, assume the real parts of eigenvalues of
A ∈ R

n×n are negative i.e. �(λ(A)) < 0. Let A = U T DU be the Schur decom-
position with D j j = λ j . Consider bounding the eigenvalues of B̄ = I − D

ω
.

Following the simple relationship (ω j ∈ R)∣∣∣∣1 − �(λ j ) + i�(λ j )

ω j

∣∣∣∣ < 1 ⇐⇒ ω j < − |λ j |2
2|�(λ j )| ,

we choose ω = min j ω j to ensure that ρ(B̄) < 1. Hence

B = I − A

ω
= U T (I − D

ω
)U = U T B̄U

satisfies ρ(B) = ρ(B̄) < 1.

We emphasize the fact that whenever ρ(I − A/ω) �< 1 (even if ρ(A) < 1),
one cannot rely on the Neumann’s series to provide a way for polynomial
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preconditioning as (5.5) does not converge. This point is clearly stated in [375,
p. 14]: This (Neumann polynomial) method will be effective if the spectral radius
of C D−1 is less than one. Note that in [375] a diagonal scaling D = diag(A)
is first applied to A before using considering the Neumann’s series; for the
above example of A2, such a scaling is not sufficient while it is effective for
matrix A1. A more general splitting of A = M − N is studied in [187] where
the Neumann’s series is applied to M−1 A = I − M−1 N ; however we must
require ρ(M−1 N ) < 1 for the series to converge. In theory, there exists M (e.g.
M ≈ A; see Remark 5.1.2) such that ρ(M−1 N ) < 1 and both the inverse A−1

and its ‘sparsity’ pattern can be established from

A−1 = (I − M−1 N )−1 M−1 =
∞∑
j=0

(
M−1 N

) j
M−1. (5.6)

As far as sparsity patterns are concerned, the pattern S(M−1) may be very close
to be dense and higher powers of M−1 N increase the density of nonzeros in
S(A−1) e.g. if M is triangular, so is M−1 and if M is tridiagonal, then M−1 is
dense.

In practice, the general difficulty of obtaining a converging splitting A =
M − N , as shared by the task of constructing a preconditioner, lies in finding a
simple and computationally efficient M . The idealized case is when M−1 N is
sparse while (M−1 N ) j decays to zero very quickly as j → ∞ so we can take
a small number of terms in (5.6) in accurately approximating A−1 and equally
we can take

S(A−1) ⊂ S
(
(I + M−1 N )m

)
, with m small, say m = 2. (5.7)

This section provides some guides on approximating A−1 as summarized below.

Remark 5.1.2.

(1) Polynomials up to high powers of A (nearly dense in general) always pro-
vide good approximations for A−1 and its ‘sparsity pattern’ – this property
is not useful. To put in another way, the difficult preconditioning case will
be when, for any small m,

S(A−1) �⊆ S
(
(I + A)m

)
.

(2) Polynomials up to low powers of A (nearly sparse in general even for dense
matrices1) often provide good approximations for A−1 and its ‘sparsity
pattern’ – this property is used in Section 5.3 for constructing a Chebyshev

1 Assume a dense matrix is sparsified first. That is, we consider A−1
o instead of A−1 with A =

Ao + E and E is ‘small’. See [147].
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polynomial preconditioner and in Section 5.4 for an approximate inverse
preconditioner with polynomial guided patterns.

(3) The use of polynomials up to low powers of A to generate a priori sparsity
patterns is known to be sensitive to scaling. This is much related to a possibly
slow or no convergence of a Neumann’s series. We anticipate that more
work [190,191,340] towards scaling techniques will improve the inverse
type preconditioners.

(4) The assumption of a convergent splitting A = M − N , with both M and
M−1 sparse as well as ρ(M−1 N ) < 1, may not be necessarily reasonable.
To some extent, this is equivalent to assuming the existence of a suitable
preconditioner of the forward type and then constructing an inverse type
preconditioner!

Other methods of approximating A−1 will either be more problem dependent
or arise from rewriting the forward types as inverse types i.e. from P A = LU
to A−1 PT = U−1L−1 (§ 5.5).

5.2 Banded preconditioner

First we consider the special case where A is a block tridiagonal matrix with
diagonal block dominance [179,351]. It is known that the inverse of such a
matrix has off-diagonal elements exponentially decaying away from the main
diagonal.

A banded matrix band(α, β) Section 2.5.1, including the tridiagonal matrix
band(1, 1), will be a suitable preconditioner of the inverse type. The procedure
of computing M will follow from Section 5.4.2.

5.3 Polynomial preconditioner pk(A)

We first remind ourselves that, unless a matrix A is suitably scaled, low-order
polynomial preconditioners (based on the Neumann’s series) do not necessarily
work for any matrix. When a converging Neumann’s series can be obtained
(Section 5.1), we can relate it to low order polynomial preconditioners which
in turn are linked to finding the best polynomial preconditioners. This is where
Chebyshev polynomials come in. (A word of warning once again: as we have
clearly stated, low order polynomials are not always the right thing to use so
any blame on Chebyshev polynomials alone in this context is not justified.)

Once the best (low kth degree) polynomial of the inverse type M = pk(A)
is targeted as our preconditioner i.e.

pk(A)Ax = pk(A)b or Apk(A)y = b, x = pk(A)y, (5.8)
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with the preconditioner

pk(A) = ck Ak + cn−1 Ak−1 + · · · + c1 A + c0 I, (5.9)

the selection problem for a diagonalizable matrix A = X DX−1 (see (3.64))
becomes

find pk ∈ Pk :


min

M
‖I − M A‖∞ = min

pk

‖I − pk(A)A‖∞

≤ κ(X ) min
pk

max
λ∈�(A)

|1 − pk(λ)λ|
= κ(X ) min

qk+1∈Qk+1

max
λ∈�(A)

|qk+1(λ)| ,
(5.10)

where Qk+1 is as defined previously in (3.40) and (3.64). It should be remarked
that there do not appear yet to have existed any direct solutions of this min–max
problem (as in Section 3.4).

For a fixed integer k, to use Chebyshev polynomials to find a solution to
(5.10), we have to replace the discrete set �(A) by a much larger and continuous
set E . Although the Chebyshev approach can allow �(A) to have a complex
spectrum [257,309,410] (where we would enclose �(A) by an ellipse domain),
we restrict ourselves to the real case; let �(A) ⊂ E = [α, β]. Then (5.10) is
enlarged to

find qk+1 ∈ Qk+1 :

 min
M

‖I − M A‖∞
≤ κ(X ) min

qk+1∈Qk+1

max
λ∈E

|qk+1(λ)| , (5.11)

which has the solution (t ∈ [α, β]; see (3.45))

qk+1(t) = Tk+1

(
β + α − 2t

β − α

)/
Tk+1

(
β + α

β − α

)
,

if α > 0 or A is SPD. Thus our polynomial preconditioner pk(A) will use the
coefficients of

pk(t) = 1 − qk+1(t)

t
. (5.12)

Then it is only a matter of algebraic manipulation to turn the three-term recursion
(3.45) for Tk into one for generating pk, qk+1 (or computing y j = pk(A)Av j )
recursively [410,413]. Clearly from the three-term recursion Tj+1 = 2tTj (t) −
Tj−1(t) with T0 = 1, T1(t) = t , we see that (q0(t) = 1)

q1(t) = β + α − 2t

β − α

/
β + α

β − α
= 1 − 2t

β + α
and p0(t) = 1 − q1(t)

t
= 2

β + α
.

(5.13)
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Below we use the recursion of q j ’s to derive similar formulae for p j =
(1 − q j+1(t))/t . Defining θ = (β + α)/2, δ = (β − α)/2, we can rewrite qk+1

as

qk+1(t) = Tk+1

(
θ − t

δ

)/
σk, σk = Tk+1

(
θ

δ

)
. (5.14)

Let ρ j = σ j/σ j+1. We obtain (σ1 = θ/δ, σ0 = 1, ρ0 = 1/σ1)

σ j+1 = 2
θ

δ
σ j − σ j−1, ρ j = σ j

σ j+1
= 1

2σ1 − ρ j−1
, j ≥ 1.

Hence from expanding Tj+1 (identical to [413,(12.8)]) i.e.

σ j+1q j+1(t) = 2
θ − t

δ
σ j q j (t) − σ j−1q j−1(t)

we obtain the three-term recursion for the scaled Chebyshev polynomial q and
j ≥ 1 with q0(t) = 1 and q1(t) = 1 − t/δ

q j+1(t) = ρ j

[
2

(
σ1 − t

δ

)
q j (t) − ρ j−1q j−1(t)

]
. (5.15)

To derive an explicit (recursive) formula for the preconditioning polynomial
p j (t), we use (5.12) and (5.15) together with p−1(t) = 0, p0(t) = 1/θ or (note
σ1δ = θ )

p1(t) = 1 − q2(t)

t
= 2ρ1

δ
(2 − t

θ
), from q2(t) = 1 + 2ρ1t

δθ
(t − (σ1δ + θ )) .

We obtain the final formula for generating the required polynomial (1 ≤ j ≤ k)

1

ρ j

1 − q j+1

t
= (2σ1 − 2t

δ
)
1 − q j

t
+ 2

δ
− ρ j−1

1 − q j−1

t
, i.e.

p j (t) = ρ j

[
2

(
σ1 − t

δ

)
p j−1(t) − ρ j−1 p j−2(t) + 2

δ

]
. (5.16)

Recall that our mission for finding pk(t) is to use it for solving (5.8); in the
context of iterative solvers we require to form the matrix vector product

y ≡ yk = M Av = pk(A)Av = AMv = Apk(A)v = v − qk+1(A)v (5.17)

for any given v ∈ R
n e.g. within a GMRES algorithm. However for either the

left preconditioned or right preconditioned GMRES, we still need an explicit
(recursive) formula to compute

x ≡ xk = Mv = pk(A)v. (5.18)
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This is provided from (5.16)
θ = (β + α)/2, δ = (β − α)/2, σ1 = θ/δ,

x0 = v/θ, ρ0 = 1/σ1, ρ1 = 1/(2σ1 − ρ0),{
ρ j = 1/(2σ1 − ρ j−1), x1 = (2ρ1/δ)(2v − Av/θ ),
x j = ρ j

[
2

(
σ1x j−1 − Ax j−1/δ

) − ρ j−1x j−2 + 2v/δ
]
, for j = 2, . . . , k.

(5.19)

Algorithm 5.3.3. (Chebyshev polynomial preconditioner).

To compute xk = pk(A)v, with λ(A) ∈ [α, β] and α > 0, we do the following

(1) set σ1 = θ/δ, ρ0 = 1/σ1, ρ = 1/(2σ1 − ρ0), x0 = v/θ and xk = 2ρ/

δ(2v − Av/θ ).
(2) update ρ0 = ρ.
(3) for j = 2, . . . , k
(4) compute ρ = 1/(2σ1 − ρ0),
(5) compute w = Axk ,
(6) update w = ρ [2 (σ1xk − w/δ) − ρ0x0 + 2v/δ],
(7) update x0 = xk , xk = w, and ρ0 = ρ,
(8) end j
(9) Accept x = xk as the output.

We have put details of this algorithm into a Mfile cheb_fun.m together
with a driver Mfilechebg.m for readers’ experiments of this method. Using the
default example (in the Mfile) of a Laplacian PDE, one can see that increasing
k from 1 to 8 would reduce the number of iteration steps steadily (and linearly).
Actually with k = −1, 0, the iterations do not converge within the specified
number of steps. While the ideas and the initial formulation are widely known,
the specific algorithm is different from the usual form found in the literature
where we focus on preconditioning rather than Chebyshev acceleration (as is
often the case).

To achieve optimality in ‖I − pk(A)A‖ when α ≤ 0, we have to change the
norm used in (5.10) to the 2-norm with respect to chosen weight [413,337]
and obtain a least squares polynomial. To allow complex eigenvalues (again
�(λ) > 0), one may use a complex version of Chebyshev polynomials [413].
An alternative to using complex Chebyshev polynomials for real matrices is
proposed in [216] where

qk+1(t) = Tk+1

(
1 − t

ρ̃

)/
σk, σk = Tk+1 (1/ρ̃) , (5.20)
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where A = M − N is a convergent splitting for which ρ(M−1 N ) ≤ ρ̃ < 1; as
said, constructing such a M and then computing ρ̃ for a general matrix are not
easy tasks. We shall not discuss these routes further. The work of [187,27] shows
that the iteration gains are slower than the linear rate i.e. at most proportionally
to the increased number of polynomial terms k; hence one may say that such
preconditioners are not yet robust. Setting aside the issue of robustness, we
recommend the use of a Chebyshev preconditioner for specialized problems
where eigenvalue information is obtainable.

Nevertheless, as discussed in Section 5.1, there should be further scope for
developing better polynomial-like preconditioners that may not use the con-
tinuous spectrum-based Chebyshev polynomials directly. For example, more
work can be done towards getting a better distribution of discrete eigenvalue
spectrum in association with operator preconditioning.

5.4 General and adaptive sparse approximate inverses

Instead of finding a polynomial M = pk(A) to approximate A−1, the idea of
computing a single and A−1-like preconditioning matrix M = P by minimizing
‖I − AM‖ has been suggested since 1970s by several researchers; see [46,253,
312,320,321,48] and the references therein for historical notes. We shall mainly
consider the right preconditioning for (1.1)

AMy = b, x = My. (5.21)

However the left preconditioning (M Ax = Mb) and the double (two) sided
preconditioning (5.64) will also be discussed.

5.4.1 Review of solution techniques for a least square problem

In this section, we shall make extensive use of solution techniques for a least
square problem (when m ≥ n)

Cz = f, C ∈ R
m×n, z ∈ R

n, f ∈ R
m . (5.22)

Given an approximate solution z to (5.22), denote by r = f − Cz the residual
vector. Then noting f T Cz = zT CT f , minimizing the quadratic functional (in
z ∈ R

n)

�(z) = ‖r‖2
2 = r T r = ( f − Cz)T ( f − Cz) = zT CT Cz − 2zT CT f + f T f

amounts to solving ∇�(z) = 0 and yielding [63,229]

CT Cz = CT f. (5.23)
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Assuming rank(C) = n, we obtain that

z = (CT C)−1CT f and r = f − Cz = f − C(CT C)−1CT f.

(5.24)

However the above result is only used as a theory. In practice, one solves
(5.22) using the QR factorization of C (see Section 2.4). Let C = Q R be
the reduced QR decomposition i.e. Q ∈ R

m×n, R ∈ R
n×n . Then rank(C) = n

implies that R−1 exists so the solution to (5.22) is given by

z = R−1 f̂ (1 : n), f̂ = QT f, (5.25)

and the residual vector takes on a very simple form

r = f − C(CT C)−1CT f = f − Q R(RT R)−1 RT QT f
= f − Q QT f = (I − Q QT ) f

(5.26)

where we used the facts R(RT R)−1 = (RT R R−1)−1 = (RT )−1, QT Q = I but
Q QT �= I unless m = n. Again using QT Q = In×n , we see that

QT r = QT f − QT Q QT f = 0. (5.27)

Next we discuss how to compute an sparse approximate inverse (SPAI) precon-
ditioner.

5.4.2 SPAI construction for a given pattern S
Consider the right preconditioner M , given that the suitable M has a sparsity
pattern S [162,321,232,150,253]. More precisely, let N = {1, 2, . . . , n} and
then S is a given set of index pairs (i, j). The SPAI preconditioner M will be
sought as the best matrix that has the pattern S and minimizes the functional
(in the Frobenius norm)

min
M

‖AM − I‖2
F = min

M
‖I − AM‖2

F . (5.28)

As studied by many researchers [46,147,148,162,232,253,290,320,321,451],
the use of the F-norm naturally decouples (5.28) into n least squares prob-
lems

min
m j

‖Am j − e j‖2
2, j = 1, · · · , n, (5.29)

where M = [m1, . . . , mn] and I = [e1, . . . , en]. Here we should note that (5.29)
represents an usually small-sized least squares problem to solve (due to the
sparsity of A), although n can be very large.
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In detail, let the column vector m j have k j nonzeros with k j � n and let J
denote the set of these k j nonzero row indices in m j . Then (5.29) is effectively
reduced to a problem involving a submatrix A j of A, consisted of the k j columns
of A corresponding to the nonzero positions of m j . As both A and A j are sparse,
matrix A j has only r j (a small number) rows that are nonzero. Let I denote the
set of the r j row indices. Denote by C j = A(I,J ) such a r j × k j submatrix of
A that is extracted from A. Assume ê j = e j (I) is a reduced unit vector of e j

that is extracted corresponding to the r j rows of A j . Then (5.29) becomes

Am j = e j or Am̂ j = e j or C j m̂ j = ê j , j = 1, · · · , n. (5.30)

In MATLAB r© notation, we have

>> C_j = A(r, k), e_hat = e(r)

if r denote the vector of the above r j row indices and k the vector of the
above k j column indices. Here we claim that r j ≥ k j because we always insist
on including the diagonal entries into the sparsity pattern S. These diagonal
entries in A j ensure that C j has at least k j rows.

Using the QR approach of Section 2.4, problem (5.30) can be easily solved
to give the solution

m̂ j = R−1ĉ(1 : k j ) (5.31)

if ĉr j ×1 = QT ê j and the QR decomposition of C j is

C j = Q

[
R
0

]
= [Q1 Q2]

[
R
0

]
= Q1 R. (5.32)

The solution to (5.29) is given by m j (J ) = m̂ j and ‖r‖2 = ‖ĉ(k j + 1 : r j )‖2

if the residual is denoted by

r = e j − Am j = e j − A j m̂ j = e j − A(:,J )m̂ j . (5.33)

This defines the right preconditioner M which is frequently used; construc-
tion of a left preconditioner can be similarly developed for the rows of M [232].
These SPAI preconditioners from (5.28) are essentially determined by the spar-
sity pattern S that approximates that of the inverse A−1. However, there is no
guarantee that ‖r‖2 < ε for small ε.

Remark 5.4.4. One interesting observation is the following. If S specifies a
diagonal matrix, then matrix M is diagonal and contains the reciprocals of the
2-norms of all columns. Hence columns of the preconditioned matrix AM will
be unit vectors.
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Next we discuss the adaptive approaches of [232,253] that find a pattern
S from any initial guess. See also [322] for another exposition. With adaptive
approaches, we can guarantee that ‖r‖2 < ε for any small ε, provided that we
are allowed to keep increasing k j for column j . If very large k j (say k j ≈ n) must
be used i.e. when SPAI becomes ineffective, alternative methods in Section 5.6
are preferred.

5.4.3 Adaptive SPAI methods

Consider the solution of the least squares problem from (5.29) which can be
solved exactly to produce a zero residual by

Am j = e j , (5.34)

for j = 1, . . . , n if m j is allowed to be dense. Note m j is the j th column of
A−1. However for practical purpose, we hope to achieve the following, using a
pattern S as sparse as possible,

‖r‖2 = ‖Am j − e j‖2 ≤ ε. (5.35)

It remains to address how to find such an ideal pattern adaptively.
Assume that an initial pattern S is available (say using the diagonal matrix)

but is not sufficient to ensure that the residual bound (5.35) is satisfied. The idea
of an adaptive approach is to enlarge the patternS systematically or to augment
A j by new columns of A (i.e. increase nonzero positions in m j ) adaptively to
better approximate m j so that (5.35) is eventually satisfied.

Each enlargement of S requires computing a new preconditioner M from
solving (5.28). We hope to make use of the previously obtained information
for sake of efficiency. Thus to add one new kth column c = Aek to the existing
matrix C = A j , noting A j = A(:,J ) and C j = A(I,J ), solve for vector z and
scalar ξ

σ+c = min
z∈R

k j , ξ∈R

‖Cz + ξc − e j‖2
2 = min

z∈R
k j , ξ∈R

∥∥∥∥[C c]

(
z
ξ

)
− e j

∥∥∥∥2

2

, (5.36)

where c = Aek is chosen [232] from the remaining columns of A that intersect
with nonzero row indices of [C e j ] (or of the residual vector r = Am j − e j ) or
more precisely

k ∈ JN =
⋃
�∈L

N�

where L denotes the set of indices � for which the current residual is nonzero
i.e. r (�) �= 0 and N� is the column index set which corresponds to nonzero
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elements in row vector A(�, :) and does not overlap with J ; see [253,232].
A simplified version [253] of (5.36) is the following approximation based on
accepting z = m̂ j in (5.36) and solving for scalar ξ only

σ
approx
+c = min

ξ∈R

‖Cz + ξc − e j‖2
2 = min

ξ∈R

‖ξc − r‖2
2, ξ = r T c

‖c‖2
2

, (5.37)

where r = e j − Cz = e j − A j m̂ j is known.
Our objective here is to find the suitable column c to include in A j so that

the resulting residual will be smaller. This depends on what computable criteria
are proposed to be used. At this stage, the solutions of these new least squares
problems are not of interest yet.

� Analytical solution of problem (5.36). To propose a computable formula,
we consider how to simplify (5.36) by re-using the QR decomposition of C
and the known residual r = e j − Cm̂ j . Note that both C = A j and c = Aek

are sparse so they can be reduced to compact forms. For brevity, we use the
unreduced forms for C and c (of size n) and look for an update of the reduced
QR decomposition:

[C c]n×(k1+1) = [Y y]

(
R d
0 ρ

)
(k j +1)×(k j +1)

(5.38)

with C = Y R = Yn×k j Rk1×k j the reduced QR decomposition of C = A j . As-
suming C = A j = Y R is the previous QR decomposition, to compute y, d and
ρ using the Gram–Schmidt idea, we equate both sides of (5.38)

c = Y d + ρy.

Then using the orthogonality conditions Y T y = 0 and ‖y‖2 = 1, we obtain

d = Y T c, ρ = ‖c − Y d‖2 = ‖c − Y Y T c‖2 and y = (c − Y Y T c)/ρ.

Note from C j = A(I,J ) = Q R = Q1 R in (5.32) and m̂ j = R−1ĉ(1 : k j ) from
(5.31), we observe that

Y (I, :) = Q1 and Y T e j = QT
1 e j (J ) = (QT e j (I))(1 : k j ) = ĉ(1 : k j )

and (5.36) becomes solving
(

R d
0 ρ

) (
z
ξ

)
=

(
ĉ(1 : k j )

yT e j

)
rnew =

[
I − (Y y)

(
Y T

yT

)]
e j = (

I − Y Y T − yyT
)

e j = r − yyT e j

(5.39)

where the second equation used (5.26) i.e. r = e j − Cm̂ j = (I − Y Y T )e j .
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We now concentrate on the quantity σ+ = ‖rnew‖2
2 without solving indi-

vidual least squares problem (5.39) for each candidate c. From the above
derivation y = (c − Y Y T c)/ρ and the result (5.27) i.e. Y T r = 0, we obtain
that eT

j yyr = eT
j yyT e j , yT r = yT d (due to yT Y = 0) and

σ+c = (r − yyT e j )
T (r − yyT e j ) = r T r − ‖yT r‖2

2 = r T r − ‖cT r‖2
2

ρ2
.

� Analytical solution of problem (5.37). The least squares problem (5.37) for
finding the best scalar ξ ∈ R can be solved directly by minimizing the quadratic
function

�(ξ ) = ‖ξc − r‖2
2 = (ξc − r )T (ξc − r ) = (cT c)ξ 2 − 2(cT r )ξ + r T r (5.40)

that has a positive leading coefficient cT c = ‖c‖2
2. From �′(ξ ) = 0, we

obtain

ξ = cT r/(cT c) and � = r T r − (cT r )2/(cT c)2.

� Adaptive SPAI strategies. Thus the two minimization problems are solved
to give the new residual norms

σ+c = σ − (cT r )2

ρ2
, σ

approx
+c = σ − (cT r )2

‖c‖2
2

(5.41)

respectively, where σ = ‖r‖2 is the old residual norm and c is a candidate
column of A. For an adaptive strategy, we shall loop through a list of candidate
columns in the set JN and select up to s columns that can make the new
residual σ+c (the Gould-Scott approach [232]) or σ

approx
+c (the Grote–Huckle

approach [253]) much smaller. Here for the former approach, one includes the
new nonzero rows only rather than the full sized vector c. This is addressed
below along with QR updates.

� Adaptive QR updates from augmenting new columns. Although we have
already presented the Gram–Schmidt method for updating a dense QR factor-
ization in minimizing σ+c. Here we discuss the sparse versions using both the
Gram–Schmidt and the Householder transform methods.

To improve the approximation of m j by m j that has a small number of
nonzeros in set J , in (5.34), we can use the above discussed adaptive strategies
to augment set J . Let J̃ denote the set of new row indices that are selected
to add to m j . Then we shall consider the submatrix A(:,J ∪ J̃ ) for a new
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least squares solution of type (5.29). Let Ĩ be the set of new row indices,
corresponding to the nonzero rows of A(:,J ∪ J̃ ) not already contained in I.
Denote by r̃ j and k̃ j = s the dimensions of sets Ĩ and J̃ respectively. Then we
consider how to update

C j = A(I,J ) = Q

(
R
0

)
= [Q1 Q2]

(
R
0

)
= Q1 R (5.42)

to find the QR decomposition for the augmented matrix

Anew = A(I ∪ Ĩ,J ∪ J̃ ) =
(

A(I,J ) A(I, J̃ )
0 A(Ĩ, J̃ )

)
, (5.43)

where one notices that A(Ĩ,J ) = 0 as A(I,J ) contains all nonzero rows
already.

(1) The Gram–Schmidt approach. We shall carry out a column-by-column
augmentation to find a reduced QR decomposition (see (5.38) for a single
column case). For each new column � = 1, . . . , s (note k̃ j = s), let the
current matrix be A� = Q� R� in a reduced QR form (to be augmented by
a vector c�) and the new column vector c� brings r̂� new nonzero rows. (As
A� is in sparse and compact form, it has be to augmented by r̂� zero rows if
r̂� > 0). Let r �+1 = k� + r̂� be the row dimension of matrix A�+1 for � ≥ 1
with r1 = r j , r k̃ j +1 = r j + r̃ j , and

∑r̃ j

�=1 r̂� = r̃ j rows. Initially at � = 1,

A1 = C j and Ã1 = Q R.
Then the Gram–Schmidt approach proceeds as follows (for column � =

1, . . . , k̃ j )

A�+1 =
(

A� c�(1 : r �)
0 c�(1 + r � : r �+1)

)
r �+1×(k j +�)

=
(

Q�

0
y�

) (
R� d�

0 ρ�

)
,

where the calculations were similar (5.38) (with Q augmented) i.e.

d� = QT
� c�(1 : r �), ρ� =

∥∥∥∥(
(I − Q� QT

� )c�(1 : r �)
c�(1 + r �)

)∥∥∥∥
2

, and

y� =
(

(I − Q� QT
� )c�(1 : r �)

c�(1 + r �)

)/
ρ�.
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(2) The Householder approach. Based on (5.42), the Householder approach
(using the full QR decompositions) for (5.43) is simpler to describe.

Anew =


Q1 Q2 R

0
A(I, J̃ )

0 A(Ĩ, J̃ )



=
(

Qr j ×k j

Ĩr j ×̃k j

) 
R
0

QT
1 A(I, J̃ )

QT
2 A(I, J̃ )

0 A(Ĩ, J̃ )



=
(

Qr j ×r j

Ĩr j ×̃k j

) 
R QT

1 A(I, J̃ )

0
QT

2 A(I, J̃ )
A(Ĩ, J̃ )

 QR for the boxed matrix

=
(

Q
I

) (
Ik j ×k j

Q̃�×�

) 
R QT

1 A(I, J̃ )

0
R̃
0

 , with � = (r j − k j ) + r̃ j .

� The adaptive SPAI algorithm. We have described all the ingredients for
an adaptive algorithm. The algorithmic details can be summarized as follows.

Algorithm 5.4.5. (SPAI method [253]).

Given an initial sparsity pattern S (say from diag(A)), the following steps will
work out an adaptive S and consequently an adaptive SPAI preconditioner M:

for column j = 1, . . . , n of M

(1) Let J be the present sparsity pattern of m j for column j (set of nonzero
row indices). Then J will determine the columns J of A for the least
square problem (5.29).

(2) Find the set I of nonzero row indices in matrix A(:,J ).
(3) Compute the QR decomposition for A(I,J ) as in (5.32).
(4) Find the least squares solution m j from (5.31) and its residual r .

while ‖r‖2 > ε
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(5) Let L be the set of indices � for which r (�) �= 0.
(6) Find the candidate index set JN .
(7) for each additional column � ∈ JN , find the new residual from

(5.41).
(8) Decide on the s most profitable indices in JN .

(9)


Determine the set of new indices Ĩ and update the QR decompo-
sition for the new sets I = I ∪ Ĩ andJ = J ∪ J̃ with A(I,J )
of size r j × k j . Obtain the new least squares solution m j and
the new residual r = e j − Am j .

end while ‖r‖2 > ε

end for column j = 1, . . . , n of M
(10) Accept the SPAI preconditioner M = [m1, . . . , mn].

For readers’ convenience, we have provided the Mfilespai2.m to illustrate
this algorithm; more optimal implementations are referred to in Section 5.10.

�Some theoretical properties of the SPAI algorithm. As shown in Chapter 3,
the ultimate success of a preconditioner M lies in its ability to redistribute the
spectrum of the preconditioned matrix AM (as far as an iterative solver is
concerned). Here we summarize some results on the eigenspectrum λ(AM)
and the singular spectrum σ (AM), following the work of [253] using the main
SPAI residual bound (5.35) i.e. (note the number of nonzeros in m j is k j )

‖r‖2 = ‖r j‖2 = ‖Am j − e j‖2 ≤ ε.

We now consider the overall approximation of M of A−1.

Lemma 5.4.6. (Norm properties of SPAI [253]).
The SPAI residual error bound (5.35) implies that

(1) ‖AM − I‖ ≤ √
nε, ‖M − A−1‖ ≤ ‖A−1‖2

√
nε in either F or 2-norm.

(2) ‖AM − I‖1 ≤ √
pε, ‖M − A−1‖1 ≤ ‖A−1‖1

√
pε,

where p = max1≤ j≤n{number of nonzeros in r j } � n for a sparse
matrix A.

Proof. The proof essentially follows from definitions of norms, in particular2
‖AM − I‖2

F =
n∑

j=1

‖(Am j − e j )‖2
2,

‖AM − I‖2 = max
‖x‖2=1

‖(AM − I )x‖2 == max
‖x‖2=1

∥∥∥∥∥ n∑
j=1

(Am j − e j )x j

∥∥∥∥∥
2

2

.

2 Here the second line uses the usual relationship Ax = [a1, . . . , an][x1, . . . , xn]T = ∑n
j=1 x j a j .
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Further enlarging the above quantities using (5.35) confirms the first two in-
equalities. To prove the first inequality in (2), we use the inequality (1.15); as
r j has at most p nonzeros, (1.15) becomes ‖r j‖1/

√
p ≤ ‖r j‖2 (demanding a

similar simplification to (1.14)). Then

‖AM − I‖1 = max
1≤ j≤n

‖(Am j − e j )‖1 ≤ max
1≤ j≤n

√
p‖(Am j − e j )‖2 ≤ √

pε,

proving the 1-norm result. Finally bounding ‖M − A−1‖ comes from a simple
rewriting: M − A−1 = A−1(AM − I ).

Theorem 5.4.7. (Spectral properties of SPAI [253]).
Following Lemma 5.4.6, the SPAI method satisfying (5.35) has these properties

(1) the preconditioned matrix AM has a controllable departure of normality
(3.70).

(2) the eigenvalues of AM, λ(AM), are clustered at 1.
(3) the singular eigenvalues of AM, σ (AM), are clustered at 1.

Proof. (1) Let Q(AM)QT = �(AM) + N be a Schur decomposition of AM
with �(AM) = diag(λ j (AM)) and N upper triangular having zero diagonals.
Then Q(AM − I )QT = �(AM) − I + N . From ‖AM − I‖2

F ≤ nε2, we see
that ‖N‖2

F ≤ ‖AM − I‖2
F ≤ nε2 and from (3.70) the preconditioned matrix

AM has a controllable departure of normality that makes the study of λ(AM)
meaningful for the purpose of speeding up iterative solvers.

(2) As with (1), ‖�(AM) − I‖2
F ≤ ‖AM − I‖2

F ≤ nε2. That is

1

n

n∑
j=1

∣∣λ j − 1
∣∣2 ≤ ε2. (5.44)

This implies that the eigenvalues are clustered at 1. Using Lemma 5.4.6 and an
idea similar to Gerschgorin’s theorem, we obtain, from [(AM)T − λI ]x = 0
and |xk | = max j |x j |, that

|1 − λ||xk | = ‖(1 − λ)x‖∞ = ‖(AM − I )T x‖∞ let the max achieved at �

= |(Am� − e�)T x | ≤ |xk |‖Am� − e�‖1, or

|1 − λ| ≤ √
pε. (5.45)

So the eigenvalues are clustered at 1 in radius
√

pε.
(3) Let the singular value be σ = σ (AM) so σ 2 = λ(AM(AM)T ). We

consider

I − AM(AM)T = (I − AM)T + (I − AM)(AM)T .
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As transposes do not change 2-norms, we obtain the following

‖I − AM(AM)T ‖2 = ‖(I − AM)T + (I − AM)(AM)T ‖2

≤ ‖(I − AM)‖2 + ‖(I − AM)‖2‖AM‖2

= ‖(I − AM)‖2 + ‖(I − AM)‖2‖(I − AM) − I‖2

≤ √
nε

(
2 + √

nε
)
.

Again using the Schur decomposition, we can obtain an identical equation to
(5.44), proving that the singular values are clustered at 1. More precisely,

|1 − σ 2| ≤ ‖I − AM(AM)T ‖1 ≤ √
n‖I − AM(AM)T ‖2 ≤ nε

(
2 + √

nε
)
,

as with proving (5.45), where we have used (1.14).

Remark 5.4.8.

(1) If the quantity τε = max j k j ≤ kmax � n for a reasonably small ε (say 0.1),
this indicates the success of Algorithm 5.4.5. That is to say, the algorithm
is considered to have failed if kmax ≈ n or ε is too large.

(2) The singular value clustering as shown in Theorem 5.4.7 suggests that
CGN (Section 3.5) will be a serious method to consider when a SPAI
preconditioner is developed.

(3) The adaptive methods described are not truly adaptive in a global sense. The-
oretically minimizing σ+c finds a better approximation than from σ

approx
+c ,

for the purpose of solving (5.28), at each step. However, there is no guaran-
tee of a global minimizer for the essentially multi-dimensional problem – a
situation somewhat mimicking the weakness of the steepest descent method
[229]. The multi-dimensional problem may be posed as follows:

σ+C = min
C ; m j

‖Cm j − e j‖2
2 = min

ck∈(a1,...,an );ξk∈R

‖c1ξ1 + · · · + c�ξ� − e j‖2
2

where ak is column k of A, ξk’s are the elements of m̂ j (i.e. the nonzero
components of m j ) and hence C is chosen from any � (a prescribed integer)
columns of matrix A. Practically, for a class of sparse matrices, solving the
multi-dimensional minimization is not necessary so both methods shown
above (based on one-dimensional minimization) can work well. But it is
not difficult to find surprising examples. For instance, the adaptive SPAI
method of [253] applied to a triangular matrix A will not find a strictly
triangular matrix as an approximate inverse unless one restricts the sparsity
search pattern (Section 5.4.4) although this does not imply that SPAI will
not lead to convergence of an iterative method [290]; of course, FSAI type
methods will be able to return a triangular matrix as an approximation for
this case. Although it remains to find an efficient way to solve the above
multi-dimensional problem, narrowing down the choice for pattern S is
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regarded as an effective approach to speeding up the basic SPAI methods
of type (5.28).

(4) The SPAI type may be improved using the polynomial preconditioners in
the special case of a SPD matrix [98]. As stated before, there exist many
other approaches for a SPD case [28].

5.4.4 Acceleration using a priori patterns

We now consider methods of selecting the initial sparsity patternS; this question
was indirectly addressed in Section 5.1. There, we concluded that firstly the
initial pattern (as well as the ideal pattern)S should be sought from the subspace
as in (5.3) and secondly such a pattern can be accurately approximated by some
low powers of A if A has been suitably scaled (which is in general a nontrivial
task!).

For a class of problems, we hope that specifying suitable a priori patterns for
the approximate inverse reduces or removes the need for any adaptive procedure
and thus dramatically speeds up the SPAI preconditioner construction. With
such a pattern S, solving (5.28) yields the required preconditioner M . This is
possible for many useful problems. For matrices arising from discretization
of a class of partial differential equations, the so-called powers of sparsified
matrices (PSM) methods have been found to give satisfactory and desirable
patterns S [147,93,94,451]. The suggested procedure is as follows. Use ‘drop’
to denote a sparsification process; then A0 = drop(A). Here A0 represents an
initial sparsified matrix of A – necessarily for dense A and optionally for sparse
A. As the number of nonzeros in high powers of A0 can grow quickly to approach
n2, in practice, only low powers of A0 are considered: use the pattern S defined
by the graph of Ai = Ai+1

0 or, if less nonzeros are desired, Ai = drop(Ai−1 A0).
In this book we shall mainly use i = 3.

For matrices from boundary integral operators, the near neighbour patterns
have been shown to be satisfactory [128,131,136,472]. The analytical approach
of near neighbours is different from but related to the algebraic approach of
PSM. That is to say, one can obtain approximately the pattern of near neighbours
if adopting the (block-box) method of PSM. The coincidence again illustrates
the usefulness of PSM.

Suitable scaling of a matrix is important before sparsification. In [147],
symmetric scaling by diagonal matrices is suggested. However, our experience
has shown that a better scaling method is the permutation and scaling method by
Duff and Koster [190,191]. With this method, matrix A is permuted and scaled
from both sides so that the resulting matrix has the largest entries in its rows
and columns on the diagonal (there are related five algorithms). More precisely
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one variant of the method finds a maximum product transversal (permutation)
that ensures the product of the diagonal elements

n∏
j=1

∣∣ap( j), j

∣∣
is maximized; see also [53]. Using this method, the following matrix A can
be scaled by two diagonal matrices and one column permutation to a better
matrix B

A =


100 20
20 2 −40

2 1 3
5 2

 , B =


1 1
1 −1 1/2

1/20 1 1
3/8 1



=


1/10

1/2
1

3/2

 A


1/10

1/2
1/20

1/3




1
1

1
1

 ,

which is more amenable to sparsification by global thresholding. In fact, one
can verify that the most important elements (the largest but always includ-
ing the diagonals) of both matrix B−1 and B3 follow some similar pattern S.
The software is available in Fortran; check the details of Harwell subroutine li-
brary (HSL) from http://www.cse.clrc.ac.uk/nag/ and http://
www.numerical.rl.ac.uk/reports/reports.html.

5.5 AINV type preconditioner

An alternative form of explicit sparse approximate inverse preconditioners to
the single matrix M above is the factorized sparse approximate inverse (FSAI)
preconditioner3

min
W, Z

‖W T AZ − I‖2
F , (5.46)

which has a pair of upper triangular matrices W, Z , as proposed and studied in
[320,321,319] for the symmetric case and [56,55,75] for the unsymmetric case
where FSAI is more often referred to as AINV (sparse approximate inverse
preconditioners). Here for symmetric A, W = Z and the approach mimics the

3 Although research papers with the abbreviations FSAI and AINV contain similar ideas and may
be reviewed in the same framework, one notes that FSAI is synonymous with the authors of
[320,321,319] and AINV with [56,55,50].
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Cholesky factorization [229,280]; here we mainly consider the unsymmetric
case. We remark that FSAI was originally proposed for preconditioning SPD
matrices but can be adapted for unsymmetric cases, while AINV preconditioners
were also designed for SPD matrices but later were generalized to unsymmetric
cases [48].

In the unsymmetric case, the preconditioned system of (1.1) is the following

W T AZ y = W T b, x = Z y, (5.47)

where W T AZ ≈ I . This preconditioning idea may be viewed as stemming
from the bifactorization technique as discussed in Section 2.1.3 and [211,510].
As with ILU, we do not find the exact W AZ decomposition. The suggested
approach is to develop an algorithm WAZT(p, τ ), similar to ILUT(p, τ ).
Below we adapt Algorithm 2.1.3 for such a purpose.

Algorithm 5.5.9. (WAZT(p, τ ) — W AZ ≈ I method).

(1) Set sparse matrices W = Z = I .
for i = 1, . . . , n, do

(2) Set v to be the ∞-norm of row vector A(i, :).
(3) pq = W (:, i)T A(:, i)

for j = i + 1, . . . , n, do
(4) q j = W (:, j)T A(:, i)/pq
(5) p j = Z (:, j)T A(i, :)T

end j
for k = 1, . . . , i

(6) Z (k, i) = Z (k, i)/pq
end k
for j = i + 1, . . . , n, do

for k = 1, . . . , i , do
(7) W (k, j) = W (k, j) − q j W (k, i)
(8) Apply the W theshold: if |W (k, j)|/v ≤ τ , set W (k, j) = 0.
(9) Z (k, j) = Z (k, j) − p j Z (k, i)

(10) Apply the Z threshold: if |Z (k, j)|/v ≤ τ , set Z (k, j) = 0.
end k

end j
(11) Update column W (:, i) and Z (:, i) by keeping only p largest elements

including the diagonal positions of W, Z.
end i
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For readers’ convenience, we have developed the Mfile waz_t.m to illustrate
this algorithm where we have included two default examples showing that the
approximate W AZ decomposition is better than ILUT.

The AINV type preconditioners (Algorithm 5.5.9) have been compared with
the SPAI (Algorithm 5.4.5) in [56] and also with the ILU type preconditioners
(Algorithm 4.5.10) in [55]. The basic conclusions were that AINV offers more
simplicity and robustness than ILU(0) but behaves similarly to ILUT. As with
ILU, AINV preconditioners may not exist if breakdowns occur. One solution
is to decompose A + α I instead of A; then one is not developing a precon-
ditioner for A directly. Both ILU and AINV type preconditioners are cheaper
than SPAI to construct, although the latter has much inherent parallelism to
explore.

5.6 Multi-stage preconditioners

In this section, we consider one possible enhancement to SPAI precondition-
ers for problems where secondary preconditioners may prove useful. We shall
mainly address the two-stage preconditioners as multi-stages may be prevented
by sparsity requirements. Thus the setting is the following: given that M
is a primary preconditioner for A, what can we do to further precondition
matrix

A1 = AM (5.48)

assuming AMy = b as in (5.21)) would benefit from further preconditioning.
Recall that Theorem 5.4.7 replies on the assumption of (5.35) i.e.

‖r‖2 = ‖Am j − e j‖2 ≤ ε.

However (5.35) is not an easy task to achieve; as remarked in [253] such a bound
is rarely satisfied in practice unless kmax (see Remark 5.4.8) is unrealistically
close to n. In such a case of (5.35) not strictly satisfied, one can observe that
most eigenvalues of A1 = AM are still clustered near 1 but there may be a
few some small eigenvalues of A1 that are very close to 0 and need to be
deflated.

We now consider two types of two-stage methods for remedying this spec-
trum. We note in passing that (a) in general, A1 has no large eigenvalues to
be concerned about; (b) without the stage-1 preconditioner M , the following
deflation method should be used with caution as λ(A) may have eigenvalues
on both sides of the imaginary axis (for indefinite problems) and a selective
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deflation may not be effective – this may explain the limited success of certain
methods.

We first consider deflation techniques for matrix A1 = AM , where M is the
first stage preconditioner based on SPAI.

5.6.1 Deflating a single eigenvalue

Deflation of a single eigenvalue is a well-known idea which can be adapted
for multiple eigenvalues. Briefly if u1 is an unit eigenvector corresponding to
eigenvalue λ1 = λ1(A) �= 0, then the matrix

A1 = AM1 with M1 = I + σu1uH
1 (5.49)

has all eigenvalues identical to A except one of them λ1(A1) = λ1 + σλ1

e.g. 
λ1(A1) = 0, if σ = −λ1,

λ1(A1) = λ1 + 1, if σ = 1/λ1,

λ1(A1) = 1, if σ = λ−1
1 − 1,

To prove the result, the distinct eigenvalue λ1 is easily dealt with as we can
verify

A1u1 = (λ1 + σλ1)u1, (5.50)

while the others take some efforts. If A is symmetric, the task is relatively easy:
since uH

1 u1 = uT
1 uo = 0 whenever Auo = λouo and λo �= λ1, proving that the

other eigenvalues are identical follows easily from verifying A1uo = λouo.
However we must use unitary complements to u1, in C

n , for the unsymmetric
case.

Lemma 5.6.10. (Deflation of a single eigenvalue [199]).
For any diagonalizable matrix A, the deflated matrix A1 in (5.49) satisfies

A1uo = λouo

whenever Auo = λouo and λo denotes any eigenvalue other than λ1.

Proof. Let Z = [u1 W ] be an unitary matrix i.e. u H
1 W = 0 and u1 ⊕ W forming

a basis matrix for C
n or W is the unitary complement of u1 in C

n . Then
A1W = AW . Consider transforming matrices A, A1, noting u H

1 W = 0, (5.50)
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and Au1 = λ1u1:

Z H AZ =
[

uH
1

W H

]
A[u1 W ] =

[
uH

1 Au1 uH
1 AW

W H Au1 W H AW

]
=

[
λ1 uH

1 AW
W H AW

]
,

Z H A1 Z =
[

uH
1

W H

]
A1[u1 W ] =

[
uH

1 A1u1 uH
1 A1W

W H A1u1 W H A1W

]
=

[
(σ + 1)λ1 uH

1 AW
W H AW

]
.

As Z is unitary (similar), the other (n − 1) eigenvalues of A and A1 are identical;
in particular they are the eigenvalues of matrix W H AW .

Relevant to this work is adaption of (5.49) for deflating multiple eigenvalues
of matrix A1 = AM . Define V = [v1, . . . , vk] with v1, . . . , vk corresponding
to k smallest eigenvalues λ1, . . . , λk of matrix AM .

The generalization is only straightforward for the hypothetical case of matrix
A1 being symmetric

A2 = AM2 with M2 = M + MV D0V H (5.51)

where D0 = Dk×k = diag(λ−1
1 , . . . , λ−1

k ). Then from V H V = Ik×k and
V H U = 0k×(n−k), for U = [uk+1, . . . , un] with u j ’s eigenvectors for other
(n − k) eigenvalues of AM , we can prove that

λ j (A2) =
{

λ j (AM) + 1, j = 1, · · · , k
λ j (AM), j > k.

(5.52)

However, neither matrix A nor AM is in general symmetric. Hence, eigenvectors
are not orthogonal to each other and one needs to construct an orthogonal basis
in the subspace of the first k eigenvectors. We now consider two methods of
deflating multiple eigenvalues in the unsymmetric case.

5.6.2 Deflation method 1: exact right eigenvectors

Suppose that we have computed the k normalized eigenvectors that correspond
to the k smallest eigenvalues of A1 = AM and packed them as matrix V . Then

AMV = V D1

with D1 = diag(λ1, . . . , λk). We propose to orthogonalize matrix V = Vn×k

and decompose V = U R with U = Un×k orthogonal and R = Rk×k upper tri-
angular. Then we have obtained a reduced Schur decomposition

AMU = U T (5.53)
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with T = Tk×k = R D1 R−1 upper triangular. Clearly T and D1 have the same
eigenvalues. (Note that R would be an ‘identity’ matrix if A were symmetric).

To deflate the smallest k eigenvalues by shifting them by +1, we propose
the following stage two preconditioner

A2 = AM2 with M2 = M + MU T −1U H . (5.54)

By comparing to (5.51), we observe that T −1 is upper triangular and

diag(T −1) = [λ−1
1 , . . . , λ−1

k ].

From U H U = Ik×k and

A2U = AMU + AMU T −1U H U = U T + U T T −1 = U (T + I ),

we see thatλ j (A2) = λ j (AM) + 1 for j = 1, . . . , k. To prove that the remaining
eigenvalues are identical, one may use a unitary complements idea relating to
an upper triangular matrix. That is, as in Lemma 5.6.10, let Z = [U W ] with
U H W = 0 and U ⊕ W forming a basis matrix for C

n; e.g. see [199].

5.6.3 Deflation method 2: exact left and right eigenvectors

Here we consider a dual orthogonalization idea for deflation due to [95]. As
the preconditioned matrix AM is unsymmetric, let Vr = [x1, . . . , xk] be the
matrix of the k right eigenvectors and Vl = [y1, . . . , yk] be that of the k left
eigenvectors, corresponding to the k smallest eigenvalues of AM . Then Vl and
Vr are orthogonal to each other [492,95] i.e.

V H
l Vr = � = diag(yH

1 x1, · · · , yH
k xk) (5.55)

and S = V H
l AVr = V H

l Vr D1 = �D1 is a diagonal matrix (although V H
r Vr �=

I ). Note that the above equation reduces to the familiar result V T AV = D for
a symmetric case (as Vl = Vr = V ).

To deflate the smallest k eigenvalues by shifting them by +1, we can define
a second stage two preconditioner (following [95])

A2 = AM2 with M2 = M + MVr S−1V H
l . (5.56)

From V H
l Vr = S and

A2Vr = AMVr + AMVr S−1V H
l Vr = Vr D1 + Vr D1S−1� = Vr (D1 + I ),

we see thatλ j (A2) = λ j (AM) + 1 for j = 1, . . . , k. To prove that the remaining
eigenvalues are identical, one may use the matrix of remaining eigenvectors
using the dual orthogonality i.e. the full form (k = n) of (5.55); see [95].
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Remark 5.6.11. Finally, we comment on the implementation of the stage two
preconditioner M2 for both Method 1 and Method 2. As M2 is an approximate
inverse type preconditioner, it is not necessary to form M2 explicitly and one
simply uses M, T, S, U, Vl , Vr explicitly in matrix vector products.

5.6.4 Using approximate eigenvectors for deflation

The above two deflation methods can be efficient but at the same time expensive
as computing quantities like T, S, U, Vl , Vr can be time-consuming unless k is
kept small (say k = 5 or 10 as suggested in [95]).

Some approximation of these quantities can be provided by using the so-
called Ritz or harmonic Ritz vectors [361]. Recall that after k steps of an Arnoldi
method, we obtain from (1.28)

AQk = Qk Hk + hk+1,kqk+1eT
k .

Here the special matrix Hk , of size k × k, has interesting properties (e.g. eigen-
values) resembling that of A. The Ritz values θk /Ritz vectors sk and the Harmonic
Ritz values ŝk /Harmonic Ritz vectors θ̂k are defined respectively by:{

Hj sk = θksk,(
H T

j Hj + h2
j+1, j e j e

T
j

)
ŝk = θ̂k H T

j ŝk,

as discussed in (1.29) and (1.30). Refer to [331,305,359].
For a relatively small k, computing these Ritz values/vectors is quite cheap.

Therefore we can immediately develop a Ritz version of the deflation methods 1
and 2 as presented, viewing θk, θ̂k ≈ λk . In fact this has been considered in
[81]. Explicit deflation using Ritz vectors was also considered in [138] where
restarted GMRES can be nearly as efficient as the full GMRES. Actually if
a restarted GMRES (where Arnoldi factorizations are already available inter-
nally) is used, the deflation process can be combined with the solver itself;
see [361,382] and the many references therein. The general result with these
built-in (implicitly) deflation GMRES methods is the following: a restarted
GMRES can be nearly as efficient as the full GMRES. Depending on one’s
interests and view points, this may be considered an interesting development
but, equally, the full GMRES (even without counting the expensive work) may
simply take many iterations for certain hard (say indefinite) problems – if so,
different preconditioners may have be developed in addition to Ritz-based de-
flation methods. That is to say, the so-called implicit deflation methods are
only worthwhile if the full GMRES takes an acceptable number of iteration
steps.



218 Approximate inverse preconditioners [T2]

0 1 2 3 4 5 6 7
−1

0

1

M1

0 1 2 3 4 5 6 7
−1

0

1

M2

0 1 2 3 4 5 6 7
−1

0

1

A

0 1 2 3 4 5 6 7
−0.5

0

0.5

M3

Figure 5.1. Exactly deflated eigenvalue spectra (Method 1 → plot 1 with symbol
‘×’ and Method 2 → plot 2 with symbol ‘©’) versus the approximated (Ritz
vectors based) eigenvalue spectrum (plot 4 denoted by symbol ‘�’). Here symbol
‘�’ denotes the inaccurately approximated eigenvalues by the Ritz vectors.

When A1 = AM or A is unsymmetric, one inherent problem with the Ritz-
type approach is that k must be reasonably large to see good approximation of
all small eigenvalues. If k is small, isolated good approximations in spectrum
will not fundamentally speed up an iterative solver such as GMRES. This
observation can best be illustrated by Figure 5.1 with k = 2 and n = 10, where
eigenvalues λ(A) are shown in the third plot while preconditioned eigenvalues
from Methods 1 and 2 are shown respectively in the first and second plots, and
the fourth plot shows the preconditioned eigenvalues using the Ritz vectors as
approximate eigenvectors. The reader can use the supplied Mfile def_no.m to
see how this figure is generated. Clearly the Ritz case, the most unsuccessful, did
shift some eigenvalues (actually the largest one instead of the smallest ones) but
the poor performance is mainly due to the estimated eigenvalues (denoted by �)
are of poor quality. For this particular example, deflating more than k = d f = 4
eigenvalues is not useful.

Deflating to a fixed value. If so desired one can adjust the above methods
to shift k eigenvalues to α, for α > 0 (e.g. α = 1), rather than to λ + 1 i.e (5.54)
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and (5.56) become respectively{
Method 1 → A2 = AM2 with M2 = M + MU (αT −1 − I )U H ,

Method 2 → A2 = AM2 with M2 = M + MVr (αS−1 − I )V H
l ,

(5.57)

where U H U = Ik×k but UU T �= I as k < n. We also note that [199] suggested
to shift k eigenvalues to the largest eigenvalue λn i.e. |λ(A1)| ≤ |λn| and α =
|λn|:{

Method 1 → A2 = AM2 with M2 = M + MU (|λn|T −1 − I )U H ,

Method 2 → A2 = AM2 with M2 = M + MVr (|λn|S−1 − I )V H
l .

(5.58)

Here the shifting may not be useful if λn � 1.
Therefore we will not pursue this route further as not all of the deflated

k eigenvalues (using Ritz vectors) are the smallest eigenvalues of matrix
AM . Trying to resolve these issues will continue to be a future research
direction.

5.6.5 Gauss–Jordan factorization-based stage-2 preconditioner

We now consider a method of designing a secondary (stage-2) preconditioner
without involving the computation of explicit eigenvalues.

Our starting point is again (5.35): a SPAI preconditioner M in (5.28) ap-
proximates A−1 well if the underlying algorithm is successful in achieving
(5.35), i.e. ‖Am j − e j‖2 ≤ ε. If not, in general (apart from looking at smallest
eigenvalues of A1 = AM), the preconditioner M satisfies

AM = I + E = F (5.59)

where F is approximately a special matrix with E having mostly zero columns
except some dense ones. This matrix F resembles the product of some selected
factoring matrices Fj from the Gauss–Jordan decomposition of matrix A (refer
to Section 2.3, [42,143] or [298, p. 50]), where

Fn Fn−1 · · · F1 A = I (5.60)

and each Fj is an identity matrix with its column j containing a dense vector.
We shall call a sparse matrix that is of the form of F = I + E , in (5.59), an
elementary Gauss–Jordan matrix of order k if E has k dense columns.

One can verify that the inverse of an elementary Gauss–Jordan matrix re-
tains the sparsity pattern of the original matrix. Moreover the essential work in
computing the exact inverse of an elementary Gauss–Jordan matrix of order k
is determined by the inverse of a k × k submatrix. We remark that, although
the Gauss–Jordan method is well known [211,298], the Gauss–Jordan matrix
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decomposition implicitly defined is less commonly used. It is not difficult to
see that any matrix A can be decomposed into a product of elementary Gauss–
Jordan matrices whose orders can be summed up to n (assuming no partial
pivoting is needed or some pre-permutation has been carried out). For instance,
a simple form follows from rewriting (5.60) as (Fj . . . F1)A(Fn . . . Fj+1) = I
or A = (F−1

n . . . F−1
j+1)(F−1

j . . . F−1
1 ), where each bracket defines an elementary

Gauss–Jordan matrix.

Example 5.6.12. (Partial Gauss–Jordan decomposition). We give a simple
example for n = 6 to demonstrate the partial decomposition of a matrix A
using an order 4 elementary Gauss–Jordan matrix M2 (to yield an order 2
matrix M−1

1 ):

M2 A =



0.230 −0.174 0.126 −0.082 0 0
−0.103 0.284 −0.207 0.043 0 0
−0.058 −0.050 0.218 −0.073 0 0
−0.069 0.065 −0.138 0.237 0 0
−0.517 0.297 −0.035 −0.909 1 0
−0.058 −0.925 0.218 0.052 0 1





7 4 1 2 5 4
5 7 5 2 6 3
4 3 7 3 5 6
3 1 3 6 5 2
5 1 2 6 4 2
4 6 3 1 5 5


= M−1

1

=



1 0 0 0 0.329 0.993
0 1 0 0 0.371 −0.716
0 0 1 0 0.136 0.783
0 0 0 1 0.539 −0.435
0 0 0 0 −1.520 −1.200
0 0 0 0 0.511 3.410


=



1 0 0 0 0.134 −0.244
0 1 0 0 0.356 0.336
0 0 1 0 0.014 −0.225
0 0 0 1 0.450 0.287
0 0 0 0 −0.746 −0.263
0 0 0 0 0.112 0.333



−1

.

Here one observes that M2 AM1 = I and the last matrix and its inverse are
related through the smaller submatrix[−1.520 −1.200

0.511 3.410

]
=

[−0.746 −0.263
0.112 0.333

]−1

.

The above example prompts us to consider situations where matrix AM1

(or M2 A) is approximately an elementary Gauss–Jordan matrix. If this is the
case, we may naturally employ another elementary Gauss–Jordan matrix M2

(or M1) to achieve M2 AM1 ≈ I . We shall use this idea to propose a two-stage
preconditioner based on preconditioner M from (5.28) for (1.1).

A new two-stage preconditioner. We now formulate our two-stage pre-
conditioner in detail. Consider the problem of post-processing the SPAI pre-
conditioned linear system (rewritten from (5.21))

AM1 y = b, (5.61)
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where the right preconditioner M1 = [m1, . . . , mn] does not satisfy

‖Am j − e j‖2 ≤ ε (5.62)

in k columns. That is to say,

AM1 = I + E1 + E2, (5.63)

where ‖E2‖F is very small and I + E1 is an elementary Gauss–Jordan matrix
with k dense columns (not necessarily small). We propose to further precondi-
tion (5.63) by M2 = (I + E1)−1

M2 AM1 y = M2b, x = M1 y. (5.64)

The idea amounts to implementing a thresholding to the right preconditioned
matrix Ap = AM = AM1 and to seek a secondary left preconditioned matrix
M2 such that M2 Ap ≈ I as with an usual SPAI preconditioner. This precondi-
tioner will be effective as the preconditioned matrix

M2 AM1 = (I + E1)−1(I + E1 + E2) = I + (I + E1)−1 E2

is expected to be a smaller perturbation of I than (5.63). For a simple case,
we can establish this statement more precisely. To show that our new method
(5.64) defines a better preconditioner than the standard SPAI method (5.63), we
present the following.

Lemma 5.6.13. Consider equations (5.61) and (5.64) in the simple case of
ε ≤ ‖E1‖F < 1 and ‖E2‖F < ε < 1 with ‖E1‖F + ‖E2‖F < 1. Then the new
two-stage preconditioner (5.64) satisfies

‖M2 AM1 − I‖F < ‖AM1 − I‖F < 1.

Proof. First of all, the standard SPAI preconditioner (5.63) satisfies

‖AM1 − I‖F = ‖E1 + E2‖F ≤ ‖E1‖F + ‖E2‖F .

Now from ‖E1‖F < 1, we have ‖(I + E1)−1‖F ≤ 1/(1 − ‖E1‖F ). Then our
new preconditioner (5.64) satisfies

‖M2 AM1 − I‖F = ‖(I + E1)−1 E2‖F ≤ ‖E2‖F

1 − ‖E1‖F
.

As ‖E1‖F + ‖E2‖F < 1, from

‖E2‖F

1 − ‖E1‖F
−

(
‖E1‖F + ‖E2‖F

)
= ‖E1‖F

‖E1‖F + ‖E2‖F − 1

1 − ‖E1‖F
< 0,

One sees that our new method (5.64) defines a better preconditioner than the
standard SPAI method (5.63).
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For instance, if ‖E1‖F = 0.9, ‖E2‖F = 0.001, then

‖AM1 − I‖F ≤ ‖E1‖F + ‖E2‖F = 0.901, ‖M2 AM1 − I‖F ≤ ‖E2‖F

1 − ‖E1‖F

= 0.01.

We now consider the implementation issue. Note that after permutation, the
matrix (I + E1) can be written in the form(

A1 0
A2 I2

)
(5.65)

where A1 is a matrix of size k × k, A2 of (n − k) × k, I2 of (n − k) × (n − k).
The exact inverse of this matrix is(

A−1
1 0

−A2 A−1
1 I2

)
.

This suggests that we approximate A−1
1 in order to work out the left approxi-

mate inverse M2 in (5.64). The overall algorithm can be summarized as follows.

Algorithm 5.6.14. (Partial factorization based two-stage
preconditioner).

(1) For a tolerance tol and integer kmax = nzmax (the maximal number of
nonzeros allowed per column such that nzmax = N N Z/n, where N N Z
denotes the total number of nonzeros in a sparsified version of A), im-
plement the SPAI algorithm, solving (5.28), to obtain the stage-1 right
preconditioner M1.

(2) Find the k sparsified columns of AM1 that do not satisfy the tolerance tol.
(3) Compute the SPAI approximation for A1.
(4) Assembly the stage-2 left preconditioner M2.
(5) Solve the preconditioned system (5.64) by a Krylov subspace method.

Here sparsification of AM1 is important as it usually much less sparse than A and
M1 alone, and hence A1 is implicitly sparsified. Note that in the adaptive SPAI
approaches (Section 5.4.3), AM1 is available in monitoring residual vectors
r j and hence our algorithm can be coupled naturally with an adaptive SPAI
approach.

It should also be remarked that, instead of the two-sided scheme of (5.64),
we can similarly propose the second stage preconditioner M2 differently (from
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the right)

AM1 M2 y = b, x = M1 M2 y. (5.66)

However the computation of M2 must be done as a left preconditioner for AM1

in order to use a convenient sparsity pattern S. All other discussions will follow
as well. However we shall mainly study (5.64) in this work.

We now discuss the issue of complexity and the choice of A1. Clearly the
size k of matrix A1 is an indication of the stage of difficulties in approximating
A−1 by M1. In most cases where our algorithm is particularly useful, we can
assume that k is small. Then we may use a direct solver to compute A−1

1 . Thus the
additional cost of using M2 is simply O(k3) + O(nk2) ≈ 2k3 + 2nk2. However
for large k (e.g. k = n), we simply call an existing SPAI solver for the second
time and the overall cost may be doubled. As with all SPAI preconditioners, in
practical realizations, one should use parallel versions of Algorithm 5.6.14 to
gain efficiency. Note that one may also take M2 = A−1

1 directly in (5.65) and
implement the stage two preconditioner y = M2x from solving A1 y = x , and
this gives rise to a mixed preconditioning strategy.

One simplification of A1 may result from selecting at most a fixed number
kfix columns of AM1 that have the largest least-squares-errors ‖Am j − e j‖2.
For example, set kfix ≤ nzmax . However for some extremely hard problems,
this selection may not be sufficient.

Another possibility is to reset these identified n − k columns of M1 to unit
vectors and then AM1 = I + E1 + E2 becomes more pronounced as a Gauss–
Jordan decomposition. A drawback of this approach is a possible scaling prob-
lem associated with matrix AM1 thus complicating the further approximation
by M2.

For a general method, leaving out the issue of complexity, we expect a
continuing repeated application of the SPAI idea will asymptotically generate
an identity matrix

· · · M2t · · · M2 AM1 · · · M2t−1 · · · = I.

In this case, intermediate products are not sparsified. Thus one envisages that
a difficult matrix problem may need more than two preconditioning matrices.
However we have not investigated this possibility further.

Remark 5.6.15. We have used the term ‘two-stage’, instead of ‘two-level’
[95], to differentiate it from the methods of the next chapter. In finding the
approximate inverse of matrix (5.65), one might apply a SPAI method to the
whole matrix (instead of applying to submatrix A1). In this case, care must be
taken to ensure that the zero positions in the right (n − k) columns are not filled
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otherwise the stage 2 preconditioner M2 will not be effective or in other words,
the sparsity pattern should be restricted within the sparsity defined by I + E1.
Note also that this idea becomes less attractive for formulation (5.66), if taken
as a secondary right preconditioner, because the second preconditioner may not
be allowed to contain dense columns for the sake of efficiency; we recommend
a secondary left preconditioner.

Although we are concerned with unsymmetric systems, similar two-stage
preconditioning strategies based on triangular preconditioners for FSAI in solv-
ing symmetric systems have been suggested in [312,320,319]. There the choice
of the second preconditioner M2 is made to approximate a banded form of
MT

1 AM1. There does not appear to be any two-stage work generalizing the
FSAI formulation (5.47) for unsymmetric systems.

5.7 The dual tolerance self-preconditioning method

A potentially useful preconditioning method is actually provided by the under-
lying problem itself. The idea, within the general framework of approximate
inverse preconditioners, was suggested in [507] for the FOM (3.58) and also
seen in the recent work of [96].

Consider the preconditioned equation for (1.1), of the type (1.2):

AMy = b, M = Ã−1 ≈ A−1, x = My, (5.67)

and a typical preconditioning step z = My

Ãz = y. (5.68)

As Ã ≈ A, the solution of equations (5.67) and (5.68) can be sought from the
same iterative solver with different tolerances εm, εp respectively (hence the
name ‘dual tolerance’). Clearly we take εp � εm to focus on the main equation
(5.67).

Assume the GMRES(k) method is used. Then for the main equation, ef-
fectively, we change the preconditioner per inner step j . Therefore we have
to use the flexible GMRES (FGMRES) variant, which we now introduce, of
Algorithm 3.6.18. This amounts to solving

AM jw = b, x = M jw, (5.69)

with M j depending the inner iteration index j . The Arnoldi decomposition
(1.23), or (1.28), now aims to achieve

A [M1q1, M2q2, · · · , Mkqk] = [q1, q2, · · · , qk] Hk + hk+1,kqk+1eT
k , (5.70)
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for the GMRES(k) method

wk = w0 + [q1, q2, · · · , qk] y = w0 +
k∑

j=1

y j q j ,

xk = x0 + [M1q1, M2q2, · · · , Mkqk] y = x0 +
k∑

j=1

y j M j q j ,

with y computed from (3.57).

Algorithm 5.7.16. (Flexible GMRES(k)).

To solve AM j y = b for x = M j y for j = 1, 2, . . . , k by GMRES(k), with iter =
0, e1 = (e1)n×1 and given an initial starting vector x = x0 and TOL,

(1) Set x0 = x, iter = i ter + 1. Compute r = b − Ax0;
(2) Generate the first vector q1 = r/‖r‖2 and the right-hand-side vector

rhs = ‖r‖2e1;
for i = 1 : k,

(3) Start step i of a modified Gran–Schmidt method for Arnoldi: zi = Mi qi

and w = Azi ;
(4) for � = 1 : i

R(�, i) = wT q�; w = w − R(�, i)q�;
end

(5) R(i + 1, i) = ‖w‖2 and qi+1 = w/R(i + 1, i);
(6) Apply the rotations to past rows of new column i:

for � = 1 : i − 1,
t = c� R(�, i) + s� R(� + 1, i); R(� + 1, i) = s� R(�, i) − c� R(�+
1, i); R(�, i) = t;

end
(7) Compute the Givens rotations:

if |R(i + 1, i)| ≤ 10−16, set ci = 1 and si = 0,
else

if |t | ≤ 1 for t = R(i + 1, i)/R(i, i), set ci = 1/
√

1 + t2, si = ci t ,
else
compute t = R(i, i)/R(i + 1, i) and set si = 1/

√
1 + t2, ci = si t .

end
end

(8) Apply the rotations to the right-hand side: t = ci rhsi ; rhsi+1 = si

rhsi ;
rhsi = t and then to rows i, i + 1 of column i:
R(i, i) = ci R(i, i) + si R(i + 1, i) and R(i + 1, i) = 0;
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(9) Solve the triangular system for y: R(1 : i, 1 : i)y = rhs(1 : i);
(10) Update the solution: x = x0 + [z1, z2, . . . , zi ]y.
(11) Compute the current residual: r = b − Ax and exit if ‖r‖2 < T O L.

end i
(12) Continue with Step (1).

Denote by x = FG M RE S(A, b, x0, T O L , M1, . . . , Mk) the result of
Algorithm 5.7.16. Then choose two tolerances εm, εp with εm a user-specified
tolerance (say εm = 10−8) and εp � εm (say εm = 10−1) for the precondition-
ing equation (5.67). Then the dual tolerance self-preconditioning algorithm
can be described as follows.

Algorithm 5.7.17. (Self-preconditioning GMRES(k) method).

To solve AM j y = b for x = M j y for j = 1, 2, . . . , k by GMRES(k), with
i ter = 0, e1 = (e1)n×1 and given an initial starting vector x = x0 and TOL=
εm,

(1) Set x0 = x, i ter = i ter + 1. Compute r = b − Ax0;
(2) Generate the first vector q1 = r/‖r‖2 and the right-hand-side vector

rhs = ‖r‖2e1;
for i = 1 : k,

(3) Start step i of a modified Gran–Schmidt method for Arnoldi:
zi = FG M RE S(A, qi , 0, εp, I, . . . , I ) and w = Azi ;

(4) for � = 1 : i
R(�, i) = wT q�; w = w − R(�, i)q�;

end
(5) R(i + 1, i) = ‖w‖2 and qi+1 = w/R(i + 1, i);
(6) Apply the rotations to past rows of new column i:

for � = 1 : i − 1,
t = c� R(�, i) + s� R(� + 1, i); R(� + 1, i) = s� R(�, i) − c� R(�+
1, i); R(�, i) = t;

end
(7) Compute the Givens rotations:

if |R(i + 1, i)| ≤ 10−16, set ci = 1 and si = 0,
else

if |t | ≤ 1 for t = R(i + 1, i)/R(i, i), set ci = 1/
√

1 + t2, si = ci t ,
else
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compute t = R(i, i)/R(i + 1, i) and set si = 1/
√

1 + t2, ci = si t .
end

end
(8) Apply the rotations to the right-hand side: t = ci rhsi ; rhsi+1 = si

rhsi ;
rhsi = t and then to rows i, i + 1 of column i:
R(i, i) = ci R(i, i) + si R(i + 1, i) and R(i + 1, i) = 0;

(9) Solve the triangular system for y: R(1 : i, 1 : i)y = rhs(1 : i);
(10) Update the solution: x = x0 + [z1, z2, . . . , zi ]y.
(11) Compute the current residual: r = b − Ax and exit if ‖r‖2 < εm.

end i
(12) Continue with Step (1).

If other iterative solvers such as the FOM (3.58) rather than GMRES(k) are
used, a similar algorithm to Algorithm 5.7.17 can be developed.

There is also certain natural connection of this method to the topic of the
next Chapter, if one chooses to solve (5.68) on a different level from the current
level.

5.8 Near neighbour splitting for singular
integral equations

Singular BIEs represent a class of useful problems that can be solved by the
boundary elements (Section 1.7) and accelerated by the fast multipole meth-
ods. As far as preconditioning is concerned, the so-called mesh near neighbour
preconditioners due to [472] have been observed to be efficient. However there
was no fundamental study on establishing the method so the work [131] has
partially filled in such a gap by showing that the near neighbour precondi-
tioner is equivalent to a diagonal operator splitting. The beauty of such a mesh
near neighbour method is that it works very well for various 3D problems
[136,268].

We shall call the mesh near neighbour method a diagonal block approximate
inverse preconditioner (or DBAI). As it appears to be a hybrid method between
an operator splitting method (OSP) and an approximate inverse preconditioner
(denoted by LSAI below to emphasize the way the SPAI preconditioner is
computed), we shall briefly discuss OSP and LSAI.

Firstly for singular BIEs, we have shown in Section 4.7 that for a suitable
preconditioner M−1 = B−1 (left or right), its inverse M = B can be of the
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specific sparsity structure

× × ×
× × ×

× × ×
. . .

. . .
. . .

. . .
. . .

. . .

× × ×
× × ×

× × ×
× × ×


. (5.71)

As the diagonal entries of B are large, numerical evidence suggests that the
structure of the largest entries in B−1 is similar to the structure of B. In fact, if
B is strictly diagonal dominant, B−1 can be shown to be exponentially decaying
from the diagonal. In practice, this strong condition may not be strictly satisfied.
For 3D problems, see Section 5.8.3 for further discussion.

However, it appears reasonable to seek a preconditioner M−1 of sparsity
structure (5.71) that can be used as an approximate inverse of A. Thus S will
represent all nonzero positions in (5.71).

5.8.1 Solution of the least squares problem

We now consider the solution of the least squares problem for finding the right
preconditioner; the left preconditioner can be found similarly. Since matrix
M−1 = [m1, m2, . . . , mn] consists of column vectors, for each column j , the
least squares problem is to solve

min
m j ∈GS j

‖Am j − e j‖2
2 = min

m j ∈GS j

‖ Â j m j − e j‖2
2

or 

A1 j1 A1 j2 A1 j3
...

...
...

A j1 j1 A j1 j2 A j1 j3

A j2 j1 A j2 j2 A j2 j3

A j3 j1 A j3 j2 A j3 j3
...

...
...

Anj1 Anj2 Anj3



 M j1 j

M j2 j

M j3 j

 =



0
...
0
1
0
...
0


, (5.72)

or simply

Â j m̂ j = e j ,



5.8 Near neighbour splitting for singular integral equations 229

where j2 = j , m̂ j = [M j1 j M j2 j M j3 j ]T , m j = [0T m̂ j 0T ]T , j1 =
j − 1, j3 = j + 1 for j = 2, . . . , n, j1 = n, j3 = 2 for j = 1, and j1 =
n − 1, j3 = 1 for j = n due to the choice of S and the wrap-around nature
of M−1.

The least squares problem (5.72) may be solved by the QR method [63,229].
For the approximation using this specific pattern S, we have the following
theorem.

Theorem 5.8.18. For the least squares problem (5.72) with Â j of size n × 3,

1. the residual for the solution m̂ j satisfies ‖r j‖2 ≤ 1 because the right-hand
side of (5.72) is a unit vector;

2. problem (5.72) is equivalent in the least squares sense to the following
problem with B j of a smaller size (i.e., 4 × 3),

B j m̂ j =


b11 b12 b13

b21 b22 b23

b32 b33

b43


 M j1 j

M j2 j

M j3 j

 =


1
0
0
0

 .

Further, the residual for the solution m̂ j can be written more specifically as

r j = [0 r̄ j ]
T and r̄ j = − sin θ1 sin θ2 sin θ3

for some θi ’s (so ‖r j‖2 < 1 if A1 j1 �= 0).

Therefore the matrix residual for the approximate inverse M−1 will be E = I −
AM−1 and its F-norm satisfies ‖E‖2

F = ∑n
j=1 ‖r j‖2

2 < n or ‖E‖F <
√

n.

Proof. For an orthogonal matrix Q = [q1, . . . , qn], let the QR-decomposition
of Â j be

Â j = QT

(
R
0

)
and let Qe j = q j . Define q j = [ĉT d̂T ]T where ĉT is of size 3 and d̂T is of
size n − 3. Then (5.72) is equivalent in the least squares sense to Rm̂ j = ĉT .
The solution is m̂ j = R−1ĉT . The residual error will be r j = e j − Â j m̂ j =
QT [0 d̂T ]T .

The first result is trivial because q j is a unit vector and so ‖r j‖2 = ‖d̂‖2 ≤
‖q j‖2 = 1. For the second result, we first multiply a permutation matrix P1, j

(also orthogonal), permuting rows 1 and j , to (5.72). The resulting equation
can be applied by three Householder transformations giving rise to the reduced
4 × 3 problem.
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Further, a sequence of three successive Givens transformations
1

1
cos θ3 sin θ3

− sin θ3 cos θ3




1
cos θ2 sin θ2

− sin θ2 cos θ2

1




cos θ1 sin θ1

− sin θ1 cos θ1

1
1


can reduce the 4 × 3 matrix B j to an upper triangular matrix (RT 0T )T and the
right-hand side to

ĉ = [cos θ1 − sin θ1 cos θ2 sin θ1 sin θ2 cos θ3 − sin θ1 sin θ2 sin θ3]T

for some θi ’s. Note that |r̄ j | ≤ 1 but if b11 = A1 j1 �= 0, | sin θ1| �= 1 so ‖r j‖2 <

1. Thus the second result follows.

Remark 5.8.19. This theorem illustrates the accuracy of inverse approxima-
tion using structure (5.71). More general results of this type and on eigenvalue
bounds can be found in [162,253] among others. In particular, note that the
residual error ‖E‖ is directly linked to the eigenspectrum λ(AM−1). Using
Definition 1.5.10, we may write

λ(AM−1) ∈ Υ[1,µLSAI]
[1,µLSAI]

,

where µLSAI is generally small depending on the approximation accuracy. This
behaviour of LSAI having the same (maybe small) cluster radius as the cluster
size is different from OSP having a very small cluster size but not necessarily
small cluster radius. We shall show that the DBAI is an interesting method that
has both small cluster size and small cluster radius.

5.8.2 The DBAI preconditioner

In (5.72), we expect three rows ( j1, j2, j3) of Â j to play a dominant role due
to the singular nature of the original operator. Therefore we may approximately
reduce (5.72) to a 3 × 3 system

A j m̂ j =
A j1 j1 A j1 j2 A j1 j3

A j2 j1 A j2 j2 A j2 j3

A j3 j1 A j3 j2 A j3 j3

  M j1 j

M j2 j

M j3 j

 =
 0

1
0

 , (5.73)

which of course makes sense from a computational point of view. This mod-
ified preconditioner M−1, of form (5.71), is a DBAI preconditioner. This is
the so-called method of mesh neighbours in [472]. The same idea was used
in the local least squares inverse approximation preconditioner of [452], the
truncated Green’s function preconditioner of [240], and the nearest neighbour
preconditioner of [365], among others.
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While heuristically reasonable, computationally simple, and experimentally
successful, the DBAI method has not been justified in theory. Here we present
results on an analysis for the method before discussing the generalized version
using more mesh neighbours.

To simplify the presentation, we first give two definitions and then a simple
lemma.

Definition 5.8.20. (Band+(dL , dU , bL , bU )). A band matrix An×n with wrap-
around boundaries is called Band+(dL , dU , bL , bU ) if its lower and upper band-
widths are bL and bU , respectively, and if furthermore the first dL bands below
the main diagonal are all zeros and the first dU bands above the main diagonal
are also all zeros.

Definition 5.8.21. (Band−(dL , dU , bL , bU )). A simple band matrix An×n

(without wrap-around boundaries) is called Band−(dL , dU , bL , bU ) if its lower
and upper bandwidths are bL and bU , respectively, and if furthermore the first
dL bands below the main diagonal are all zeros and the first dU bands above
the main diagonal are also all zeros.

Note that the first definition here is for matrices with wrap-around boundaries
while the second is for simple band matrices without wrap-rounds. In both
definitions, the parameters are non-negative integers, not exceeding (n − 1).
Here if dLdU �= 0, both Band+(dL , dU , bL , bU ) and Band−(dL , dU , bL , bU )
matrices have a zero diagonal. But if dLdU = 0 the diagonal information will
be stated in the context. With n = 6 we may illustrate Band+(0, 1, 2, 1) and
Band−(0, 1, 2, 1), respectively, by

0 0 × 0 × ×
× 0 0 × 0 ×
× × 0 0 × 0
0 × × 0 0 ×
× 0 × × 0 0
0 × 0 × × 0


and



0 0 × 0 0 0
× 0 0 × 0 0
× × 0 0 × 0
0 × × 0 0 ×
0 0 × × 0 0
0 0 0 × × 0


.

Therefore, for matrices from section 4.7, B and K are Band+(0, 0, 1, 1),
and C is Band−(1, 1, n − 3, n − 3). One may verify that, for example,
Band+(0, 0, 2, 2) = Band+(0, 0, 1, 1) + Band+(1, 1, 1, 1), and Band+(dL ,

dU , bL + 3, bU + 4) = Band+(dL , dU , 3, 4) + Band+(dL + 3, dU + 4, bL ,

bU ).

Lemma 5.8.22. (Multiplication of band matrices). If matrix An×n is
Band+(0, 0, bL1 , bU1 ), Bn×n is Band+(0, 0, bL2 , bU2 ) and Cn×n is Band−(dL3 ,

dU3 , bL3 , bU3 ), then
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1. AB is Band+(0, 0, bL4 , bU4 ), with bL4 = bL1 + bL2 and bU4 = bU1 + bU2 ;
2. AC is Band−(dL5 , dU5 , bL5 , bU5 ), with dL5 = max(0, dL3 − bL1 ),

dU5 = max(0, dU3 − bU1 ), bL5 = bL1 + bU1 + bL3 , and bU5 = bL1 + bU1 +
bU3 .

Proof. The proof is by simple inductions.

We are now in a position to study the singularity separation property of the
preconditioned matrix AM−1.

Theorem 5.8.23. The DBAI preconditioner admits a diagonal operator split-
ting. Therefore for singular BIEs, the preconditioned matrix and its normal
matrix have clustered eigenvalues.

Proof. Partition matrix A as follows (as illustrated in Figure 5.2)

A = D + B2 + C2,

where D is the diagonal matrix of A, B2 is Band+(0, 0, 2, 2) (with a zero
diagonal), and C2 is Band−(2, 2, n − 5, n − 5). That is,

B2 =



A12 A13 A1n−1 A1n

A21 A23 A24 A2n

A31 A32 A34 A35

A42 A43 A45
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . . An−2n

An−11
. . .

. . . An−1n

An1 An2 Ann−2 Ann−1



.

First, from a similar matrix splitting of the operator A, we can show that the
off diagonal operators are compact due to smooth kernels. Therefore assuming
the original operator A is bounded, using Lemma 4.7.12, we see that A j has a
bounded inverse and so M−1 is bounded.
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Figure 5.2. Illustration of operator splitting of DBAI (n = 14).
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Secondly, to work out an explicit formula for AM−1 − I in terms of
D, B2, C2, we have

AM−1 = DM−1 + B2 M−1 + C2 M−1,

where DM−1 is Band+(0, 0, 1, 1) as with M−1. From Lemma 5.8.22, B2 M−1 is
Band+(0, 0, 3, 3) with a nonzero diagonal and C2 M−1 is Band−(1, 1, n − 3,

n − 3). Now do a simple splitting B2 M−1 = B(1)
2 + B(2)

2 with B(1)
2 as a

Band+(0, 0, 1, 1) matrix and B(2)
2 as Band+(1, 1, 2, 2). So defining C3 =

B(2)
2 + C2 M−1 gives

AM−1 = DM−1 + B(1)
2 + C3. (5.74)

From the construction of M−1, we see that

DM−1 + B(1)
2 = I.

Therefore the matrix D is implicitly inverted because (5.74) becomes

AM−1 = I + C3. (5.75)

In this formula, notice that C3 is solely determined by terms B2 and C2 which
correspond to compact operators (refer to Lemma 4.7.12). Thus matrix C3 can
be viewed as from a discretization of a compact operator and its eigenvalues
and those of its normal matrix are thus clustered at 1.

The present DBAI is specified by the pattern in (5.71), that is, using the
nearest neighbours. As is known from [452,240,365,147], one may use more
than one level of neighbours. In our notation, this means that we use the new
pattern of a Band+(0, 0, s, s) matrix or a band k = 2s + 1 matrix instead of
a Band+(0, 0, 1, 1) matrix or a band 3 matrix. For brevity, we name such a
preconditioner DBAI(k). Thus s = 1 (or k = 3) gives the same DBAI as before.
We now consider s > 1 (or odd k ≥ 5).

Then to solve for the j th column of M−1, we solve a new k × k system

A j m̂ j =



A j1 j1 · · · A j1 js+1 · · · A j1 jk
... · · · ... · · · ...
A js+1 j1 · · · A js+1 js+1 · · · A js+1 jk
... · · · ... · · · ...
A jk j1 · · · A jk js+1 · · · A jk jk





M j1 j
...
M js+1 j
...
M jk j

 =



0
...
0
1
0
...
0


,

(5.76)
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where js+1 = j always, j� = j + � − s − 1 for � = 1, . . . , k, and j�’s take
wrap-around index values outside the range of [1, n] as with (5.72). Compare
to (5.73).

It remains to identify the operator splitting implied in this DBAI(k). We can
prove the following.

Theorem 5.8.24. The DBAI(k) admits the same diagonal operator splitting as
DBAI. Therefore for singular BIEs, the preconditioned matrix and its normal
have clustered eigenvalues.

Proof. Follow the similar lines of proving Theorem 5.8.23, partition matrix A
as follows:

A = D + B2s + C2s,

where B2s is Band+(0, 0, 2s, 2s) and C2s is Band−(2s, 2s, n − 2s − 1, n −
2s − 1), to complete the proof.

We have thus shown that DBAI is an OSP (having a small cluster size),
although it appears more like an LSAI method (having a small cluster radius).
So DBAI possesses advantages of both methods: inverse approximation (of
LSAI) and operator splitting (of OSP). Using Definition 1.5.10, we may write
for DBAI λ(AM−1) ∈ Υ[]

[n1,µOSP]1, µLSAI, where the cluster radius µLSAI is related
to the approximation error (that can be made smaller by increasing k) and µOSP

is small due to operator splitting.
It remains to specify what k should be used. Since working out the precondi-

tioner M−1 takes O(k3n) operations, to ensure that this work does not exceed n2

operations (one step of matrix vector multiplication), we suggest to choose k as
an odd integer satisfying 3 ≤ k ≤ cn1/3 for some fixed constant c (say c = 1).
This will be used in the experiments below.

5.8.3 Analysis of the 3D case

The analysis presented so far is mainly for two-dimensional (2D) problems.
However, for 3D problems, a similar analysis can be done. For LSAI and
DBAI, the essential difference is that the sparsity pattern S due to mesh neigh-
bours, depending on the geometry of the surface and ordering, is more irreg-
ular and complex than that from (5.71). This is because the mesh neighbours
are not always related to neighbouring entries in matrix A. In the 3D exam-
ple of Section 5.9, the number of mesh neighbours varies from element to
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element (say one case with four neighbours and another with at least nine
neighbours).

However, it is not difficult to understand why the analysis presented for
DBAI can be generalized to this case in a similar way since all we need to do is
to replace band matrices by pattern matrices. Let S denote the sparsity pattern
of a mesh neighbouring strategy (see Section 5.9 for both edge and edge/vertex-
based strategies). This includes the case of introducing levels of neighbours as
in the 2D case.

Definition 5.8.25. For any matrix B, given the sparsity pattern S, define the
pattern S splitting of B as

B = PattS (B) + PatoS (B),

where PattS (B) is the sparse matrix taking elements of B at location S and
zeros elsewhere and PatoS (B) is the complement matrix for B.

If we use M−1 to denote the DBAI preconditioner based on S, then M−1 =
PattS (M−1).

We can now establish that the DBAI preconditioner admits a diagonal split-
ting. As in the proof of Theorem 5.8.23, partition matrix A as follows:

A = D + C,

where D = diag(A). Then

AM−1 = DM−1 + C M−1

= PattS (DM−1 + C M−1) + PatoS (C M−1)
= I + PatoS (C M−1)
= I + C3,

because PattS is not affected by diagonal scaling and it also has the simple
summation property. As with (5.75), matrix C3 is solely determined by matrix
C , which corresponds to a compact operator. Thus DBAI admits a diagonal
operator splitting. Therefore the DBAI preconditioned matrix and its normal
matrix have clustered eigenvalues at 1 with a small cluster size. Also from the
approximation inversion property of DBAI, we know that the eigenvalues have
a small cluster radius.

Remark 5.8.26. For both OSP- and LSAI-type methods, as is known, one
may improve the eigenvalue clustering (in particular the cluster size for OSP
and cluster radius for LSAI). However, as our analysis shows, the DBAI using
a more complex sparsity pattern S does not imply a similar operator splitting
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beyond the diagonal splitting (i.e., one cannot observe much change in the
cluster size) although the cluster radius will be reduced. It is straightforward to
establish that a block matrix version of DBAI admits a block diagonal splitting.
More work is needed to find a DBAI-like method admitting more than the block
diagonal splitting (say, tridiagonal in two dimensions).

5.9 Numerical experiments

To illustrate the main inverse type preconditioners, we again take the test ma-
trices as defined in Section 4.9.

For readers’ benefit, we have shown the steps taken to test the methods
in the driver Mfile run_ai.m with some results displayed in Figures 5.3
and 5.4. Clearly one observes that both variants of the approximate inverse
preconditioner are effective. However the effectiveness is in practice dependent
on the maximum number of nonzeros allowed per column, as remarked earlier,
and for difficult situations deflation techniques have to be considered.
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Figure 5.3. GMRES(50) results formatrix1 (Section 4.9) using the approximate
inverse preconditioners.
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Figure 5.4. GMRES(50) results formatrix2 (Section 4.9) using the approximate
inverse preconditioners. Here ‘*’ denotes the case of no preconditioning (and no
convergence).

5.10 Discussion of software and the supplied Mfiles

There exist several pieces of software that implement the approximate inverse
type preconditioners; we list a few of them.

(1) ‘SPAI’ (Marcus Grote and Thomas Huckle):

http://www.sam.math.ethz.ch/∼grote/spai/

(2) ‘SPARSLAB’ (Michelle Benzi and Miroslav Tuma):

http://www.cs.cas.cz/∼tuma/sparslab.html

(3) ‘SAINV’ preconditioner (Richard Bridson):

http://www.cs.ubc.ca/∼rbridson

(4) ‘HSL: MI12’ (Nicholas Gould and Jennifer Scott):

http : //www.cse.clrc.ac.uk/nag/hsl/contents.shtml

At the level of research investigations, we have supplied the following Mfiles.
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[1] chebg.m – Driver file for solving Ax = b using the Chebyshev precon-
ditioner via cheb_fun.m.

[2] cheb_fun.m – Implementation of Algorithm 5.3.3.
[3] spai2.m – Illustration of the SPAI algorithm 5.4.5
[4] waz_t.m – Illustration of FSAI/AINV algorithm 5.5.9.
[5] def_no.m – Illustration of two deflation methods and an approximate

deflation (Ritz) method.
[6] run_ai.m – The main driver Mfile for illustrating spai2.m and

waz_t.m using the test matrices as in Section 4.9.
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Multilevel methods and preconditioners [T3]:
coarse grid approximation

Whenever both the multigrid method and the domain decomposition
method work, the multigrid is faster.

Jinchao Xu, Lecture at University of Leicester
EPSRC Numerical Analysis Summer School, UK (1998)

This paper provides an approach for developing completely parallel mul-
tilevel preconditioners. . . . The standard multigrid algorithms do not allow
for completely parallel computations, since the computations on a given
level use results from the previous levels.

James H. Bramble, et al.
Parallel multilevel preconditioners. Mathematics of Computation,

Vol. 55 (1990)

Multilevel methods [including multigrid methods and multilevel precon-
ditioners] represent new directions in the recent research on domain de-
composition methods . . . they have wide applications and are expected to
dominate the main stream researches in scientific and engineering com-
puting in 1990s.

Tao Lu, et al. Domain Decomposition Methods.
Science Press, Beijing (1992)

The linear system (1.1) may represent the result of discretization of a continuous
(operator) problem over the finest grid that corresponds to a user required
resolution. To solve such a system or to find an efficient preconditioner for it,
it can be advantageous to set up a sequence of coarser grids with which much
efficiency can be gained.

This sequence of coarser grids can be nested with each grid contained in
all finer grids (in the traditional geometry-based multigrid methods), or non-
nested with each grid contained only in the finest grid (in the various variants
of the domain decomposition methods), or dynamically determined from the

240
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linear system alone in a purely algebraic way (the recent algebraic multigrid
methods).

As it is impossible to include all such multilevel methods in the vast
topic, this Chapter will highlight the main ideas and algorithms in a selective
way.

Section 6.1 Multigrid method for linear PDEs
Section 6.2 Multigrid method for nonlinear PDEs
Section 6.3 Multigrid method for linear integral equations
Section 6.4 Algebraic multigrid methods
Section 6.5 Multilevel preconditioners for GMRES
Section 6.6 Discussion of software and Mfiles

6.1 Multigrid method for linear PDEs

We first describe the geometric multigrid method for solving a linear elliptic
PDE {

Lu = f, � ⊂ R
d ,

u(p) = g(p), p ∈ � = ∂�.
(6.1)

In particular we shall illustrate the 1D case d = 1 graphically:{
Lu = −u′′ = f, � = (0, 1) ⊂ R,

u(0) = u(1) = 0,
(6.2)

and present multigrid algorithms for the 2D case d = 2. A multigrid method
cleverly combines two separate (and old) mathematical ideas:

(1) fine grid residual smoothing by relaxation;
(2) coarse grid residual correction.

Although the first multigrid appeared in early 1960s, the actual efficiency was
first realized by A. Brandt in 1973 and W. Hackbusch in 1976 independently;
see [72,185,263,259,495,490] and the many references therein. A multigrid
algorithm using the above two ideas has three components, namely:

(1) Relaxation step;
(2) Restriction step;
(3) Interpolation (or prolongation) step;

of which the first step is the most important.
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6.1.1 Relaxation and smoothing analysis

Several relaxation methods were analyzed in Chapter 3 using matrix analysis.
The so-called smoothing property of a relaxation method refers to its ability
to smooth out the residual after a small number of iterations. In this sense, the
residual vector r = [1 1 . . . 1]T is perfectly smooth (but not small) while the
residual vector r = [1 1 . . . 1 0 . . . 0]T is less smooth (though relatively smaller
in norm). Mathematically speaking, a function is called smooth if its Fourier
coefficients are decaying, i.e. it is essentially in a span of some low frequency
Fourier basis functions (for vectors we use the grid function Fourier series). A
relaxation method is called a good smoother if the smoothing rate (measured
by the maximal ratio by which the high frequency coefficients of the error is
reduced per step) is less than 1. Thus the task of a smoothing analysis is to
establish if a relaxation method for a given problem is an adequate smoother.
In this context, any convergence of a relaxation method is not relevant.

Let a multiple level of grids be denoted by Tk with k = 1, 2, . . . , J and
TJ be the finest grid (directly associated with the system (1.1)) as shown in
Figure 6.1 for n = 15 and k = 3 levels. Here J can be flexibly chosen to allow
the coarsest gridT1 to have a suitable number of grid points – for linear problems
T1 may have n1 = 1 point but n1 � 1 for nonlinear problems. With uniform
refinement, one may define the grid Tk−1 to obtain the grid points of Tk as
follows (note: n = n J − 1 on TJ )

xk
i = ihk, i = 1, 2, . . . , nk − 1, hk = 1

nk
= 2J−k

n J
= 2J−k

n + 1
, (6.3)

with nk = (n + 1)/2J−k = n J /2J−k . Here Tk represents the k-th level dis-
cretization of the entire domain � and hence Tk can be analogously defined
in higher dimensions [354,29]. Then on a typical grid Tk , using the FDM (or
the FEM with piecewise linear elements [308]) leads to the familiar linear

Finest T
3

T
2

Coarsest T
1

Figure 6.1. Illustration of the set-up of multiple grids (k = 3 levels).
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system

Lkuk =



2 −1

−1 2 −1

−1 2
. . .

. . .
. . . −1

−1 2




uk

1

uk
2

...

uk
nk−1

 =


gk

1

gk
2

...

gk
nk−1

 = gk, (6.4)

where we set g j = h2
k g(xk

j ). We now consider the damped Jacobi method and
the Gauss–Seidel method for (6.4). Let e j = u j − uk

j be the solution error with
u j = u(xk

j ) the exact solution of (6.4).
To avoid any confusion, we recall that a periodic grid function can be repre-

sented by a complex Fourier series [490,Ch.7] with i = √−1

e j =
nk/2∑

α=1−nk/2

cαe2i jπα/nk =
nk/2∑

α=1−nk/2

cαei2απx j =
nk/2∑

α=1−nk/2

cαeiθα

x j
hk (6.5)

with θα = 2απ/nk ∈ [−π, π ], or a Fourier since series (for homogeneous
Dirichlet boundary conditions)

e j =
nk−1∑
α=1

cα sin jπα/nk =
nk−1∑
α=1

cα sin απx j =
nk−1∑
α=1

cα sin θα

x j

hk
(6.6)

with θα = απ/nk ∈ [0, π ]. Here we used the mesh size information h = hk =
1/nk . Observe that the following Fourier modes provide the basis for expansion
in (6.6):

{sin πx, sin 2πx, sin 3πx, · · · , sin(nk − 1)πx} or{
sin θ1

x

h
, sin θ2

x

h
, sin θ3

x

h
, · · · , sin θnk−1

x

h

}
(6.7)

and in (6.5){
1, e±iπx , e±2iπx , e±3iπx , · · · , e±(nk−1)iπx , enk iπx

}
or{

1, exp ±iθ1x, exp ±iθ2x, exp ±iθ3x, · · · , exp ±iθnk−1x, exp iθnk x
}
.

(6.8)

Within each basis, one can see that it ranges from the mildly varying basis
functions to the fast oscillating functions. In the multigrid context, we shall
name these mildly varying functions (the first half in the basis)

the low frequency functions — sin απx, or exp(iθαx)
θα ∈ [−π/2, π/2], α = 1, 2, . . . , nk/2,
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and the rest of fast oscillating functions

the high frequency functions — sin απx, or exp(iθαx)
θα ∈ [−π, π ]\[−π/2, π/2], α=1 + nk/2, . . . , nk − 1.

Correspondingly, the expansion for the error e j will have a decomposition of
low frequency terms and high frequency terms.

Remark 6.1.1. If the grid function is not periodic, the same Fourier expansion
can still be used for smoothing analysis approximately. See [72,490]. However,
for our particular example (6.4), the Fourier series happens to provide the eigen-
functions but we shall not use this fact for sake of generality. A careful reader
can see the similarity between this smoothing analysis and the von Neumann’s
stability analysis for time-marching schemes for parabolic problems [400]. The
multidimensional series is similar [490]; incidentally the first uses of the Fourier
formula in [490,pages 6/7] had the incorrect range for α.

� The damped Jacobi method. The typical grid equation on Tk is

unew
j = ωuold

j + (1 − ω)
gk + uold

j+1 + uold
j−1

2

As the exact u j for the discretized equation naturally satisfies the grid equation,
i.e.

u j = ωu j + (1 − ω)
u j+1 + u j−1

2
,

we obtain that

enew
j = ωeold

j + (1 − ω)
eold

j+1 + eold
j−1

2
. (6.9)

In what follows, we shall replace all grid functions by their Fourier series and
essentially consider the so-called amplification factor i.e. the ratio between
cnew
α and cold

α for each α. The largest of such ratios will be the convergence
rate (of no interest here) while that of those ratios for large α ≥ nk/2 (the high
frequency range) will be the smoothing factor. Owing to linearity, we only need
to concentrate on the cnew

α term after substituting (6.6) into (6.9):

cnew
α sin jπα/nk

= cold
α ω sin jπα/nk + (1 − ω)cold

α

sin( j + 1)πα/nk + sin( j − 1)πα/nk

2
= cold

α sin jπα/nk [ω + (1 − ω) cos απ/nk]

= cold
α sin jπα/nk

[
1 − 2(1 − ω) sin2 απ

2nk

]
,
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where α = 1, 2, . . . , nk/2, . . . , nk − 1. Clearly the amplification factor for α is

aα =
∣∣∣∣cnew

α

cold
α

∣∣∣∣ =
∣∣∣∣1 − 2(1 − ω) sin2 απ

2nk

∣∣∣∣ .
With 0 < ω < 1 and for απ/(2nk) ∈ (0, π/2)

0 < sin2 απ

2nk
≤ sin2(π/4) = 1

2
, α = 1, 2, . . . , nk/2, (low frequency)

1

2
= sin2(π/4)< sin2 απ

2nk
< 1, α=nk/2 + 1, . . . , nk −1, (high frequency),

we obtain the smoothing factor (noting γω < 1), from high frequency α’s, as

γω = max
α>nk/2

aα =
{

ω, if 1/3 < ω < 1,

1 − 2ω, if 0 < ω ≤ 1/3.
(6.10)

Note that the low frequency range α = 1, 2, . . . , nk/2 for a fine gridTk coincides
with the complete frequency range of its next coarser grid Tk−1 because

ek−1
j =

nk−1−1∑
α=1

cα sin jπα/nk−1 (complete range for Tk−1)

=
nk/2−1∑

α=1

cα sin
2 j

nk
πα (low frequency range for Tk).

Hence assuming that the high frequency components on Tk are diminished
by an effective smoother, the Tk equation can be accurately solved on the
coarser grid Tk−1 which is much cheaper. The process can be repeated until we
reach grid T1 where the solution takes little effort. This is the basis of a good
coarse grid approximation for a fine grid.

� The Gauss–Seidel method. Similar to the Jacobi case, the Tk grid equation
is

2unew
j − unew

j−1 = gk + uold
j+1

so corresponding to (6.9) we obtain that

2enew
j − enew

j−1 = eold
j+1. (6.11)

On a quick inspection, the use of (6.6) will not lead to separation of the sine
terms so it is more convenient to use (6.5) by considering the Fourier mode
cold
α e2i jαπ/nk . Hence we have

2cnew
α e2i jαπ/nk − cnew

α e2i( j−1)απ/nk = cold
α e2i( j−1)απ/nk ,
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which, noting θα = 2απ/nk , leads to the following amplification factor

aα =
∣∣∣∣cnew

α

cold
α

∣∣∣∣ =
∣∣∣∣ e−iθα

2 − eiθα

∣∣∣∣
=

∣∣∣∣∣
[
sin2 θα + (2 − cos θα) cos θα

] + i
[

1
2 sin(2θα) + (2 − cos θα) sin θα

]
(2 − cos θα)2 + sin2 θα

∣∣∣∣∣
= 1√

(2 − cos θα)2 + sin2 θα

= 1√
5 − 4 cos θα

.

Note that θα ∈ (−π, π ] and the different

Low frequency α range: α = − nk
4 , . . . , nk

4 , θα = 2απ
nk

∈ [−π
2 , π

2 ]
High frequency α range: α = 1 − nk

2 , . . . , 1 − nk
4 ;

nk
4 +1, . . . , nk

2 , θα = 2απ
nk

∈(−π, π ]\[−π
2 , π

2 ].

correspond to the cases of 0 ≤ cos(θα) < 1 and −1 < cos(θα) < 0, respectively.
In the high frequency range, therefore, the smoothing factor (as the maximal
amplification factor) follows from the upper bound

γGS = max
|α|>nk/4

aα ≈ 1√
5 − 4 cos π/2

= 1√
5

= 0.45. (6.12)

Note γGS < 1 implies that the Gauss–Seidel is an effective smoother for the
model PDE. As with the Jacobi case, the above low frequency range for a fine
grid Tk will be covered by the complete frequency of the next coarser grid Tk−1

which is seen from

ek−1
j =

nk−1/2∑
α=1−nk−1/2

cαe2i jπα/nk−1 (complete range for Tk−1)

=
nk/4∑

α=1−nk/4

cαe2i 2 j
nk

πα (low frequency range for Tk).

Excluding α = 0, one can use the low frequency range to estimate the overall
convergence rate of both the Jacobi and the Gauss–Seidel methods (from taking
the maximal amplification factor) but we are not interested in this task.

Remark 6.1.2. To generalize the smoothing analysis to R
d , it is proposed

[72,460] to apply the so-called local Fourier analysis (LFA), i.e. to compute the
amplification factor, locally, using the Fourier mode ei jθ as with θ = 2α

nk
π ∈

[−π, π ] in 1D (d = 1).

(1) In R
d , one uses the general notation similar to (6.5)

φ(θ, x) = eiθ.∗x./h = ei(θ1x1/h1+θ2x2/h2+···+θd xd/hd )
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where ‘.*’ and ‘./’ denote the pointwise operations for vectors x =
(x1, x2, . . . , xd ), θ = (θ1, θ2, . . . , θd ), h = (h1, h2, . . . , hd ). Here θ
 ∈
[−π, π ]. If in each dimension the nested coarser grids are defined by
doubling the mesh size of a finer grid, this is what we call the standard
coarsening – for anisotropic problems it may be useful to keep some di-
mensions not coarsened (semi-coarsening). If the standard coarsening is
used, each low frequency corresponds to θ
 ∈ [−π/2, π/2]d while the high
frequency to θ
 ∈ [π, π ]d\[−π/2, π/2]d .

(2) An important issue on LFA is the word ‘local’, implying that all nonlinear
PDEs can be analysed locally as a linearized PDE. Consider the following
PDE in R

2

∇ (D(u, x, y)∇u) + c1(u, x, y)
∂u

∂x
+ c2(u, x, y)

∂u

∂y
+ c3(u, x, y)u

= g(x, y). (6.13)

Then linearization involves evaluating all the nonlinear coefficients D, c
’s
using some known past iteration (or simply approximate) function u =
u(x, y) – ‘freezing’ the coefficients as stated by [72]. Once this linearization
is done in (6.13), with the FDM, a typical discrete grid equation will be
studied locally at each discrete mesh point (xl , ym) ‘linearly’ as if for a
simple Laplacian

k0ulm − k1ul+1,m − k2ul−1,m − k3ul,m+1 − k4ul,m−1 = glm (6.14)

or if first-order terms are kept separately to be treated differently (e.g. using
the upwinding idea (1.93)), by a smoothing scheme

k0ulm −k1ul+1,m − k2ul−1,m − k3ul,m+1 − k4ul,m−1︸ ︷︷ ︸
second-order D term

−k5ul+1,m − k6ul−1,m − k7ul,m+1 − k8ul,m−1︸ ︷︷ ︸
first-order c1, c2 terms

= glm

where we have assumed the ‘constant’ coefficients k
 and glm have absorbed
the mesh size information h1, h2. Further the LFA of the Gauss–Seidel
smoother for (6.14) amounts to studying the grid equation

k0e(
+1)
lm − k2e(
+1)

l−1,m − k4e(
+1)
l,m−1 = k1e(
)

l+1,m + k3e(
)
l,m+1. (6.15)

The LFA would use e(
+1)
lm = cnew

α e
i
(
θ1

xl
h1

+θ2
ym
h2

)
and e(
)

lm = cold
α e

i
(
θ1

xl
h1

+θ2
ym
h2

)
in (6.15) to compute the amplification factor

aα = aα(θ1, θ2) =
∣∣∣∣cnew

α

cold
α

∣∣∣∣
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Figure 6.2. Illustration of error smoothing for (6.2) at different iterations using
the damped Jacobi method (left plot ω = 1/3) and the Gauss–Seidel method (right
plot). Clearly after 88 iterations, the errors converge towards 0 but that is not needed
by the multigrid method.

and the smoothing factor

γGS = max
θ
=(θ1,θ2)∈[π,π ]2\[−π/2,π/2]2

aα(θ1, θ2).

(3) It goes without saying that whenever the smoothing rate of a particular
smoother for a specific equation is not at least less than 1 (or less than 0.5 if
more stringently), the overall multigrid method may not have convergence;
if so, one has to find or design new and more appropriate smoothers.

In summary, the Fourier series-based smoothing factor analysis, as proposed
by [72], provides an effective tool to show that many relaxation methods may
be slow to converge but are always very fast in smoothing out the solution
error. Figure 6.2 shows how the solution error to (6.2) behaves at different
iterations using the damped Jacobi method (left plot) and the Gauss–Seidel
method (right plot); the figure is generated by the Mfiles ch6_mg2.m and
ch6_gs.m.
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The method using grids Tk and Tk−1 in any dimension d works as follows.

Algorithm 6.1.3. (The two-grid method).

(1) Relax the fine grid equation: Lkuk = gk on grid Tk for a small number of
smoothing steps to obtain the approximation uk such that the solution error
ek = u − uk is smooth. This implies this smooth error function (vector)
ek can be represented very accurately on a coarse grid Tk−1. The set up
(as shown in Chapter 3) is to solve the correction equation Lkek = rk ≡
gk − Lkuk .

(2) Restrict the residual function (vector) to grid Tk−1: rk−1 = Rk−1
k rk .

(3) Solve the coarse grid equation for the correction: Lk−1ek−1 = rk−1.
(4) Interpolation the coarse grid correction to obtain êk = Pk

k−1ek−1.
(5) Add the fine grid correction to obtain the new approximation ûk = uk + êk .
(6) Return to step (1) and continue the iterations unless ‖êk‖ is small.

Here the transfer operators for restriction Rk−1
k : Tk → Tk−1 and for prolonga-

tion Pk
k−1 : Tk−1 → Tk are usually linear mappings and described next.

6.1.2 Restriction and interpolation

The intergrid transfers are often based on standard choices and thus less de-
manding tasks than the smoothing step. Here we mainly discuss how the transfer
operators work for the FDM setting – for the FEM setting the approach is simi-
lar but is applied to transfer coefficients of the elements rather than grid values
(in fact, most FEMs use interpolatory elements and if so the coefficients are
the grid values of a underlying function). For second-order differential equa-
tions such as (1.53), the standard choice is the full weighting for restriction and
bilinear interpolation for interpolation [72,460].

� Restriction. Assume the fine grid values uk over Tk have been obtained
and we wish to restrict uk to the coarse grid Tk−1, as depicted by the left plot
in Figure 6.3 (• → �). The so-called full weighting (FW) restriction operator
Rk−1

k makes use of all near neighbours of a coarse grid point, described by

Rk−1
k uk(x, y) = 1

16

[
uk(x + hk, y + hk) + uk(x + hk, y − hk)

+ uk(x − hk, y + hk) + uk(x − hk, y − hk)
+ 2uk(x − hk, y) + 2uk(x − hk, y)
+ 2uk(x, y + hk) + 2uk(x, y − hk)

+ 4uk(x, y)
]

(6.16)
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1

1

1

2

2

2

2

1

4

Figure 6.3. Full weighting restriction of fine grid • values to the coarse grid
� values (with integer k f indicating the contribution to the weight w f =
k f /

∑
k f ).

with the stencil notation

uk−1 = Rk−1
k uk(x, y) = 1

16

 1 2 1
2 4 2
1 2 1

k−1

k

uk .

Noting that the 2D stencil can be decomposed as two one-dimensional FW
operators

1

16

 1 2 1
2 4 2
1 2 1

 = 1

4

[
1 2 1

] ⊗ 1

4

 1
2
1

 ,

one deduces that tensor products may define the FW operator in any dimen-
sion d.

� Prolongation. Corresponding to the FW operator, the commonly used inter-
polation operator for prolongation from Tk−1 to Tk is the bilinear (BL) operator
as depicted by Figure 6.4 (� → •). The BL operator again uses the immediate
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Figure 6.4. Bilinear interpolation of coarse grid � values to the fine grid • values
(with integer kc indicating the weight wc = kc/

∑
kc).

coarse neighbours, defined by

Pk
k−1uk−1(x, y) =

1
4

[
uk−1(x + hk, y + hk) + uk−1(x + hk, y − hk)

+ uk−1(x − hk, y + hk) + uk−1(x − hk, y − hk)
] with four neighbours

1
2

[
uk−1(x, y + hk) + uk−1(x, y − hk)

]
with two neighbours

1
2

[
uk−1(x + hk, y) + uk−1(x − hk, y)

]
with two neighbours

uk−1(x, y) coinciding points

(6.17)
with the (somewhat less intelligent) stencil notation

uk = Pk
k−1uk−1(x, y) = 1

4

 1 2 1
2 4 2
1 2 1

k

k−1

uk−1.

The reason why the two operators (FW and BL) are often used together is
that they are adjoint to each other [490,460] in the sense that(

Pk
k−1uk−1, vk

) = (
uk−1, Rk−1

k vk
)
, ∀vk ∈ Tk, (6.18)

where (, ) denotes the usual inner product i.e. (u, v) = uT v = ∑
j u jv j . An-

other pair of restriction and interpolation operators, popularized by [489,490],
is the seven-point weighting operator as depicted by Figure 6.5. For conver-
gence requirement [259,460,490], the sum of the orders of a pair of transfer
operators should exceed the order of the differential operator. Here the order of
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1 1

1

1

1

1

Figure 6.5. Wesseling’s seven-point restriction operator (middle plot • → �) and
its adjoint operator for linear interpolation (right plot � → •).

an interpolation operator is equal to 
 + 1 if the interpolation is exact for all
polynomials of degree 
 while the order of a restriction operator is equal to that
of its transpose. As linear operators are often of order 2, therefore, the pairing
of FW and BL will satisfy the convergence requirement for these orders if using
to solve second order differential equations as 2 + 2 > 2 (e.g. the Laplace and
Helmholtz) but not for solving the biharmonic equation as 2 + 2 �> 4. For the
same reason, the pairing of an injection operator (of order 0)

uk−1(x, y) = Rk−1
k uk(x, y) = uk(x, y), if (x, y) ∈ Tk−1 ⊂ Tk (6.19)

and the BL (bilinear) interpolation operator is not suitable for solving second-
order PDEs as 2 + 0 �> 2.

6.1.3 Multigrid algorithms

A J -level multigrid algorithm, repeatedly using Algorithm 6.1.3, operates J
grids:

T1 ⊂ T2 ⊂ · · · ⊂ TJ .

The aim is to solve the equations on the finest TJ iteratively, assuming that
smoothing can be adequately done on all fine grids and we can afford to solve
the coarsest grid equations on T1 directly (e.g. by Gaussian elimination as in
Chapter 2).
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Denote the grid Tk equations by system (such as (6.4))

Lkuk = gk (6.20)

where we assume that Lk is discretized directly from L in (6.1), although an
alternative method is, by the so-called Galerkin approximation, to generate it
recursively from the matrix LJ on the finest grid TJ i.e.

Lk = Rk
k+1Lk+1 Pk+1

k .

Assume uk is the current approximation to (6.20). Then the task of a multi-
grid method is to consider how to solve for the residual correction vk

efficiently

Lkvk = rk ≡ gk − Lkuk (6.21)

with the aim of producing an improved solution, uk = uk + vk to (6.20).
Denote by Relaxν

k (u, f ) the result of ν steps of some relaxation method for
(6.20) with gk = f and the initial guess uk = u.

Algorithm 6.1.4. (The multigrid method).

To solve the discretized PDE (6.20) on TJ with k = J , assume we have set up
these multigrid parameters:

ν1 pre-smoothing steps on each level k (before restriction)
ν2 post-smoothing steps on each level k (after interpolation)
γ the number of multigrid cycles on each level k or the cycling

pattern (γ = 1 for V-cycling and γ = 2 for W-cycling – refer
to Figure 6.6).

(1) To obtain an initial guess uJ on TJ , use the following FMG (full multigrid
methods):

Solve on T1 for u1 exactly, L1u1 = g1

for k = 2, . . . , J , do
Interpolate to the next fine grid, uk = Pk

k−1uk−1,
if k = J , end the FMG step else continue,
Implement γ steps of MG M(uk, gk, k),

end for k = 2, . . . , J
(2) Based on the initial uJ to equation (6.20), to do 
 steps of a γ -cycling

multigrid, use

MG M(uJ , gJ , J ).
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(3) The general step of a γ -cycling multigrid MG M(uk, gk, k) proceeds as
follows

MG M(uk, gk, k) :
if k = 1, then

Solve on T1 for u1 exactly , L1u1 = g1

else, on grid Tk , do
Pre-smoothing : uk = Relaxν1

k (uk, gk),
gk−1 = Rk−1

k (gk − Lkuk) ,

Set the initial solution on Tk−1 to zero, uk−1 = 0,

Implement γ steps of MG M(uk−1, gk−1, k − 1),
Add the residual correction, uk = uk + Pk

k−1uk−1,

Post-smoothing : uk = Relaxν2
k (uk, gk),

end if k
end one step of MG M(uk, gk, k).


The above algorithm using the self-loop idea is quite easy to implement if the
reader intends to code it in C, Pascal, or Algol, or a MATLAB r© script, since
all these languages allow a subprogram to call itself. However, Fortran users
may find it not helpful. Following the published code MG00D in [443,p.160],
we may rewrite Algorithm 6.1.4 in a Fortran friendly way.

Algorithm 6.1.5. (The multigrid method (Fortran version)).

To solve the discretized PDE (6.20) onTJ with k = J , prepare as with Algorithm
6.1.4 and use the following non-recursive module for MG M(uk, gk, k).

� Set up an integer vector I CG AM = I CG AM(1 : J ) to control and count
whether we have done γ steps on each grid Tk .

� On the finest grid TJ , assume uJ is the result of the initial guess from a FMG
step. The general step of a γ -cycling multigrid MG M(uk, gk, k) proceeds as
in Table 6.1.

Observe that both Algorithms 6.1.4 and 6.1.5 use u j vectors for solution and
correction i.e. they do not explicitly use the set of correction vectors v j (to save
storage); likewise the residual vectors r j were replaced by the right-hand side
vectors g j i.e. once the FMG is done, g j is over-written by residuals. Finally we
remark that when the linear PDE (6.1) admits variable and highly nonsmooth
coefficients (even with discontinuities or jumps), both the smoothing strategies
and transfer operators may have to be adapted [460]. Refer also to the survey
in [120].
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Table 6.1. Details of the MGM Algorithm 6.1.5 – non-self-recursive
version.



MG M(uk, gk, k) :
Label 10:

I CG AM( j) = 0, j = 1, . . . , k (set the counters)
Set the active level number, 
 = k

if 
 = 1, goto Label 30 else continue
Label 20 :

if 
 < k and I CG AM(
) = 0,
Set the initial solution on T
 to zero, u
 = 0,

end if 
 < k and I CG AM(
) = 0
Pre-smoothing : uk = Relaxν1

k (uk, gk),
Record one visit to T
, I CG AM(
) = I CG AM(
) + 1,

Restrict g
−1 = R
−1
k (g
 − L
u
) ,

Update the level number, 
 = 
 − 1,
if 
 > 1, goto Label 20 else continue,

Label 30 :
Solve on T1 for u1 exactly , L1u1 = g1

if 
 = k, goto Label 50 else continue,
Label 40 :

Update the level number, 
 = 
 + 1,

Add the residual correction, u
 = u
 + P


−1u
−1,

Post-smoothing : u
 = Relaxν2

 (u
, g
),

if 
 = k, goto Label 50 else continue,
if I CG AM(
) < γ , goto Label 20,

else set the counter to zero, I CG AM(
) = 0,
end if I CG AM(
) < γ ,
Continute from Label 20 on grid T
 (as not done γ steps yet)

Label 50 :
end one step of MG M(uk, gk, k).



6.1.4 Convergence results

We now discuss the classical convergence result as shown in W. Hackbusch
[258,259] for the multigrid Algorithm 6.1.4. Other results may be found in
[503].

The convergence proof is consisted of two parts. Firstly relate the multigrid
iteration to the two grid iteration (or if the two grid method converges, the
multigrid would also converge). Secondly establish the convergence of the two-
grid method from assumptions on the smoothing analysis and the properties of
the transfer operators.
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For solving the Tk equation (6.20), let the multigrid iteration matrix be MMG
k

defining the iteration from u( j)
k to u( j+1)

k

u( j+1)
k = MMG

k u( j)
k + N MG

k gk for j = 0, 1, 2, . . . , (6.22)

and let MTG
k be the two-grid iteration matrix (using the coarse grid Tk−1).

To characterize smoothing steps, let Sν
k denote the smoothing matrix whose

application corresponds to ν steps of a relaxation method. Recall that, between
grids Tk and Tk−1, Algorithm 6.1.4 implements (setting vk−1 = 0, initially,
Mk−1 = MMG

k−1, Nk−1 = N MG
k−1)



uk = u( j)
k � uI

k : ν1 steps of uk = Skuk + [. . .]gk,

set gk−1 = Rk−1
k (gk − LkuI

k ),
uI

k � vI
k−1 : γ steps of vk−1 = Mk−1vk−1 + Nk−1gk−1,

uI
k , vI

k−1 � ûk : 1 step of uk = uI
k + vk = uI

k + Pk
k−1vI

k−1,

uk = ûk � uI I
k : ν2 steps of uk = Skuk + [. . .]gk .

(6.23)

Each of the above five lines will be expanded in Table 6.2.
Here the notation [. . .] denotes terms that are not depending on g and u and it

remains to determine N MG
k . To complete the task of relating the iteration matrix

MMG
k to MMG

k−1 (and MTG
k ), we now consider how to express N MG

k−1 in terms of
MMG

k−1 and Lk−1.

Lemma 6.1.6. (Hackbusch [258]). Let a linear and converging iteration for
some linear system Au = f such as (1.1) be denoted by

u( j+1) = Mu( j) + N f, j = 0, 1, 2, . . . (6.26)

where M is the iteration matrix. If A is invertible, then N can be expressed by

N = (I − M)A−1. (6.27)

Proof. Let u be the exact solution to Au = f. Then u = Mu + N f i.e. (I −
M)A−1 f = N f for any given f. So the proof is complete.

Now applying Lemma 6.1.6 to v( j+1)
k−1 = MMG

k−1v( j)
k−1 + N MG

k−1gk−1, for j =
0, 1, 2, . . . , we obtain that

N MG
k−1 = (I − MMG

k−1)L−1
k−1. (6.28)
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Table 6.2. Derivation of the convergence matrix for (6.22) and (6.23).

Consider (6.23). The first line can be denoted by uI
k = Sν1

k u( j)
k + [. . .]gk .

The (crucial) third line may be reformulated, using the second line
gk−1 = Rk−1

k (gk − LkuI
k ), as

Cycle 0 vk−1 = 0
Cycle 1 vk−1 = Nk−1gk−1 = Nk−1

(−Rk−1
k Lk

)
uI

k + [. . .]gk

Cycle 2 vk−1 = Mk−1vk−1 + Nk−1gk−1

=
1∑

j=0

M j
k−1 Nk−1

(−Rk−1
k Lk

)
uI

k + [. . .]gk

Cycle 3 vk−1 = Mk−1vk−1 + Nk−1gk−1

=
2∑

j=0

= M j
k−1 Nk−1

(−Rk−1
k Lk

)
uI

k + [. . .]gk

...
...

Cycle γ vI
k−1 = vk−1 = Mk−1vk−1 + Nk−1gk−1

=
γ−1∑
j=0

M j
k−1 Nk−1

(−Rk−1
k Lk

)
uI

k + [. . .]gk .



(6.24)

Now we are ready to formulate the complete algorithm

u( j+1)
k = MMG

k u( j)
k + N MG

k gk = uI I
k .

Noting that the fifth line is u( j+1)
k = uI I

k = Sν2
k ûk + [. . .]gk , we obtain

u( j+1)
k = uI I

k = Sν2
k ûk + [. . .]gk = Sν2

k

[
uI

k + Pk
k−1vI

k−1

]︸ ︷︷ ︸
ûk

+ [. . .]gk

= Sν2
k

[
I + Pk

k−1

γ−1∑
j=0

M j
k−1 Nk−1

(−Rk−1
k Lk

) ]
uI

k + [. . .]gk

= Sν2
k

[
I − Pk

k−1

γ−1∑
j=0

M j
k−1 Nk−1 Rk−1

k Lk

] (
Sν1

k u( j)
k + [. . .]gk

)
+ [. . .]gk

= Sν2
k

[
I − Pk

k−1

γ−1∑
j=0

M j
k−1 Nk−1 Rk−1

k Lk

]
Sν1

k u( j)
k + N MG

k gk

= Sν2
k

[
I − Pk

k−1

γ−1∑
j=0

(MMG
k−1) j N MG

k−1 Rk−1
k Lk

]
Sν1

k︸ ︷︷ ︸
MMG

k

u( j)
k + N MG

k gk .

(6.25)
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Substituting this into (6.25), we can simplify the multigrid iteration matrix to

MMG
k = Sν2

k

[
I − Pk

k−1

γ−1∑
j=0

(MMG
k−1) j

(
I − MMG

k−1

)
L−1

k−1 Rk−1
k Lk

]
Sν1

k

= Sν2
k

[
I − Pk

k−1

(
γ−1∑
j=0

(MMG
k−1) j

(
I − MMG

k−1

))
L−1

k−1 Rk−1
k Lk

]
Sν1

k

That is,

MMG
k = Sν2

k

[
I − Pk

k−1

(
I − (MMG

k−1)γ
)
L−1

k−1︸ ︷︷ ︸
from all coarse grids

Rk−1
k Lk

]
Sν1

k .
(6.29)

To simplify (6.29), we shall formulate the two-grid iteration matrix MTG
k , using

vk = L−1
k−1gk−1, gk−1 = Rk−1

k (gk − Lkuk), uk = Sν1
k u( j)

k + [. . .]gk .

Again we use Lemma 6.1.6 to derive the following

u( j+1)
k = MTG

k u( j)
k + N TG

k gk

= Sν2
k

[
uk + Pk

k−1vk
]

= Sν2
k

[
I − Pk

k−1L−1
k−1 Rk−1

k Lk
]

Sν1
k u( j)

k + N TG
k gk

(6.30)

and, furthermore, to deduce from (6.29) that{
MTG

k = Sν2
k

[
I − Pk

k−1L−1
k−1 Rk−1

k Lk
]

Sν1
k ,

MMG
k = MTG

k + Sν2
k Pk

k−1(MMG
k−1)γL−1

k−1 Rk−1
k Lk Sν1

k .
(6.31)

This latter equation is the most important relation linking the multigrid conver-
gence rate to the two-grid rate.

Thus the convergence analysis for the multigrid method [258,460] amounts
to estimating the norm of the iteration matrix∥∥MMG

k

∥∥ ≤ ∥∥MTG
k

∥∥ + ∥∥Sν2
k Pk

k−1

∥∥ ∥∥MMG
k−1

∥∥γ ∥∥L−1
k−1 Rk−1

k Lk Sν1
k

∥∥ . (6.32)

Theorem 6.1.7. Let σ be the upper bound for the convergence rate of two
grid methods and the transfer operator-related terms in (6.32) are uniformly
bounded i.e.∥∥MTG

k

∥∥ ≤ σ and
∥∥Sν2

k Pk
k−1

∥∥ ∥∥L−1
k−1 Rk−1

k Lk Sν1
k

∥∥ ≤ C.

Then the sequence ηk , recursively defined by,

ηk = σ + Cη
γ

k−1, with η1 = σ, k = 2, . . . , J,
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provides the upper bound for ‖MMG
k ‖ i.e.∥∥MMG

k

∥∥ ≤ ηk .

If we assume the fast convergence of two-grid methods i.e. max(4Cσ, 2σ ) < 1
and γ = 2, then

∥∥MMG
k

∥∥ ≤ η = lim
k→∞

ηk = 1 − √
1 − 4Cσ

2C
= 2σ

1 + √
1 − 4Cσ

≤ 2σ.

Proof. The limit equation is Cη2 − η + σ = 0 which is solvable if 4Cσ <

1, and 2σ < 1 means that the multigrid method is convergent. See [258,259,
460].

Further theories on verifying the satisfaction of the assumptions in Theo-
rem 6.1.7 require specifying the exact problem classes [495,258,259,460,503].
Clearly the two extremes exist.

(1) If the good smoothers are hard to find, or if the two grid methods are not
convergent, multigrid methods will not converge.

(2) If the operator L (or the matrix Lk) is SPD, the multigrid convergence is
guaranteed – this is the case (Chapter 3) when the Gauss–Seidel method is
actually convergent (maybe slowly converging).

It may be remarked that, while it is justified to argue that multigrid meth-
ods offer a wonderful idea which is in danger of being spoiled by the tradi-
tional and restrictive relaxation methods (and hence one should try to stay
away from them to achieve robustness), the multigrid convergence theory
never specifies what smoothers should be used. In fact, a lot of problems
beyond the strongly elliptic PDEs have been solved by other smoothers e.g.
the node colouring GS smoothers [326,413,4], the ILU smoother [490] and
the SPAI smoother [452]. See also [460] for discussion of other generalizing
possibilities.

6.2 Multigrid method for nonlinear PDEs

We now describe the multigrid method for solving a nonlinear elliptic PDE{
Nu = f, � ⊂ R

d ,

u(p) = g(p), p ∈ � = ∂�.
(6.33)
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Using the previous setting of J grids Tk, k = 1, . . . , J , we discretize (6.33) on
Tk as

Nkuk = gk . (6.34)

For this nonlinear case, one solution strategy is to apply the linear multigrid
method in the previous section after linearizing the the above nonlinear PDE by
the Newton type global linearization techniques [72,460,316]. Here, instead,
we mainly discuss the genuinely nonlinear multigrid method in the full approx-
imation scheme (due to [72]) which provides an alternative and neater treatment
of (6.33).

In the nonlinear case, the transfer operators may still be taken as those appli-
cable to a linear PDE. However, we need to comment on nonlinear relaxation
schemes as we must use a form of the Newton method to generalize a linear
relaxation scheme. Take the Gauss–Seidel (GS) method as an example – there
are two main variants depending on whether a Newton method is used first
or second. Firstly in the Newton–GS method, we use the Newton method for
global linearization (to obtain linear iterations involving the Jacobian matrix
[316,460]) and then use the GS for the linear system as in the linear PDE case.
Secondly in the GS–Newton method, we use the GS to reduce the dimension of
each nonlinear equation to a single variable (nonlinear) case and then apply the
one-dimensional Newton method for iterations. See also [124]. Similarly one
can develop the Jacobi–Newton and SOR–Newton methods.

6.2.1 Full approximation schemes

The essence of the full approximation scheme (FAS) is to suggest a new way
of computing the residual correction vk , i.e. consider how to derive a residual
correction equation similar to (6.21) in the linear case.

It turns out that a similar equation to (6.21) is the following [72]

Nk (uk + vk) = rk + Nkuk, (6.35)

assuming uk is the current approximation to (6.33) on grid Tk . Of course, the
idea of a multigrid method is not to solve (6.35) for vk on Tk but on the coarse
grid Tk−1

Nk−1 (uk−1 + vk−1) = rk−1 + Nk−1uk−1, (6.36)

where uk−1 = Rk−1
k uk , rk−1 = Rk−1

k rk and uk−1 = Rk−1
k uk . Clearly if N is
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linear, all the above equations reduce to the linear ones that have been seen
already in the previous section.

In realizing the solution of (6.36), we have to introduce an intermediate
variable ũk−1 and solve

Nk−1ũk−1 = rk−1 + Nk−1uk−1︸ ︷︷ ︸
known

,

before interpolating back to the fine grid: vk = Pk
k−1(̃uk−1 − uk−1).

6.2.2 Nonlinear multigrid algorithms

We are now ready to state the FAS version of a nonlinear multigrid algorithm.
Denote again by Relaxν

k (u, f ) the result of ν steps of some relaxation method
for (6.34) on grid Tk i.e. for

Nkuk = gk (6.37)

with the initial guess uk = u and gk = f .

Algorithm 6.2.8. (The nonlinear MG).

To solve the discretized PDE (6.37) on TJ with level k = J , assume we have
set up these multigrid parameters:

ν1 pre-smoothing steps on each level k (before restriction)
ν2 post-smoothing steps on each level k (after interpolation)
γ the number of multigrid cycles on each level k or the cycling

pattern (usually γ = 1 for V-cycling and γ = 2 for W-cycling).

(1) To obtain an initial guess uJ on TJ , use the following FMG (full multigrid
methods):

Solve on T1 for u1 accurately , N1u1 = g1

for k = 2, . . . , J , do
Interpolate to the next fine grid, uk = Pk

k−1uk−1,
if k = J , end the FMG step else continue,
Implement γ steps of F AS(uk, gk, k),

end for k = 2, . . . , J
(2) Based on the initial guess uJ to equation (6.34), to do 
 steps of a γ -cycling

nonlinear multigrid, use

F AS(uJ , gJ , J ).
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(3) The general step of a γ -cycling nonlinear multigrid F AS(uk, gk, k)
proceeds as follows



F AS(uk, gk, k) :
if k = 1, then

Solve on T1 for u1 accurately , N1u1 = g1

else, on grid Tk , do
Pre-smoothing : uk = Relaxν1

k (uk, gk),
Restrict to the coarse grid, uk−1 = Rk−1

k uk

Compute gk−1 = Rk−1
k (gk − Nkuk) + Nk−1uk−1,

Set the initial solution on Tk−1 as ũk−1 = uk−1,

Implement γ steps of F AS(̃uk−1, gk−1, k − 1),
Add the residual correction, uk = uk + Pk

k−1 (̃uk−1 − uk−1) ,

Post-smoothing : uk = Relaxν2
k (uk, gk),

end if k
end one step of F AS(uk, gk, k).


Similarly to Table 6.1 for a non-recursive FAS, we can develop a non-

recursive FAS algorithm (especially suitable for Fortran implementation):

Algorithm 6.2.9. (The nonlinear MG (Fortran version)).

To solve the discretized PDE (6.34) on TJ with k = J , prepare as
with Algorithm 6.2.8 and use the following non-recursive module for
F AS(̃uk, gk, k).

(1) Set up an integer vector I CG AM = I CG AM(1 : J ) to control and count
whether we have done γ steps on each grid Tk .

(2) On the finest grid TJ , assume ũJ is the result of the initial guess from a
FMG step. Then the general step of a γ -cycling multigrid F AS(̃uk, gk, k),
modifying Algorithm 6.1.5, proceeds as in Table 6.3.

To help the reader to understand when the main solution quantities ũ
, u
 on
each level T
 are updated, we show an illustration of a W-cycling (i.e. γ = 2)
in Figure 6.6 of a J = 4 level method. There these two variables are marked
as w, u respectively, with u indicating an update from restriction of the fine
level variable and w indicating an update due to relaxation or interpolation.
The figure is produced by the Mfile ch6_w.m.
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Table 6.3. Details of the FAS module in an alternative and
non-self-recursive version as used by Algorithm 6.2.8



F AS(̃uk, gk, k) :
Label 10:

I CG AM( j) = 0, j = 1, . . . , k (set the counters)
Set the active level number, 
 = k

if 
 = 1, goto Label 30 else continue
Label 20 :

Pre-smoothing : ũ
 = Relaxν1

 (̃u
, g
),

Restrict to the coarse grid, u
−1 = R
−1

 ũ


Compute g
−1 = R
−1

 (g
 − N
ũ
) + N
−1u
−1,

Update the level number, 
 = 
 − 1,
if 
 < k and I CG AM(
) = 0,

Set the initial solution on T
, ũ
 = u
,
end if 
 < k and I CG AM(
) = 0

Record one visit to T
, I CG AM(
) = I CG AM(
) + 1,
if 
 > 1, goto Label 20 else continue,

Label 30 :
Solve on T1 for ũ1 exactly , L1ũ1 = g1

if 
 = k, goto Label 50 else continue,
Label 40 :

Update the level number, 
 = 
 + 1,

Add the correction, ũ
 = ũ
 + P


−1 (̃u
−1 − u
−1) ,

Post-smoothing : ũ
 = Relaxν2

 (̃u
, g
),

if 
 = k, goto Label 50 else continue,
if I CG AM(
) < γ , goto Label 20,

else set the counter to zero, I CG AM(
) = 0,
end if I CG AM(
) < γ ,
Continute from Label 20 on grid T
 (as not done γ steps yet)

Label 50 :
end one step of F AS(uk, gk, k).


6.3 Multigrid method for linear integral equations

The multigrid method as described in Algorithm 6.1.4 can naturally be applied
[22,24,259,274,420,132,125] to a linear integral equation such as (1.80)

(I − K)u = g, with (Kψ)(p) =
∫

∂�

K (p, q)ψ(q)d Sq , p ∈ ∂�,

(6.38)
which may be discretized, on grid Tk that has nk nodal points, as (see (1.85)
and (1.86))

(I − Kk)uk = gk . (6.39)
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Figure 6.6. Illustration of a W-cycling (for one step of a J = 4 level multigrid
method, γ = 2) and when the solution variables w = ũ
, u = u
 are updated.
T1 is the coarsest grid and � indicates an accurate solution on T1. If this figure is
viewed for illustrating Algorithm 6.1.4, one can equate u to the action of initializing
the correction vector v
 and w to the solution u
.

We assume that nk−1 < nk for k = 2, 3, . . . , J ; depending on the choice of the
order of boundary elements and the dimension of �, the grids Tk do not have
to be nested if we adopt the standard approach (shown below). Here in the 1D
case, the boundary is a closed curve and the set up for the grid Tk is the same as
the FDM or FEM while for the case of a 2D boundary (surface), the commonly
used approach is based on triangulation for the surface ∂� (see [15,136]). For
generality, we assume K, g,Kk are defined in some Banach space X = X (∂�);
for studying numerical properties of (6.39), more specific functional spaces
such as Cm(∂�) in [339] and H m(∂�) in [488] for piecewise smooth functions
may be used as appropriate.

Although the standard transfer and smoothing operators for PDEs may
equally be used for the integral equations, in practice, much easier options
have been adopted. More specifically, the restriction is by the simple injection
operator (6.19) if the grids are nested while the interpolation is by the Nystrom
interpolation defined by

vk(p) = Kk−1(p)vk−1 + rk, p ∈ ∂�\Tk−1 (6.40)

which is essentially similar to the ‘built-in’ Picard iteration used for smoothing

uk(p) = Kk(p)uk + gk, p ∈ Tk (6.41)
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instead of considering the relaxation methods such as the Gauss–Seidel. If the
grids are not nested, the convenient restriction operator is again by the Nystrom
method (as in (6.40))

vk−1(p) = Kk(p)vk + rk, p ∈ ∂�\Tk .

Here the collocation method (§1.7) provides the vital connection of a matrix
equation

(I − Kk(p)) uk = gk(p), p ∈ Tk, uk, gk ∈ R
nk

to an operator equation

(I − Kk(p)) uk(p) = gk(p), p ∈ ∂�, uk(p) ∈ X

and the (Nystrom) interpolation

uk(p) = Kk(p)uk + gk(p), p ∈ X\Tk, uk(p) ∈ X (6.42)

where uk is defined on grid Tk . Clearly all coarse grid functions are also defined
on fine grid Tk . More formally, one needs to define a projection that takes a
function from ∂� to a vector Tk .

Note that for the linear system (1.1), the Picard iteration corresponds to
the simple operator splitting (see §3.3.1) A = M − N with M = I and N =
(I − A).

6.3.1 The case of a second kind equation with
a compact operator

The multigrid solution of the second kind equation (6.38) with a compact
operator K was studied in [22,274,259,125] among others. The solution of
the first kind equation (i.e. equation (6.38) without the term I ) is harder;
see [265,476]. As with the PDE case, definition of a two-grid method is
essential.

As shown in [430,431], a compact operator can provide the natural smoother
for a residual function i.e. Kw is more smooth than w for any w. Based on
(6.41) and (6.42), the first two-grid method (TG-1) by Atkinson [22] uses the
residual correction idea: let uk = u( j)

k be the j th approximation of (6.39) and
rk = gk − (I − Kk)uk . Then the residual equation (I − Kk)vk = rk is solved
on the coarse grid Tk−1

(I − Kk−1)vk−1 = rk(p), p ∈ Tk−1, (6.43)
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giving the overall method (with j = 1, 2, . . .)

u( j+1)
k = u( j)

k + vk−1 = u( j)
k + (I − Kk−1)−1rk

= (I − Kk−1)−1 (Kk − Kk−1) u( j)
k + (I − Kk−1)−1gk .

(6.44)

Although the method appears to be reasonable in the multigrid philosophy, its
convergence is better seen from rewriting (6.44) as

u( j+2)
k = (I − Kk−1)−1 (Kk − Kk−1) u( j+1)

k + (I − Kk−1)−1gk

= [
(I − Kk−1)−1 (Kk − Kk−1)

]2
u( j)

k +[
I + (I − Kk−1)−1 (Kk − Kk−1)

]
(I − Kk−1)−1gk

= (Lk − Lk−1)2 u( j)
k + [I + (Lk − Lk−1)] (I − Kk−1)−1gk,

(6.45)

where L
 = (I − Kk−1)−1K
 behaves like K
 if K is compact. As shown later,
the convergence of (6.44) follows that of (6.45).

The second two-grid method (TG-2) of Atkinson [22] combines an explicit
presmoothing step (6.41) with TG-1:

u( j)
k = Kku( j)

k + gk,

u( j+1)
k = u( j)

k + (I − Kk−1)−1

residual for uk︷ ︸︸ ︷[
gk − (I − Kk)u( j)

k

]
= (I − Kk−1)−1 (Kk − Kk−1) u( j)

k + [I + (I − Kk−1)−1Kk]gk,

(6.46)
giving (with j = 1, 2, . . .)

u( j+1)
k = (Lk − Lk−1)Kku( j)

k + (I + Lk) gk .

The convergence theory [22,274] for the two methods makes use of the results
of [19], under mild assumptions for the compact operator K, the boundedness
of (I − K)−1, and the discretizations Kk ,

lim
k→∞

‖(K − Kk)M‖ = 0,

lim
k→∞

‖(K − Kk)Kk‖ = 0,

lim
k→∞

‖(K − Kk)x‖ = 0, x ∈ X,

lim
k→∞

‖K − Kk‖ �= 0,

(6.47)

where M : X → X is any compact operator. Using (6.47), it is not difficult to
see that both TG-1 and TG-2 converge asymptotically since Lk is also compact
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(from Lemma 4.7.12) and

TG-1 lim
k→∞

∥∥(Lk − Lk−1)2
∥∥ = lim

k→∞
‖[(L − Lk−1) − (L − Lk)]

(Lk − Lk−1)‖ = 0,

TG-2 lim
k→∞

‖(Lk − Lk−1)Kk‖= lim
k→∞

‖[(L − Lk−1) − (L − Lk)]Kk‖=0,

where L = (I − Kk−1)−1K.
Clearly, if nk, nk−1 are large enough, we do not need many iterations of

TG-1 or TG-2 because the convergence rates are not only less than 1 but also
amazingly towards 0 (differently from the PDE case earlier).

Generalization of the two-grid methods to a multigrid case follows closely
the usual multigrid set up as in Algorithm 6.1.4. To summarize, the TG-1 based
method will have: (a) no explicit smoothing step; (b) restriction by injection or
the Nystrom method (if not nested); (c) interpolation by the Nystrom method
and the TG-2 based method will have: (i) one step of a Picard smoothing
iteration; (ii) restriction by injection or the Nystrom method (if not nested);
(iii) interpolation by the Nystrom method. For simplicity, we only show the
TG-2 based multigrid algorithm below.

Algorithm 6.3.10. (The two-grid method for integral equations).

To solve the discretized second kind integral equation (6.39) on TJ with k = J ,
assume Pk

k−1 denotes the Nystrom interpolation and we have set up the multigrid
parameter:
γ the number of multigrid cycles on each level k or the cycling pattern

(usually γ = 1 for V-cycling and γ = 2 for W-cycling).

(1) To obtain an initial guess uJ on TJ , use the following FMG:
Solve on T1 for u1 exactly , (I − K1)u1 = g1

for k = 2, . . . , J , do
Interpolate to the next fine grid, uk = Pk

k−1uk−1,
if k = J , end the FMG step else continue,
Implement γ steps of M I E(uk, gk, k),

end for k = 2, . . . , J
(2) Based on the initial guess uJ to equation (6.20), to do 
 steps of a γ -cycling

multigrid, use

M I E(uJ , gJ , J ).
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(3) The general step of a γ -cycling multigrid M I E(uk, gk, k) proceeds as fol-
lows

M I E(uk, gk, k) :
if k = 1, then

Solve on T1 for u1 exactly , (I − K1)u1 = g1

else, on grid Tk , do
Pre-smoothing : uk = Kkuk + gk,

gk−1 = gk − Lkuk,

Set the initial solution on Tk−1 to zero, uk−1 = 0,

Implement γ steps of M I E(uk−1, gk−1, k − 1),
Add the residual correction, vk = Pk

k−1uk−1, uk = uk + vk,

end if k
end one step of M I E(uk, gk, k).


The convergence analysis Algorithm 6.3.10 is analogous to the linear PDE

case: from (6.46),

u( j+1)
k = MTG

k u( j)
k + N TG

k gk, (6.48)

with MTG
k = (I − Kk−1)−1 (Kk − Kk−1)Kk and from Lemma 6.1.6, N TG

k =
(I − MMG

k )(I − Kk)−1. Similarly for the multigrid case, note (with vk−1 = 0
initially)

v( j+1)
k−1 = MMG

k−1v( j)
k−1 + N MG

k−1gk−1, (6.49)

where N MG
k−1 = (I − MMG

k−1)(I − Kk−1)−1 and the restricted residual

gk−1 = [gk − (I − Kk) (Kku( j)
k + gk)︸ ︷︷ ︸

Picard smoother

].

Thus the multigrid algorithm from repeating (6.49) γ times (refer to (6.25)) can
be analysed precisely as in (6.29). That is, to formulate MMG

k , we consider

u( j+1)
k = MMG

k u( j)
k + N MG

k gk = uk + vk

=
uk︷ ︸︸ ︷

Kku( j)
k + gk︸ ︷︷ ︸

Pre-smoothing

+

correction vk︷ ︸︸ ︷
γ−1∑
j=0

M j
k−1 Nk−1︸ ︷︷ ︸

iterate (6.49)

[
gk −(I − Kk)(Kku( j)

k + gk)
]

︸ ︷︷ ︸
residual gk−1

+[. . .]gk

= Kku( j)
k +

γ−1∑
j=0

M j
k−1 (I − Mk−1)(I − Kk−1)−1︸ ︷︷ ︸

NMG
k−1

(Kk − I )Kku( j)
k + [. . .]gk

=
[

I + (
I − Mγ

k−1

)
(I − Kk−1)−1 (Kk − I )

]
Kku( j)

k + [. . .]gk .
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Therefore, noting M
 = MMG

 (as with the linear PDE case) and

[I + (I − Kk−1)−1(Kk − I )]Kk = (I − Kk−1)−1 (Kk − Kk−1)Kk = MTG
k ,

we obtain that

MMG
k =

[
I + (

I − Mγ

k−1

)
(I − Kk−1)−1 (Kk − I )

]
Kk

= MTG
k + (MMG

k−1)γ
(
MTG

k − Kk
)
.

(6.50)

Taking norms of both sides, one can see the similarity to (6.32) and develop a
convergence result following Theorem 6.1.7. Clearly the multigrid convergence
will follow that of the two-grid method (TG-2). We remark that there exists
another version of multigrid methods in [274] that has even better convergence
properties.

6.3.2 Operator splitting for a noncompact operator case

When operator K is noncompact, the main smoothing component of the multi-
grid method will fail to work because the Picard iteration will not be able to
smooth out a function. In the previous Chapter, the same situation will also make
Krylov type methods fail to work. It turns out that all these iterative methods
will converge if we modify the smoothing steps by splitting the noncompact
operator K into a bounded part D and a compact part C i.e.

K = D + C, (I − K) = (I − D) + C. (6.51)

The theoretical basis for this splitting was provided by the theory of pseudo-
differential operators [12,487,488]. Note that Lemma 4.7.12 assures that, in the
Banach space X , the compactness of C will imply the boundedness of (I − D)−1

if the original problem (I − K) is invertible.
Once this splitting (6.51) is done, we can use it to solve a first kind integral

equation via a second kind equation

Ku = g by solving (I + D−1C︸ ︷︷ ︸
compact

)u = D−1g (6.52)

or a second kind integral equation via another second kind equation

(I − K)u = g by solving (I − (I − D)−1C︸ ︷︷ ︸
compact

)u = (I − D)−1g.

(6.53)

Here we assume that the inverses after discretization (as forward type precondi-
tioners) are easy or efficient to implement. We shall mainly consider the second



270 Multilevel methods and preconditioners [T3]

kind case (6.53). As the preconditioned equation has a compact operator, any
theoretical discussion will follow the previous subsection of the compact case.

It remains to comment on the implementation. The use of this precondi-
tioning idea for multigrid methods can be found in [420,125,132]. As operator
(I − D)−1 cannot be formed explicitly, numerical discretizations will be car-
ried out for D and C in (6.51) individually. On the grids Tk , k = 1, 2, . . . , J ,
we denote our discretized equation of (6.53) as

(I − (I − Dk)−1Ck)uk = (I − Dk)−1gk, (6.54)

which corresponds to the previous equation (6.39). Thus Algorithm 6.3.10 will
apply with appropriate adjustments e.g. the pre-smoothing step becomes

uk = (I − Dk)−1Ckuk + (I − Dk)−1gk

which is implemented as

solve (I − Dk)y = Ckuk, (I − Dk)z = gk and set uk = y + z,

and the coarsest grid solver step becomes

(I − (I − D1)−1C1)u1 = (I − D1)−1g1 solved as (I − Kk)gk = g1.

There exist several problem classes that can be tackled by the splitting (6.51);
see [420,132] and Section 4.7.

6.4 Algebraic multigrid methods

The multigrid methods discussed so far are the so-called geometrical multigrid
methods because they require (or rely on) the geometrically obtained grid Tk’s.
It must be said that these geometrical multigrids have successfully solved many
PDE problems and integral equations. As also commented, whenever simple
smoothers are not effective in smoothing out fine grid errors, geometrical multi-
grids will not work (e.g. for PDEs with strongly varying coefficients). In these
difficult cases, various attempts have been made to modify the coarsening strat-
egy i.e. the choice of coarse grids so that un-smoothed error components are
better represented on the new coarse grids. Another approach [490,452] was
to replace the classical relaxation-based smoothers all together by more mod-
ern smoothers such as the ones discussed in Chapters 4 and 5. See also [119].
However one robust approach is the algebraic multigrid method (AMG) [442].

The advantage of an AMG is that it only requires the input of a sparse
matrix A to produce an efficient multilevel iterative solver. It appears completely
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general. The resulting algorithm works far beyond the model cases for which
convergence proofs exist.

A more radical solution of the difficulties of geometrical multigrids is to
abandon the reliance of the geometrical grids Tk’s as they, in such cases, do
not offer proper guides to smoothing and coarsening (though TJ , equivalent to
G(A), cannot be abandoned as the underlying solution is sought on this finest
grid). The result is the algebraic multigrid (AMG) methods [276,409,442,480].
With AMG, we fix the smoother first and then try to figure out which components
(variables or ‘nodes’) are more representative of the finer levels and deserved
to be on the coarser levels. It is this flexibility that makes AMGs robust (and
always convergent if the coarser levels are allowed to be ‘fine’ enough).

To proceed, define T J = {1, 2, . . . , n J } as the index set for the finest level
(linear) system (k = J )

Akuk = gk (6.55)

which is of the equation type (6.20) and similarly coarse grid equations will be
defined as (k = J − 1, . . . , 1)

Akuk = gk,

where Ak = Rk
k+1Ak+1 Pk+1

k is the Galerkin operator (once the transfer oper-
ators are defined). Here we use the superscript for T , in order to relate to the
geometric grid Tk in previous sections and yet to show the difference. In fact,
the index sets for all levels T k (k = 1, 2, . . . , J ) and the interpolation matrix
Pk

k−1 (k = 2, . . . , J ), of size nk × nk−1, will be effectively determined from
matrix AJ alone. The restriction will be taken as Rk−1

k = (Pk
k−1)T (once the

rectangular matrix Pk
k−1 is explicitly computed and stored).

6.4.1 Algebraic smoothness

As we are only given the sparse linear system (6.55), there is no geometrical
information available to guide us on coarse grids (apart from the matrix graph
G(AJ )). It immediately becomes a theoretical question how to develop a purely
algebraic method to represent the old ideas of smoothness and coarse level
correction.

Although AMGs are applicable to more general linear systems, the develop-
ment of and motivation for such a theory requires the assumption of AJ being
a SPD matrix. (Potentially this is also the weakness of AMGs). Without loss
of generality, we shall consider the two-level method on T k with k = J first
and write n = n J for simplicity. Let S = (I − Q−1A) denote the smoother for
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a smoothing step for (6.55) on T k

unew = uold + Q−1
(
g − Auold

) = Suold + Q−1g (6.56)

which implies Q = D for the Jacobi iteration and Q = D − L for the Gauss–
Seidel iteration (Chapter 3), assuming A = AJ = D − L − U . If the present
error is e = uexact − uold, the new error will be

enew = uexact − unew = Se.

As smoothness in eold implies e ≈ Se, we shall characterize this fact by relating
to dominant entries in A in order to propose a coarsening strategy.

Defining the discrete Sobolev semi-norms, based on (u, v)
2 = uT v =∑
j u jv j ,

(u, v)0 = (Du, v)
2 , ‖u‖0 =
√

(u, u)0,

(u, v)1 = (Au, v)
2 , ‖u‖1 =
√

(u, u)1,

(u, v)2 = (D−1 Au, Av)
2 , ‖u‖2 =
√

(u, u)2,

the above smoother (either the Jacobi or Gauss–Seidel) satisfies the inequality
[409,442], for some α > 0,

‖Se‖2
1 ≤ ‖e‖2

1 − α‖e‖2
2. (6.57)

Therefore, any smoothness in e or slow convergence of (6.56) (corresponding to
the geometric low frequency range reached and remained) in terms of ‖Se‖1 ≈
‖e‖1 or ‖e‖2 ≈ 0 from (6.57) can be detected from checking

‖e‖2
2 � ‖e‖2

1. (6.58)

To simplify this condition, one uses the Cauchy–Schwarz inequality1 to derive
that

‖e‖2
1 = (Ae, e)
2 = (D−1/2Ae, D1/2e)
2 ≤ ‖D−1/2 Ae‖
2‖D1/2e‖
2 =‖e‖2‖e‖0,

as shown in [480,p.42]. Therefore, equation (6.57) becomes

‖e‖2
1 � ‖e‖2

0 or
∑
i, j

−ai, j
(ei − e j )2

2
+

n∑
i=1

( n∑
j=1

ai, j

)
e2

i �
n∑

i=1

ai,i e
2
i .

(6.59)
We try to establish a local criterion, for each coarse level variable i , with which
(6.59) helps to select as coarse level variables from those having many strong

1 The Cauchy–Schwarz inequality (u, v)
2 ≤ ‖u‖
2 ‖v‖
2 holds for any two vectors. A similar
inequality exists for two functions in the L2 norm.
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connections (with ai, j/ai,i relatively large). We shall define a variable i to be
strongly negatively coupled (or strongly n-coupled) to another variable j if

−ai, j ≥ ε max
aik<0

|aik | = ε max
k �=i

−aik (6.60)

and to be strongly positively coupled (or strongly p-coupled) to another j if

ai, j ≥ ε+ max
k �=i

|aik | (6.61)

for some fixed 0 < ε, ε+ < 1 (say ε = 0.25, ε+ = 0.5). This is where one can
find many specific matrices to verify the heuristics.

The best illustration of (6.59) is for a M-matrix (Chapter 4) that has a weak
diagonal dominance i.e.

∑
i �= j |ai, j | ≈ ai,i . Then, noting ai, j < 0 for i �= j (i.e.∑n

j=1 ai j = 0), (6.59) becomes approximately∑
i, j

−ai, j
(ei − e j )2

2
�

n∑
i=1

ai,i e
2
i or even

∑
j �=i

−ai, j
(ei − e j )2

2
� ai,i e

2
i

or
∑
j �=i

|ai, j |
ai,i

(ei − e j )2

2e2
i

� 1.

Clearly if |ai, j |/ai,i is relatively large, then variables i, j belong to the same
‘patch’ because ei ≈ e j . Therefore there is no need for both variables i, j to
be coarse level variables – either one of them can be picked as a coarse level
variable or both remain as fine level variables. See [442,480].

It should be remarked that the use of the M-matrix assumption is to aid
derivation of the AMG components and, fortunately, the resulting AMG meth-
ods perform well for a much larger class of problems. For familiar equations
that arise from discretized PDEs with a regular domain and gridding, AMGs
can produce a coarsening and the transfer operator similar to the geometric
multigrids. More astonishingly, AMGs can produce semi-coarsening automat-
ically for special problems that are normally obtainable by a very elaborate
geometrical coarsening strategy. The classical smoothers may be optimized in
the AMG context [498] as was done in the traditional setting. We also note
that the AMG has been applied to solve the challenging saddle point problem
[330] (see Chapter 12). Finally as the sparse graph is mainly used in AMGs,
the Vaidya’s preconditioner [123] based on edge information may also be con-
sidered for smoothing purpose.

6.4.2 Choice of coarser levels

The purpose of a coarsening method is to identify a suitable list of indices from
the current fine level set T = T J . As a geometrical grid is not available, the
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study of nonzero connections in A falls into the topic of graph theory. We shall
call i ∈ T coupled (i.e. connected) to point j ∈ T if ai, j �= 0 – a graph edge
connects two coupled points. For each i ∈ T , we shall refer the following index
set as the neighbourhood of i

Ni = {
j | j �= i, j ∈ T , ai, j �= 0(all coupled points of i)

}
. (6.62)

Our task is to split T = T J into two disjoint subsets C, F , T = C ∪ F and
C ∩ F = ∅, with C = T J−1 for the coarse level variables (C-variables) and
F the complementary fine level F-variables. This task is often called the
C/F-splitting. Following the previous subsection, we shall denote all strong
n-coupled variables of i ∈ T by set Si

Si = { j | j ∈ Ni , and i is strongly n-coupled to j} . (6.63)

The transpose of Si is

ST
i = {

j | j ∈ T , i ∈ Sj or j is strongly n-coupled to i
}
. (6.64)

Here as (6.60) uses essentially row vector information, symmetry in A (via
column information) is not used so ‘ j is strongly n-coupled to i’ is not the same
as ‘i is strongly n-coupled to j’.

The coarsening strategy will make use of the number of elements in these
index sets (i.e. the number of strong connections matters). We use |P| to denote
the number of elements in P (i.e. the cardinality) and assign the set U to contain
the current set of undecided variables that will be divided into C or F .

Then the standard coarsening strategy goes as follows.

Algorithm 6.4.11. (The coarsening method of an AMG).

LetT denote the index set of a fine level that is associated with matrixA = (ai j ).
Let {Si } be the sequence of neighbourhoods of all members in T . To implement
the C/F-splitting of T = C ∪ F,

(1) Initialize U = T (all members of a fine level T ), and C = F = ∅.
(2) Compute, for all i ∈ U, the initial measure of how popular a variable is in

terms of influences to others:

λi = |ST
i ∩ U | + 2|ST

i ∩ F | = |ST
i |. (6.65)

(3) If U = ∅, end the algorithm else continue.
(4) We name the variable ic in U, that has the largest λi (i.e. the most

needed variable in terms of influences to others), to be the next
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C-variable:

λic = max
i

λi . (6.66)

Update U = U\{ic}.
(5) Set all j ∈ ST

ic
∩ U as F-variables and then remove them from U accord-

ingly.
(6) For all new members j ∈ ST

ic
, update its neighbouring information i.e. up-

date the weighted measure for all members in set ST
j ∩ U

λk = |ST
k ∩ U | + 2|ST

k ∩ F |, k ∈ ST
j ∩ U, (6.67)

where the factor 2 is weighted towards neighbouring points of F-variables
in U, encouraging them to be coarse points.

(7) Return to Step (3).

To illustrate this algorithm, we have supplied a Mfile cf_split.m for the
readers (its default examples produce the plots in Figure 6.7).

There are two other optional steps that might be combined to adjust the
distribution of F/C variables, each with a different purpose (so using only one
of them):

(a) More F-variables and less C-variables: using the so-called aggressive coars-
ening, in (5) above, we also set those variables indirectly (but closely)
connected to i as F-variables.

(b) More C-variables and less F-variables: following [442], strong p-couplings
mean locally oscillating errors and demand locally semi-coarsening. So in
step (5) above, we test if there exists j ∈ ST

ic
that satisfies (6.61). If yes, j

should be a C-variable rather than in F and hence two adjacent variables
enter the set C – a typical case of a semi-coarsening.

6.4.3 Matrix-dependent transfer operators

As Rk−1
k = (Pk

k−1)T will be formed explicitly, we only need to consider how
to construct Pk

k−1. The task of Pk
k−1 is to work out the level point value

for each i ∈ F , using the neighbouring coarse level values of variables in
Pi = C ∩ Si .

The intention is to satisfy approximately the i-th equation of Ae = 0 i.e.

aii ei +
∑
j∈Ni

ai j e j = 0. (6.68)
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Figure 6.7. Illustration of automatic coarsening by an AMG method, with
o/�: fine grid points and �: coarse grid points. (e.g. to produce the right
plot, use G=numgrid('A',n); A=delsq(G); lap_lab; xy=[x(:)
y(:)]; [C F]=cf_split(A); gplot(A,xy,'bo-'), hold on,
gplot(A(C,C),xy(C,:),'ks'))

To cater for both negative and positive entries of ai j , we use the notation [442]

a−
i j =

{
ai j , if ai j < 0,

0, otherwise
and a+

i j =
{

ai j , if ai j > 0,

0, otherwise,
(6.69)

and hence ai j = a−
i j + a+

i j . For a fine level point i , its coupled coarse level
points, Pi = C ∩ Si , will be used to provide an interpolation formula for ei .
Here as Si ⊆ Ni , another reasonable choice for Pi is Pi = C ∩ Ni . Because
Ni\Si involves only small entries of A, this alternative choice is unlikely to
make a major difference.

To replace Ni in (6.68) by a small subset Pi , the somewhat analogous idea
from approximating (with w0 = w4 = 1/8, w2 = 1/4)∫ b

a

f (x)

b − a
dx = w0 f (a) + 1

4
f (

3a + b

4
) + w2 f (

a + b

2
) + 1

4
f (

a + 3b

4
)

+ w4 f (b),
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by a small subset of nodes∫ b

a

f (x)

b − a
dx = w0

w0 + w2 + w4
f (a) + w2

w0 + w2 + w4
f (

a + b

2
)

+ w4

w0 + w2 + w4
f (b)

= 1

4
f (a) + 1

2
f (

a + b

2
) + 1

4
f (b)

is used here. For (6.68), we shall assume that∑
k∈Ni

a−
ikek∑

k∈Ni
a−

ik

=
∑

k∈Pi
a−

ikek∑
k∈Pi

a−
ik

,

∑
k∈Ni

a+
ikek∑

k∈Ni
a+

ik

=
∑

k∈Pi
a+

ikek∑
k∈Pi

a+
ik

.

Here and throughout this section, the corresponding terms do not exist if the
subset of Pi for either a+

ik or a−
ik is empty. With this assumption (or approxima-

tion), (6.68) leads to the matrix-dependent interpolation formula

ei = −
∑
j∈Ni

ai j e j/aii = −
∑
j∈Ni

a−
i j e j/aii −

∑
j∈Ni

a+
i j e j/aii ,

=
∑
j∈Pi

wikek,
(6.70)

for transferring variables between grids, where

wik =


−aik

aii

∑
s∈Ni

a−
is

/ ∑
s∈Pi

a−
is , if aik < 0,

−aik

aii

∑
s∈Ni

a+
is

/ ∑
s∈Pi

a+
is , if aik > 0.

(6.71)

As mentioned, once Pk
k−1 is formed, its transpose Rk−1

k is also defined.
Alternatively decompose the set Ni = Si ∪ (Ni\Si ). Then, in (6.68), ap-

proximate e j = ei for j ∈ Ni\Si so that the ‘small’ terms will be added to the
diagonal entry aii [276]; accordingly (6.71) will be adjusted.

6.4.4 AMG algorithms and AMG preconditioners

We have presented the core components of an AMG based on the standard
choices of the C/F-splitting and a matrix-dependent interpolation. It should be
remarked that many individual steps may be carried out differently for a specific
problem, fine-tuned for better performance. If some geometric information are
available, combination of such information into the AMG can also be beneficial
[442]. There exist a large literature on other variants of AMGs [73,371,466,399],
some of which require less data storage and less computations at the price of
reduced efficiency for very complex problems. However the true strength of
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an AMG lies in its ability to extend the applicability of geometric multigrid
methods to complicated situations and also in its usefulness in providing a
robust AMG preconditioner for Krylov subspace iterative solvers (Chapter 3).
See [460,442,374].

As both the coarsening algorithm and the interpolation formula have been
given, the presentation of an J level AMG is simply a matter of applying
Algorithm 6.1.4.

Algorithm 6.4.12. (The AMG method).

To solve the given linear system (6.55) on T J with k = J , assume we have set
up these multigrid parameters:

ν1 pre-smoothing steps on each level k (before restriction)
ν2 post-smoothing steps on each level k (after interpolation)
γ the number of multigrid cycles on each level k or the cycling

pattern (usually γ = 1 for V-cycling and γ = 2 for W-cycling).
Denote by Relaxν

k (u, f ) the result of ν steps of some relaxation method for
Akuk = gk with gk = f and the initial guess uk = u.

(1) To set up the sequence of coarse levels T k , k = J − 1, . . . , 1, use Algo-
rithm 6.4.11 repeatedly to obtain the sequences: {C j } = T j−1, {Fj } for
j = J, J − 1, . . . , 2.
(Refer to the Mfile cf_split.m).

(2) for k = J, J − 1, . . . , 2,
work out the interpolation matrix Pk

k−1 = (wk
i j )

using the interpolation formula (6.70)–(6.71).
denote Rk−1

k = (Pk
k−1)T and

compute the Galerkin operator (matrix): Ak−1 = Rk−1
k Ak Pk

k−1

initialize the new right-hand side: gk−1 = Rk−1
k gk

end k

(3) To obtain an initial guess uJ on TJ , use the following FMG (full multigrid
methods):

Solve on T1 for u1 exactly , L1u1 = g1

for k = 2, . . . , J ,
Interpolate to the next fine grid, uk = Pk

k−1uk−1,
if k = J , end the FMG step else continue,

Implement γ steps of AMG(uk, gk, k),
end k
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(4) Based on the initial uJ to equation (6.55), to do 
 steps of a γ -cycling
multigrid, use

AMG(uJ , gJ , J ).

(5) The general step of a γ -cycling multigrid AMG(uk, gk, k) proceeds as
follows

AMG(uk, gk, k) :
if k = 1, then

Solve on T1 for u1 exactly , L1u1 = g1

else, on grid Tk , do
Pre-smoothing : uk = Relaxν1

k (uk, gk),
gk−1 = Rk−1

k (gk − Lkuk) ,

Set the initial solution on Tk−1 to zero, uk−1 = 0,

Implement γ steps of AMG(uk−1, gk−1, k − 1),
Add the residual correction, uk = uk + Pk

k−1uk−1,

Post-smoothing : uk = Relaxν2
k (uk, gk),

end if k
end one step of AMG(uk, gk, k).



6.5 Multilevel domain decomposition preconditioners
for GMRES

A vast literature exists on multilevel methods (ML) and preconditioners, mostly
based on ideas related to some variants of the domain decomposition methods
(DDMs) [343,432]. Here ML methods include the geometric and algebraic
multigrid methods. When one uses ML in conjunction with DDMs, one of
the following scenarios emerges for a PDE such as (6.1) defined on some
domain �.

denoting �
( j)
k = �

( j-th level)
k-th subdomain

(i) Single level grid and multi-domains:

� ≈ �(J ) = �(1) = ∪J
j=1� j

(ii) Multilevel grids and single domain:

� ≈ �J = �
(J )
1 , �

(1)
1 ⊂ �

(2)
1 ⊂ · · · ⊂ �

(J )
1
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(iii) Multilevel grids and multi-domains: (level j having the maximal
mesh size h j )

� ≈ �( j) = ∪N j

k=1�
( j)
k , j = 1, . . . , J with �J = �(J ),

where h J < h J−1 < . . . < h1 (on the coarsest level), the grids may be optionally
non-nested and the subdomains may be allowed to be nonoverlapping. Note that
each new level corresponds to a different resolution with coarse grid points,
approximating the whole domain �. Generally speaking, an increasing number
of subdomains implies better parallel efficiency and slower overall convergence,
and, vice versa, an increasing number of levels within each subdomain implies
better sequential efficiency.

Although DDMs have been successfully applied to many classes of problems
in scientific computing, the elegant convergence theory for these methods has
mostly been established for a much narrower class of problems. The usual
assumption is that AJ = LJ in (6.4) is SPD and this is when the (meaningful)
bounded condition numbers are to be achieved. Nevertheless, the existing theory
is so important that it may be stated that a book on iterative solvers is incomplete
without mentioning the BPX preconditioner [71] and other works from their
research group.

For unsymmetric problems, one can use one of these ML based DDM meth-
ods as preconditioners. One may also adapt the standard methods for specific
situations. For instance, if there exists a SPD part that dominates the under-
lying operator, the preconditioner may primarily be based on the symmetric
part [87,496,86]. Another possible approach is to construct the symmetric ML
preconditioner using the symmetric part H (or even H + α I with some α > 0)
from the Hermitian/skew-Hermitian splitting (12.4):

A = H + S, H = 1

2

(
A + AT

)
, S = 1

2

(
A − AT

)
,

(as studied in other contexts [38,39]) and use it for preconditioning the whole
unsymmetric matrix. A more direct use of the symmetric part H for precondi-
tioning an unsymmetric system has been discussed in [161,491].

Below we mainly discuss the general case (iii) with non-nested multilevels
�( j) of grids each of which is divided into a variable number N j of overlapping
subdomains.

We now introduce the overlapping parallel and sequential preconditioners
of multilevel grids and multi-domains [432,495]. Here the overlap between
subdomains is to ensure the convergence of the Schwarz type iterations (additive
or multiplicative variants as shown below) while the use of multilevels is to
achieve efficiency.
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For the bounded domain � ⊂ R
d , let {�( j)}J

j=1 be a (possibly non-nested)
sequence of discretizations each with the maximal mesh size h j (or mesh di-
ameter); for instance in R

2 one may use triangulations and in R
3 tetrahedrons.

Let A( j) be the matrix obtained from discretizing a PDE such as (6.1) in �( j)

i.e.

A( j)u( j) = g( j), j = 1, 2, . . . , J, (6.72)

where u( j), g( j) ∈ R
n j with n = n J on the finest grid �(J ) with the aim of

iterating

A(J )u(J ) = g(J ), (6.73)

in order to provide a preconditioner for matrix A(J ). We remark that the pre-
conditioning algorithms (to be presented) may actually be converging for some
problems and in such cases one may use these algorithms for solution of (6.73)
directly.

Let each grid �( j) be divided into N ( j) overlapping subdomains

�( j) =
N ( j)∑
k=1

�
( j)
k =

N ( j)⋃
k=1

�
( j)
k . (6.74)

We need to define four kinds of restrictions for j = 1, . . . , J :

(1) the fine level j + 1 to a coarse level j, R( j)

(2) the same level j to its subdomain k, R( j)
k

(3) the finest level J recursively to R
( j) =

a coarse level j, R( j) R( j+1) · · · R(J−1)

(4) the finest level J recursively to

a coarse level j’s k-th subdomain R
( j)
k = R( j)

k R
( j)

.

(6.75)

Clearly R
(J−1) = R(J−1); we reset R(J ) = R

(J ) = I as they are not well defined
otherwise. Then interpolations will be by the transposing the restrictions e.g.
P ( j) = R( j)T

is an interpolation from the level j back to its fine level j + 1, for
j = 1, . . . , J − 1. On the subdomain �

( j)
k , within level j , the corresponding

submatrix A( j)
k = R( j) A( j) R( j)T

is extracted from matrix A( j) for the entire level.
Let uold = (u(J ))
 be the current approximation of u(J ) at iteration 
; initially
one can use a FMG idea to obtain the first approximation at 
 = 1. Then the
multilevel algorithms will be consisted of steps resembling the usual geometric
multigrids:

� restriction to all subdomains at coarser grids;
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� local solvers / smoothing at subdomains;
� prolongation to all fine levels to obtain new corrections.

6.5.1 The additive multilevel preconditioner

The first multilevel method, resembling the Jacobi iteration (3.11) for linear
system (1.1), is of the so-called additive Schwarz type, and is suitable for parallel
implementation. Let

r = g(J ) − A(J )uold (6.76)

be the current residual. Then the overall task is to solve the residual correction
equation using all subdomains at coarse levels:

A( j)
k v( j)

k = g( j)
k = R

( j)
k r. (6.77)

Algorithm 6.5.13. (Multilevel additive Schwarz preconditioner).

To solve (6.73) for the purpose of preconditioning, assume some initial guess
uold has been obtained from a FMG process. For a fixed number of MAXIT
steps, repeat the following steps:

(1) Compute the current residual r from (6.76).
(2) Restrict the residual r on �(J ) to all subdomains at coarse levels:

r ( j)
k = g( j)

k = R
( j)
k r,

for j = J − 1, J − 2, . . . , 1 and k = 1, 2, . . . , N ( j).

(3) Solve each residual correction equation as in (6.77) for v( j)
k = A( j)

k

−1
r ( j)

k .
(4) Set v(J ) = 0.
(5) Interpolate all residual corrections back to the finest level on �(J ):

v(J ) = v(J ) + R
( j)
k

T
v( j)

k , (6.78)

for j = J − 1, J − 2, . . . , 1 and k = 1, 2, . . . , N ( j).
(6) Update the current solution unew = uold + v(J ).
(7) Update the old solution uold = unew and return to step (1) to continue

or stop if MAXIT steps have been done.
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Writing the iteration method in the standard residual correction form (3.4),

unew = uold + v(J )

= uold +
J∑

j=1

N ( j)∑
k=1

R
( j)
k

T
v( j)

k

= uold +
J∑

j=1

N ( j)∑
k=1

R
( j)
k

T
A( j)

k

−1
r ( j)

k

= uold +
J∑

j=1

N ( j)∑
k=1

R
( j)
k

T
A( j)

k

−1
R

( j)
k r

= uold + B
(
g( j) − A( j)uold

)
,

(6.79)

where, as in (3.4), B is the additive multilevel preconditioner

B =
J∑

j=1

N ( j)∑
k=1

R
( j)
k

T
A( j)

k

−1
R

( j)
k =

J∑
j=1

R( j)T

(
N ( j)∑
k=1

R( j)
k

T
A( j)

k

−1
R( j)

k

)
R( j)

=
J−1∑
j=1

R( j)T

(
N ( j)∑
k=1

R( j)
k

T
A( j)

k

−1
R( j)

k

)
R( j) +

N (J )∑
k=1

R(J )
k

T
A(J )

k

−1
R(J )

k ,

(6.80)
since R(J ) = R

(J ) = I .

6.5.2 The additive multilevel diagonal preconditioner

The additive multilevel preconditioner just presented has one set of flexible pa-
rameters N (J ), N (J−1), . . . , N (1) which may be independent of the correspond-
ing problem sizes n J , n J−1, . . . , n1 on all levels. Assuming each subdomain on
level j has the same number of unknowns, then domain �

( j)
k should have at

least τ j = n j/N ( j) unknowns (as overlaps are involved). The so-called additive
multilevel diagonal preconditioner makes the simple choice of

N ( j) =
{

n j , if 2 ≤ j ≤ J ( or τ j = 1),
1, if j = 1( or τ1 = n1),

as the global coarsest level does not have too grid points. Further allow no
overlaps to ensure R( j)

k is really simple.
Then each subdomain residual correction solver, at all levels, is to involve

a 1 × 1 matrix which is the diagonal of matrix A( j) at level j > 1. Define
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D( j) = diag(A( j)). Then preconditioner B in (6.80) becomes

B =
J−1∑
j=2

R( j)T

(
N ( j)∑
k=1

R( j)
k

T
A( j)

k

−1
R( j)

k

)
︸ ︷︷ ︸

diagonal matrix

R( j) +
N (J )∑
k=1

R(J )
k

T
A(J )

k

−1
R(J )

k︸ ︷︷ ︸
diagonal matrix

+
N (1)∑
k=1

R(1)
k

T
A(1)

k

−1
R(1)

k

= R(1)T
A(1)−1

R(1) +
J−1∑
j=2

R( j)T
D( j)−1

R( j) + D(J )−1
,

(6.81)

since N (1) = 1 and so R(1) = R(1)
k .

6.5.3 The additive multilevel BPX preconditioner

The additive multilevel diagonal preconditioner might appear to be too simple to
be simplified further. However, if we know enough information of an underlying
operator, even the diagonal matrices D( j) can be replaced by constants. This
was done in the BPX [71,495,432] preconditioner for a class of Laplacian type
equations −∇(a∇) = f in � whose standard finite element stiffness matrix
has the diagonal elements of the form O(hd−2

j ) in � ⊂ R
d .

Therefore for this particular equation, we may modify (6.81) by replacing
D( j)−1 = h2−d

j I , giving the BPX preconditioner

B = R(1)T
A(1)−1

R(1) +
J−1∑
j=2

R( j)T
D( j)−1

R( j) + D(J )−1

= R(1)T
A(1)−1

R(1) +
J−1∑
j=2

h2−d
j R( j)T

R( j) + h2−d
J I.

(6.82)

In implementation, step (3) of Algorithm 6.5.13 becomes the simple job of
multiplying by a mesh constant. The reason that this seemingly simple BPX
preconditioner has drawn much attention was not only because of its simplicity
but also more importantly the proof of its optimality i.e. κ(B A) = κ(B A(J )) ≤
C with C independent of n J . This optimality represents the best result one can
achieve with a simple preconditioner for a SPD case. The result has inspired
many researchers to devise other preconditioners in different contexts [436,
495].
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6.5.4 The multiplicative multilevel preconditioner

The second multilevel method, resembling the Gauss–Seidel iteration (3.17)
for linear system (1.1), is of the so-called multiplicative Schwarz type, and is
suitable for sequential implementation. We now discuss the fully multiplicative
variant (it is possible to propose a hybrid variant to parallelize some partial
steps [432]). Note the so-called domain colouring idea (Algorithm 4.3.3), cor-
responding to some block Gauss–Seidel updating strategy, is one such hybrid
variant.

The multiplicative methods converge, sequentially, faster than the additive
methods but the parallel efficiency is not as good as the latter. As stated, our
main purpose is to precondition the equation (6.73) so convergence (that may
not a difficult task for general problems anyway) is not a main consideration.
The sequence of operations will start the subdomains of the finest level J , then
those of the coarser levels and finally interpolate from the coarsest level 1 back
to the finest level J .

Algorithm 6.5.14. (Multilevel multiplicative Schwarz preconditioner)

To solve (6.73) for the purpose of preconditioning, assume some initial guess
uold has been obtained from a FMG process. For a fixed number of MAXIT
steps, repeat the following steps:

(1) Compute the current residual r (J ) = r initially from (6.76).
(2) for level j = J, J − 1, . . . , 1,

for subdomain k = 1, 2, . . . , N ( j) on level j
• Restrict the residual to subdomain �

( j)
k , r ( j)

k = R( j)
k r ( j),

• Solve the residual correction equation as in (6.77),

v( j)
k = A( j)

k

−1
r ( j)

k ,
• Interpolate the residual correction and add to the finer level,

u(J ) = u(J ) + R( j)T
v( j)

k ,

• Update the current residual on �( j) at level j ,
r ( j) = r ( j) − A( j)u(J ).

end for subdomain k = 1, 2, . . . , N ( j) on level j
if j = 1, finish the j loop else continue,

• Restrict the residual to the next coarser level �( j−1),
r ( j−1) = R( j−1)r ( j),

• Set the coarse grid correction u( j−1) = 0,
end for level j = J, J − 1, . . . , 1
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(3) Interpolate all residual corrections back to the finest level on �(J ):
for level j = 2, . . . , J − 1, J

• Interpolate the residual correction and add to the finer level,

u( j) = u( j) + R( j−1)T
u( j−1)

k .

end for level j = 2, . . . , J − 1, J
(4) Update the current solution, unew = u(J ).
(5) Update the old solution uold = unew and return to step (1) to continue

or stop if MAXIT steps have been done.

6.6 Discussion of software and the supplied Mfiles

As the present chapter touches a topic that has been actively researched in recent
years, various codes are available. Firstly we must mention the two important
Web sites that contain many useful pointers and topical information:

� http://www.mgnet.org – Multigrid methods network
� http://www.ddm.org – Domain decomposition method network

Secondly we highlight these multilevel-related software from

(1) PETSc (Portable, Extensible Toolkit for Scientific Computation) (The
PETSc project team):

http://www-unix.mcs.anl.gov/petsc/petsc-2/

(2) PLTMG (Piecewise linear triangular MG) (Radalph Bank):

http : //www.scicomp.ucsd.edu/∼reb/software.html

(3) The MGM solvers from NAG (Numerical Algorithms Group, Ltd)

http : //www.nag.co.uk/

(4) SAMG (AMG for Systems, the algebraic multigrid methods, by Fraunhofer
SCAI):

http : //www.scai.fraunhofer.de/samg.htm

(5) Algebraic Multigrid as a method or a preconditioner (Andreas Papadopou-
los and Andrew Wathen):

http : //web.comlab.ox.ac.uk/oucl/work/andy.wathen/papadopoulos/

soft.html
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Figure 6.8. Illustration of the result from using mgm_2d.m to solve (6.83).

For research investigations, we have developed the following simpler Mfiles.

[1] ch6_mg2.m – Illustration of error smoothing at different iterations using
the damped Jacobi method.

[2] ch6_gs.m – Illustration of error smoothing at different iterations using
the Gauss–Seidel method.

[3] ch6_w.m – Illustration of multigrid cycling patterns and when main vari-
ables are updated.

[4] mgm_2d.m – The linear multigrid method (as in Algorithm 6.1.4) for
solving

divD · gradu + c(x, y)u = d(x, y), � = [0, 1]2, (6.83)

where D = D(x, y) = (a, b). Two default examples (both using a =
1 + x2/100, b = 1 − y2/100, c = −(x2 + y2)/100) are given for tests,
respectively using the following exact solution to supply the Dirichlet
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boundary conditions (and to work out d accordingly):

iprob = 1 : u = (x − 1

2
)3 + (y − 1

3
)4

iprob = 2 : u = exp

(
−60(x − 1

2
)2 + (y − 1

1
)2

)
.

The interested reader may adapt the Mfile for solving other PDEs; the result
from solving the second case with J = levs = 6 is shown in Figure 6.8. It
is particularly useful to examine how a MGM works by pausing this Mfile
in selected places through adding the MATLAB command

>> keyboard % use dbcont or dbstop or return

or CTRL-C to come back

The MGM is implemented with all vectors and matrices associated with the
grid level number, rather than packing vectors from all levels to together
as with other implementations in Fortran or C e.g. if levs = 4, U4 will be
the solution vector on T4 and likewise R3 is the residual vector on T3. This
makes it easier to display any quantity.

[5] mgm_2f.m – Similar to mgm_2d.m. In this version, we do not form the
fine grid matrices to save storage. The relevant matrices when needed in
smoothing and residual steps are computed entry-by-entry.

[6] mgm_2s.m – A short version of mgm_2d.m removing the comments and
internal checks for fast running.

[7] lap_lab.m – Place numbering labels to a graph from numgrid (for
Laplace’s equation).

[8] cf_split.m – Compute the C/F-splitting for an AMG (to produce a list
of coarse level nodes).
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Multilevel recursive Schur complements
preconditioners [T4]

Multilevel Preconditioners: . . . This new class of preconditioners can be
viewed as one cycle of a standard multigrid method without the smoothing
operations. They use the multigrid principle to capture the different length
scales of the solution but rely on the conjugate gradient method to deal
with other convergence difficulties. They offer the efficiency of multigrid
methods and the robustness of the conjugate gradient method.
Tony F. Chan. Hierarchical Algorithms and Architectures for Parallel

Scientific Computing. CAM report 90-10 (1990)

In many applications, there is a natural partitioning of the given
matrix . . . it is of importance to examine if the corresponding system can
be solved more efficiently. For large-scale problems, iterative solution
methods are usually more efficient than direct solution methods. The
most important aspect of the iterative solution method is the choice of the
preconditioning matrix.

Owe Axelsson. Iterative Solution Methods.
Cambridge University Press (1994)

As shown in Section 2.1.2, the Schur complement matrix

S = A22 − A21 A−1
11 A12 (7.1)

obtained from eliminating the bottom left block of a 2 × 2 block matrix

A =
[

A11 A12

A21 A22

]
=

[
I
A21 A−1

11 I

] [
A11 A12

S

]
=

[
A11

A21 I

] [
I A−1

11 A12

S

]
(7.2)

naturally occurs during the LU decomposition (2.6). When A is SPD, the condi-
tion number of S is less than A (Section 2.1.2) and also that of a block diagonal
preconditioned matrix [345]. In the general case, computing an exact Schur

289



290 Multilevel recursive Schur complements preconditioners [T4]

complement amounts to implementing the LU decomposition while approxi-
mating a Schur complement is equivalent to obtaining a special ILU decompo-
sition (preconditioner). However, powerful preconditioners can be obtained by
using the Schur idea recursively in a multilevel setting.

This chapter considers various multilevel ideas of approximating S so as to
develop an approximate Schur complement preconditioner for a sparse matrix
A. We consider these selected approaches.

Section 7.1 Multilevel functional partition: AMLI approximated Schur
Section 7.2 Multilevel geometrical partition: exact Schur
Section 7.3 Multilevel algebraic partition: permutation based Schur
Section 7.4 Appendix – the FEM hierarchical basis
Section 7.5 Discussion of software and Mfiles

7.1 Multilevel functional partition: AMLI
approximated Schur

The functional partition approach is usually considered in the context of a FEM
solution of some elliptic PDE in R

d . The approach is particularly useful for a
self-adjoint second-order operator that leads to a SPD matrix A = AJ on some
finest grid TJ , when solved by a finite element method [468,27,34,30,31,32].
The preconditioner proposed will be of the type of algebraic multilevel iterations
(AMLI), where the essential idea is to approximate the Schur matrices in all
levels in a recursive way. The preconditioner is obtained as a factorized LU
decomposition. The idea is quite general but the applicability is normally to
SPD type matrices. See [468,370,27,33,34,469].

We first need to introduce the functional partition. Following (1.60), consider
the discretized equation

A(J )uJ = gJ , (7.3)

arising from the usual discretization of a variational formulation

a(u, v) = ( f, v), u, v ∈ V ∈ H 1
0 (�) (7.4)

for some second-order elliptic PDE (for instance (6.1)). Similar to the setting
of the previous chapter on geometric multigrids, we assume that a sequence
of refined grids Tk (e.g. triangulations in R

2) have been set up, giving rise
to the matrix A(k) of size nk × nk , for each level k = 1, 2, . . . , J with T1 the
coarsest grid and TJ the finest grid. We are mainly interested in the algebraic
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construction i.e. only A(J ) will be assumed given but other coarser grid matrices
will be computed as approximation to the true Schur complement of a fine grid.
Therefore

n1 < n2 < · · · < n J .

Let Nk denote the set of all nk nodes, p1, p2, . . . , pnk , in grid Tk . Then the nodal
basis (e.g. piecewise linear polynomials) functions φ

(k)
j will satisfy

φ j (pi )
(k) = δi j .

The basis functions {φ(k)
j } will be split accordingly to two nonoverlapping sub-

sets of Nk :

Nk = (Nk\Nk−1) ∪ Nk−1. (7.5)

The stiffness matrix A(k) on a coarser level may be defined and computed by
different methods [469]. In particular the following four cases are of interest.

(1) Nodal partition. Given the stiffness matrix A(J ) [34,370], we can use the
nodal partition (7.5) and identify the matrix A(k−1) recursively from

A(k) =
[

A(k)
11 A(k)

12

A(k)
21 A(k−1)

]
}(Nk\Nk−1)
}Nk−1

(7.6)

where A(k)
22 = A(k−1) by the nodal ordering and k = 2, 3, . . . , J .

(2) Direct use of the hierarchical basis. We assume that the nodal basis is
replaced by the hierarchical basis [502] that defines

(A(k))i j = a(φ(k)
i , φ

(k)
j )

= a(H Bφ
(k)
i , H Bφ

(k)
j ),

(7.7)

where i, j = 1, 2, . . . , nk and k = 1, 2, . . . , J − 1 and {H Bφ
(k)
i }’s for a fixed

k are defined at all nodes in (Nk\Nk−1). Refer to Figure 7.1 and Section 7.4.
(3) Indirect use of the hierarchical basis. Let A(k)

NB denote the usual nodal basis
matrix as defined by (7.6). A convenient way [34,468] to use a HB basis

is to generate it from a nodal basis by a sparse transform J =
[

I J12

I

]
in

the form

A(k) ≡ Â(k) = J T A(k)
NB J. (7.8)

As the hierarchical basis (HB) for a general differential operator may lead
to less sparse stiffness matrices than the standard nodal basis, this transform
idea may be considered as an effective and sparse implementation. Note



292 Multilevel recursive Schur complements preconditioners [T4]

Finest Std FEM

Finest HB T5

HB T1

HB T2

HB T3

HB T4

Coarsest

Coarsest

Figure 7.1. Comparison of the HB basis with k = 5 levels and the standard FEM
linear basis. Note the HB ordering will start from the coarsest level and add (nat-
urally) numbering until the finest.

that the HB basis can diagonalize the special Laplacian operator in R (1D);
see the Mfile HB1.m and Section 7.4.

(4) Direct use of the Schur matrix. An alternative way [370,469] of defin-
ing A(k), for k = 1, 2, . . . , J − 1, is to let it be an approximate Schur
matrix of (7.6)

A(k) = A(k)
22 − A(k)

21 B11 A(k)
12 ≈ A(k)

22 − A(k)
21 A(k)

11

−1
A(k)

12 = S, (7.9)

where B11 ≈ A(k)
11

−1
may be considered to be some suitable SPAI matrix

(see §5.4).

Once the coarse level matrices {A(k)} have been defined in one of the four
cases, we are ready to specify the AMLI preconditioner M (J ). Clearly on the
coarsest level, the preconditioner M (1) = A(1) is suitable and it remains to dis-
cuss other finer levels. The elementary version takes the following form for
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k = 2, 3, . . . , J :

M (k) =
[

A(k)
11

A(k)
21 I

] [
I A(k)

11

−1
A(k)

12

M (k−1)

]
=

[
A(k)

11

A(k)
21 M (k−1)

] [
I A(k)

11

−1
A(k)

12

I

]
.

(7.10)

A more general version uses a polynomial Pν(t) of degree ν to improve the ap-
proximation of the Schur matrix. If A is SPD [34,469,370], we may estimate the
smallest eigenvalue of M (k)−1

A(k) to define Pν in terms of a scaled Chebyshev
polynomial (as in (3.45)). Here we present the more generic choice:

Pν(t) = 1 − a1t − a2t2 − . . . − aν tν, e.g. P2(t) = 1 − 2t + t2.

Then the recursive AMLI preconditioner is defined, for k = 2, 3, . . . , J , by
S(k−1) = A(k−1)

[
I − Pν

(
M (k−1)−1

A(k−1)
)]−1

,

M (k) =
[

A(k)
11

A(k)
21 I

] [
I A(k)

11

−1
A(k)

12

S(k−1)

]
,

(7.11)

where S(1) = A(1) since M (1) = A(1). Here the inverse of the top left block A11

across all levels can be optionally be approximated by a SPAI matrix as in
(7.9) and likewise sparsification of A(k) may be also be adopted. Note (7.10)
corresponds to the case of P1(t) = 1 − t .

Applying (7.11) to the preconditioning step M (k)x = y amounts to a recur-
sion[

A(k)
11

A(k)
21 I

] [
w1

w2

]
=

[
y1

y2

]
, i.e.

w1 = A(k)−1y1,

w2 = y2 − A(k)
21 w1,[

I A(k)
11

−1
A(k)

12

S(k−1)

] [
x1

x2

]
=

[
w1

w2

]
, i.e.

x2 = S(k−1)−1w2,

x1 = w1 − A(k)−1
A(k)

12 x2,

(7.12)

where to find x2, we have to solve S(k−1)x2 = w2. We finally discuss this most
important substep of computing x2.

x2 = S(k−1)−1w2 =
[

I − Pν

(
M (k−1)−1

A(k−1)
)]

A(k−1)−1w2

=
[

a1 I + a2 M (k−1)−1
A(k−1) + · · · + aν

(
M (k−1)−1

A(k−1)
)ν−1

]
M (k−1)−1

w2,

(7.13)
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where we denote Pν(t) = 1 − a1t − a2t2 − . . . − aν tν . Recall that the Horner’s
rule [280] for computing s = qν(t) = a0 + a1t + a2t2 + . . . + aν tν is the
following:

s = qν(t) = a0 + a1t + a2t2 + . . . + aν tν

= (((· · · ((aν)t + aν−1)t + · · ·)t + a1)t + a0),
(7.14)

which gives rise to the short recursive algorithm

s = aν

for k = ν − 1, ν − 2, . . . , 1, 0
s = st + ak

end k.

Adapting the Horner’s rule to computing a matrix polynomial, with (7.13) in
mind, leads to a similar method

x2 = qν(W )z = a1z + a2W z + a3W 2z + . . . + aνW ν−1z
= (a1z + W (a2z + W (· · · (+W (aν−1z + W (aνz))) · · ·))), (7.15)

with the associated algorithm

x2 = aνz
for k = ν − 1, ν − 2, . . . , 1

x2 = W x2 + akz
end k.

Clearly on taking z = M (k−1)−1w2 and W = M (k−1)−1
A(k−1) in the above algo-

rithm, one can rewrite (7.13) as x2 = qν(W )z and compute it as follows [370]:

Solve M (k−1)x2 = aνw2

for k = ν − 1, ν − 2, . . . , 1
Solve M (k−1)x2 = A(k−1)x2 + akw2

end k.

Note ν plays the role of a cycling pattern in a multigrid algorithm (see Algorithm
6.1.4).

From a theoretical point of view, for SPD matrices, the AMLI algorithm as an
algebraic multilevel preconditioner can provide stabilization for the HB method
[502] as the latter does not have a simple and optimal preconditioner in three or
more dimensions [495]. Another theoretically appealing stabilization method
for the HB method was proposed by [471] and reviewed in [469,8], using the
approximate wavelet-like L2 projections (similar to [71]) to modify the HB
basis. The BPX [71] preconditioner may be viewed as an optimal method for
stabilizing the HB method for a special class of PDE’s.
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The AMLI type methods offer a large collection of excellent ideas for precon-
ditioning and theories. However, the resulting algorithms are not immediately
applicable to general sparse matrices. In the latter case, one may apply these
preconditioners to the dominant part of a problem, as suggested in the remarks
made in Section 6.5.

7.2 Multilevel geometrical partition: exact Schur

As mentioned in Section 6.5, a multilevel method may imply one of the fol-
lowing three scenarios, namely, (i) a single domain and multiple levels. (ii) a
single level and multiple domains. (iii) multiple domains and multiple levels.
The previous section falls into the first scenario just like the traditional multi-
grid method. Here we discuss the second scenario, i.e. the Schur complement
method on a single level and multiple domains. This is technically the case
of a geometrically driven matrix partition for Schur complements. In domain
decomposition, we are entering a large topic of non-overlapping methods [111]
and hence we only discuss some of the ideas and algorithms. The method is
also called the substructuring method [432,352] as the idea originated from
mechanical engineering. In graph theory (or finite element computation), the
method is known as the nested dissection method [214,215].

Consider the solution of a PDE such as (6.1) in some domain � ⊂ R
d

and let the linear system after discretization by a domain method (see
Section 1.7)

Au = f. (7.16)

We shall first examine the direct substructuring method before discussing the
iterative algorithms. For either method, the idea is to solve the global matrix
problem by using local domain problems (in the form of a Schur decomposition)
as preconditioners.

� The direct substructuring method. Although the domain � is divided into
s nonoverlapping subdomains � j and correspondingly the finest level mesh
T is divided into patches of meshes T j with mesh lines coinciding with the
interfaces of the subdomains, in this section, we shall make a distinction of
the mesh points (and subsequently the unknown variables) located at the in-
terior and the boundary of a subdomain. See Figure 7.2 for an illustration
of one-way domain partition or two ways. Here the substructuring method
is related but different from the nested dissection method; the latter is illus-
trated in Figures 7.3 and 7.4 where we compare the use of 1-level dissection
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Figure 7.2. Illustration of one-way domain partition (left plot for s = 5) or two
ways (right plot for s = 25). For general sparse matrices, one first constructs its
graph and partitions its graph [215,352].
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Figure 7.3. Comparison of one-way dissections with the lexicographical ordering.
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Figure 7.4. Illustration of two-way dissections (compare to Figure 7.2).

and 2 levels with the commonly used lexicographical ordering. From comparing
to Figure 7.2, essentially, the substructuring method treats a multiple level
dissection partition as a one-level dissection with interior domains interacting
with interfaces. In the case of one way dissection, the two methods give the
same result (i.e. the left Figure 7.2 is the ‘same’ as the far right plot of Figure
7.3 in terms of ordering).

Let u, f be a vector defined over the entire mesh in T ⊂ �. Then assuming
that all interior variables are ordered first and the boundary points second, both
the vectors u, f and the global matrix A admits the splitting into interior variables
(I) and interface ones (B):

u =


u(1)

I

u(2)
I

...
u(s)

I

uB

 , f =


f (1)

I

f (2)
I

...
f (s)

I

fB

 , A =



A(1)
I I A(1)

I B

A(2)
I I A(2)

I B
. . .

...
A(s)

I I A(s)
I B

A(1)
B I A(2)

B I · · · A(s)
B I

s∑
j=1

A( j)
B B


. (7.17)
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Clearly this partitioned matrix A can be factorized in the block LU form

I A(1)
B I A(1)

I I

−1

I A(2)
B I A(2)

I I

−1

. . .
...

I A(s)
B I A(s)

I I

−1

I



T


A(1)
I I

A(2)
I I

. . .

A(s)
I I

s∑
j=1

S̃( j)



×



I A(1)
I I

−1
A(1)

I B

I A(1)
I I

−1
A(2)

I B
. . .

...

I A(1)
I I

−1
A(s)

I B

I


, (7.18)

where the Schur complement S̃( j) = A( j)
B B − A( j)

B I A( j)
I I

−1
A( j)

I B and the transpose
used in the first matrix is only for type setting purpose. Therefore using (7.18),
the direct solution of (7.16) is given from solving

( s∑
j=1

S̃( j)
)

uB = fB −
s∑

j=1

A( j)
B I A( j)

I I

−1
f ( j)

I ,

A( j)
I I u( j)

I = f ( j)
I − A( j)

I BuB, for j = 1, 2, . . . , s.

(7.19)

A possible confusion might arise, because the above equation is often not used
in its present form. This is due to a need to further localize the set B of all internal
interfaces (i.e. �i j in Figure 7.2) to make each Schur matrix more sparse (with
no approximation).

To this end, we define R j to be a rectangular restriction matrix (consisted
of ones and zeros) that restricts a global quantity to that of associated with
the interface variables of � j (or T j ). That is, if u ∈ R

n is defined on T , then
u( j)

B = R j u is a short vector extracted from u to associate with the interface
variables of � j . Conversely, u = RT

j u( j)
B is a global vector of size n that takes

values of u( j)
B at the interface locations of � j . Clearly S̃( j) = RT

j S( j) R j ,

s∑
j=1

S̃( j) =
s∑

j=1

RT
j S( j) R j , (7.20)

and the quantity u B is made up by assembling s contributions:

u B =
s∑

j=1

RT
j u( j)

B , (7.21)
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where the reduced local Schur complement is

S( j) = R j S̃( j) RT
j = R j

(
A( j)

B B − A( j)
B I A( j)

I I

−1
A( j)

I B

)
RT

j = A( j)
�� − A( j)

� I A( j)
I I

−1
A( j)

I�

and � is used to indicate all local interfaces of subdomain j . With the above
notation to simplify (7.19), the direct solution of (7.16) is given from solving

( s∑
j=1

RT
j S( j) R j

)
uB = fB −

s∑
j=1

RT
j A( j)

� I A( j)
I I

−1
f ( j)

I ,

A( j)
I I u( j)

I = f ( j)
I − A( j)

I�u( j)
B , for j = 1, 2, . . . , s.

(7.22)

Note that A( j)
I�u( j)

B = A( j)
I BuB and all assembly and solution steps (except the

solution of the first equation once assembled) can be implemented in parallel
for all subdomains.

� The iterative substructuring method. The above direct method can be
converted to an iterative method (using the GMRES for instance) instantly as
the latter method, only needing matrix vector products, does not require to
form any local Schur matrices. Thus the only remaining task of an iterative
substructuring method is essentially to find a suitable preconditioner for the
Schur complement (which is a sum of local Schur complements). There exists
a vast literature on this topic [432,111,343,450]. We only present the balancing
Neumann–Neumann method for the case of s subdomains.

To proceed, denote the first Schur equation in (7.22) for the interface variables
by (note other equations are purely local)

Su = g, (7.23)

where for simplicity u = uB ∈ R
nB . A Krylov subspace iterative solver for

(7.23) will make use of a preconditioner B defined by a s-subdomain algorithm
of the type

unew = uold + B
(
g − Suold

)
, (7.24)

which is iterated for a number of steps. There are two special features (coarse
grid correction and diagonal scaling) that require additional notation:

� A0 is the discretization matrix using a piecewise constant approximation over
each subdomain.

� R0 restricts a global vector on the entire mesh T to a global coarse grid space
of piecewise constants.

� RT
0 interpolates a global coarse grid space of piecewise constants to the global

vector on T .
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� D = diag(1/b�) is a global diagonal matrix of size nB × nB (the same as
uB) where, for the �-th diagonal, b� denotes the number of subdomains that
share the �-th node. (For instance, in R

2, b� = 2 for points in the middle of a
subdomain edge).

Then the balancing Neumann–Neumann preconditioning method for (7.23) and
(7.22) is to repeat the following (with u0 = uold)

u1/3 = u0 + RT
0 A−1

0 R0
(
g − Su0

)
,

u2/3 = u1/3 + D
s∑

j=1

RT
j S( j)−1

R j D
(
g − Su1/3

)
,

u1 = u2/3 + RT
0 A−1

0 R0
(
g − Su2/3

)
,

u0 = u1,

(7.25)

where the first step is optional for unsymmetric problems as it intends to main-
tain ‘symmetry’ in the preconditioner B (like the SSOR). To find the precondi-
tioner B, we only need to combine all three steps into a single one in the form
of (7.24). Such a matrix B is the following

B = (
I −RT

0 A−1
0 R0S

)
D

( s∑
j=1

RT
j S( j)−1

R j

)
D

(
I − S RT

0 A−1
0 R0

) + RT
0 A−1

0 R0.

Note that the most important step two in (7.25) is done in parallel and moreover
S( j) is of the reduced size – the number of interface mesh points associated with
T j (or � j ). For other Schur preconditioners, refer to [432,111,343,450].

7.3 Multilevel algebraic partition:
permutation-based Schur

The previous preconditioners in the last two sections are respectively functional
based and geometry driven. This section will discuss a further class of graph
ordering (permutation)-based Schur complement methods, originated from the
work of [412,413]. We remark that the similar use of graph theory in dissection
methods for general sparse matrices was much earlier [214,215] but the work of
[412] was designed for preconditioning rather than direct solution. Moreover,
for more than two levels, the two methods are very different because the nested
dissection replies on the exact graph of the original matrix while the new Schur
method of [412] will use the graph of a Schur matrix (approximated). For related
developments and extensions, refer to [506] and the references therein.

The main idea of this permutation-based Schur complement method is to
ensure that the top left block A11 in (7.2) is occupied by a diagonal matrix (or a
block diagonal matrix in the block version), achieved by permutation based on a
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1 2 3 4

5 6 7

8 9 10 11

12 13 14

15 16 17 18

19 20 21

22 23 24 25

26 27 28

29 30 31 32

33 34 35

36 37 38 39

40 41 42

43 44 45 46

47 48 49

Red-black ordering from two independent sets

Figure 7.5. Illustration of a red-black ordering (with red in large fonts and black
in small fonts, each forming an independent set of nodes). Check with the Mfile
multic.m.

matrix graph. For a PDE discretized by a five-point FDM stencil, the resulting
matrix A can be easily permuted (using the so-called red-black ordering as
shown in Figure 7.5) to produce such a diagonal matrix D = A11 = diag(d j ):

Prb APT
rb =

[
A11 A12

A21 A22

]
=

[
diag(d j ) F

E C

]
, (7.26)

which has a ‘computable’ Schur matrix S = C − E diag(d j )−1 F ; by ‘com-
putable’ we mean that the resulting Schur matrix will most probably be sparse
(instead of dense in the normal case). (Refer to Algorithm 4.3.3). Thus the idea
is quite common for PDE problems that have a natural graph. For general sparse
matrices, we need to use the matrix graph and introduce an algebraic tool for
identifying an ordering for the nodes (or a permutation for a sparse matrix).

To realize (7.26), the suitable tool will be the independent set ordering.
For symmetric matrices A, we have discussed its undirected graph G(A) in
Section 2.6. For a general sparse matrix, the directed graph G(A) is denoted
by G(A) = (V, E) where V denotes the indices of vertices (nodes) and E the
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list of edges represented in the form of pairs of integers (the nonzero locations
of A) e.g. for a 3 × 3 tridiagonal matrix A, its graph may be represented by
G(A) = (V, E) with

V = [1 2 3], E = [(1, 1) (1, 2) (2, 1) (2, 2) (2, 3) (3, 2) (3, 3)] .

Definition 7.3.1. (The independent set). Let G(A) = (V, E) be the directed
graph of a sparse matrix A. Then a subset S of V is called an independent set
if any two distinct vertices in S are not connected i.e.

if x, y ∈ S and x �= y, then (x, y) �∈ E and (y, x) �∈ E .

Two observations are in order. Firstly, one can see that the independent set
is clearly geared up for fulfilling (7.26). Secondly, it is not difficult to envisage
how to work out an independent set for a geometric graph arising from PDE
discretization (e.g. from Figure 7.5). It is of interest to find the largest possible
independent set in G(A), although a reasonable size of such a set is practically
sufficient – the size of this set will be the size of the corresponding block
diagonal matrix. However, it is not all trivial to efficiently compute the largest
possible independent set from G(A) alone; see [332,333,412].

Practically there exist many algorithms for computing an independent set
from G(A) = (V, E). Here we only discuss one of them. As with the discussion
of the RCM algorithm, there is this question of how to define the very first node
(vertex) to join the set S. It makes sense not to start from a node that has too
many connections (i.e. appearances in E). Similar to the symmetric case, the
degree deg(v) of a vertex v is the total number of edges that are adjacent to
v. Assume that the vertices can be sorted by increasing degrees to obtain the
initial ordering i1, i2, . . . , in . Then we expect the vertex i1 to be in set S.

Algorithm 7.3.2. (An independent set ordering).

Let the vertices V in a sparse graph G(A) = (V, E) be initially ordered as
i1, i2, . . . , in by increasing degrees. Let the set S = ∅.

for j = 1, 2, . . . , n
if vertex i j is not yet marked

Accept vertex i j , S = S ∪ {i j }
Mark vertex i j and all its adjacent vertices

(neighbours)
end if vertex i j is not yet marked

end j .
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This algorithm produces the same subset of indices as Algorithm 4.3.3 with
two colours. For the example in Figure 7.5, assuming only horizontal and
vertical connections, one can generate the set S of all red nodes using
Algorithm 7.3.2.

To estimate the size or cardinality |S| of S, we need the information of the
number ν that denotes the largest unique neighbours of all vertices and νmax

that denotes the maximum degree of all nodes. By unique, assuming shared
neighbours are equally divided, we mean the neighbouring vertices, at a fixed
v ∈ (V \S), that are attributed to v and not to other vertices in S. Then we have
(note ν ≤ νmax and |S| ≤ n)

n − |S| ≤ ν|S|, or |S| ≥ n

ν + 1
≥ n

νmax + 1
.

For the graph in Figure 7.5, we have ν = 1 and νmax = 4 giving the prediction:
|S| ≥ n/2 ≥ n/5 which is quite accurate. as the exact answer is |S| = n/2 (even
n) or n/2 + 1 (odd n). We remark that a related method is the multi-colouring
technique [412] that we do not pursue here while the colouring idea [432] in
domain decomposition methods amounts to block relaxation (or other block
operations).

We are now ready to introduce the Schur complement idea based on inde-
pendent set orderings [412,506], for solving the sparse linear system (7.16) or
(7.3) i.e.

Au = f. (7.27)

To be consistent with previous ML methods, we shall consider J levels for
solving (7.27) with A( j) the matrix obtained from the j-th step of a Schur re-
duction method for j = J, J − 1, . . . , 1. Here A(J ) = A on the finest level J .
For each matrix A( j), we shall apply Algorithm 7.3.2 to obtain an independent
set S and with it to obtain an order k1, k2 . . . , kn of the nodes, that orders S
nodes first and the remaining nodes second. This ordering defines a permuta-
tion matrix Pj such that the top left block of Pj A( j) PT

j is a diagonal matrix
(by design):

Pj A( j) PT
j =

[
A( j)

11 A( j)
12

A( j)
21 A( j)

22

]
=

[
D j A( j)

12

A( j)
21 C j

]

=
[

I
A( j)

21 D−1
j I

] [
D j A( j)

12

A( j−1)

] (7.28)
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where the Schur complement

S( j) = A( j−1) = C j − A( j)
21 D−1

j A( j)
12 .

Observe that whenever A( j)
21 , A( j)

12 are sparse, it becomes feasible to form the
Schur complement A( j−1) explicitly. However if j < J , A( j)

21 , A( j)
12 will be much

less sparse than A(J )
21 , A(J )

12 respectively. This is where one has to use the thresh-
olding idea as in Algorithm 4.5.10; see also [506].

We are now in a similar (and slightly better) situation to that of (7.9) in
constructing a sequence of coarse level approximations

Pj Ā( j) PT
j =

[
I
Ā( j)

21 D̄−1
j I

] [
D̄ j Ā( j)

12

Ā( j−1)

]
, j = J, J − 1, . . . , 1

with Ā(J ) = A(J ) and for k = J, J − 1, . . . , 2

Ā(k−1) = C̄k − drop
(

Ā(k)
21 D̄−1

k Ā(k)
12

)
.

Here the ‘drop’ notation is the same as in Section 5.4.4 to indicate a step of
thresholding to maintain sparsity.

On the coarsest level 1, we take M (1) = Ā(1) as the preconditioner. The finer
level preconditioners are therefore ( j = 2, 3, . . . , J )

M ( j) = PT
j

[
I
Ā( j)

21 D̄−1
j I

] [
D̄ j Ā( j)

12

M ( j−1)

]
Pj . (7.29)

Applying (7.29) to the preconditioning step Pj M ( j) PT
j x = y amounts to a re-

cursion in a V-cycling pattern[
I
Ā( j)

21 D̄−1
j I

] [
w1

w2

]
=

[
y1

y2

]
, i.e.

w1 = y1,

w2 = y2 − Ā( j)
21 D̄−1

j w1,[
D̄ j Ā( j)

12

M ( j−1)

] [
x1

x2

]
=

[
w1

w2

]
, i.e.

x2 = M ( j−1)−1w2,

x1 = D̄−1
j

(
w1 − Ā( j)

12 x2

)
,

(7.30)

where to find x2, we have to solve M ( j−1)x2 = w2.
One important observation in [506] was that we do not need the last precon-

ditioner M (J ) for the whole matrix A(J ) = A and rather it is better to use the
preconditioner M (J−1) for the first Schur matrix A(J−1) = A. This is because



7.4 Appendix: the FEM hierarchical basis 305

the system (7.27) is equivalent to

PJ A(J ) PT
J PJ u = PJ f,

or PJ A(J ) PT
J ũ = f̃,

or

[
I
A(J )

21 D−1
J I

] [
DJ A(J )

12

A(J−1)

] [
ũ1

ũ2

]
=

[
f̃1

f̃2

]
,

or



x1 = f̃1,

x2 = f̃2 − A(J )
21 D−1

J x1,

ũ2 = A(J−1)−1x2,

ũ1 = D−1
J

(
x1 − A(J )

12 x2

)
.

(7.31)

where to find ũ2, we use a Krylov subspace method using the preconditioner
M (J−1) for

A(J−1)ũ2 = x2.

That is, we only need to solve the Schur equation iteratively (while all other
equations involve no approximations)(

CJ − A(J )
21 D−1

J A(J )
12

)
ũ2 = x2. (7.32)

Once ũ2 is solved, we use (7.31) to complete the solution for u.
In summary, the last Schur method is designed for general sparse linear

systems and appears to be a quite promising technique for future development.

7.4 Appendix: the FEM hierarchical basis

The FEM hierarchical basis proposed by [502] is a wonderful idea that deserves
to be covered by all FEM texts. However this is not yet the case, partly because
the presentations in the literature were often too advanced to follow for a general
reader. Here we expose the essential ideas and facts so that further reading can
be made easier.

The overview of the HB basis. For a given finest grid, the hierarchical basis
[502] defines an equivalent subspace to the usual FEM space but has the useful
property

V = V1 ⊕ V2 ⊕ · · · ⊕ VJ (7.33)

where V1 is the coarsest level finite element subspace while Vk is the subspace
corresponding to all nodes in (Nk\Nk−1). For piecewise linear functions in R

2,
such a setup can be easily understood if one starts building the subspace V from
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adding new basis functions to V1 as shown in Figure 7.1. More precisely, let
Pk be the piecewise linear interpolation operator satisfying

(Pku)(x) = u(x), ∈ Nk .

Then Vk = Range(Pk − Pk−1) for k = 2, 3, . . . , J . Moreover, any function on
the finest level J can be decomposed by a telescopic series (wavelets of Chapter
8 will define a similar series)

u = P1u +
J∑

k=2

(Pk − Pk−1)u. (7.34)

Here function (Pk − Pk−1)u vanishes at nodes of Nk−1 as they both take the
value 1 there as an interpolation function.

However none of the above results seems to be convincing if we do not
explicitly answer these questions?

(1) How to construct the HB basis from the standard FEM basis? and vice
versa. One notes that [502] gives the detail algorithms of how to form a HB
stiffness matrix from a standard FEM matrix. But the simple issue of basis
construction is not discussed.

(2) Is the HB subspace identical to the standard FEM subspace for a given
finest grid? If so, how to prove that?

Although these are simple questions, surprisingly, the full details cannot be
found from the (somewhat large) literature.

The exact relationship of the HB basis and the standard FEM basis.
Consider the 1D basis, as illustrated in Figure 7.1. The most important and yet
simple fact is the following between basis functions of two adjacent levels:

φ
(k−1)
i (x) = φ

(k)
2i−1(x) + 1

2
φ

(k)
2i−2(x) + 1

2
φ

(k)
2i (x), (7.35)

which is as shown in Figure 7.6; here we assume φ
(k)
j = 0 if j ≤ 0 or j ≥ nk + 1

at the end nodes.
Clearly the standard linear FEM basis are

{φ(J )
1 , φ

(J )
2 , · · · , φ(J )

n J
} on level J, (7.36)

and the HB basis (as in Figure 7.1) are

{H Bφ
(J )
1 , H Bφ

(J )
2 , · · · , H Bφ(J )

n J
} (7.37)

={ φ
(1)
1 , φ

(1)
2︸ ︷︷ ︸

Coarest L1

; φ
(2)
2︸︷︷︸

L2

; φ(3)
2 , φ

(3)
4︸ ︷︷ ︸

L3

; φ(4)
2 , φ

(4)
4 , . . . , φ

(4)
n4−1︸ ︷︷ ︸

L4

; · · · ; φ
(J )
2 , φ

(J )
4 , . . . , φ

(J )
n J −1︸ ︷︷ ︸

L J

}.
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φ
i
(k−1)(x)

φ
2i−1
(k) (x)

φ
2i−2
(k) (x)/2

φ
2i
(k)(x)/2

x
i
    x

i+1
x

i+2

Figure 7.6. Illustration of the fundamental result (7.35) for the HB basis.

The identical representation of the two subspaces. From (7.35), one can
verify that the above HB basis represents the same FEM subspace i.e.

span
(
φ

(J )
1 , φ

(J )
2 , · · · , φ(J )

n J

)
= span

(
H Bφ

(J )
1 , H Bφ

(J )
2 , · · · , H Bφ(J )

n J

)
. (7.38)

With the aide of (7.35) i.e. φ
(k)
2i−1(x) = φ

(k)
i (x) − φ

(k)
2i−2(x)/2 − φ

(k)
2i (x)/2 and

Figure 7.1, we see that

span
(
φ

(J )
1 , φ

(J )
2 , · · · , φ(J )

n J

)
= span

(
φ

(J )
2 , φ

(J )
4 , · · · , φ(J )

n J −1; φ(J−1)
1 , φ

(J−1)
2 , · · · , φ(J−1)

n J−1

)
= span

(
φ

(J )
2 , · · · , φ(J )

n J −1; φ(J−1)
2 , · · · , φ(J−1)

n J−1−1; · · · ; φ
(J−2)
1 , · · · , φ(J−2)

n J−2

)
= · · ·
= span

(
φ

(J )
2 , · · · , φ(J )

n J −1; · · · ; φ
(3)
2 , φ

(3)
n3−1; φ(2)

2 ; φ(1)
1 , φ

(1)
2

)
= span

(
H Bφ

(J )
1 , H Bφ

(J )
2 , · · · , H Bφ(J )

n J

)
.

(7.39)
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Higher dimensions. If we decompose the HB subspace by grouping its
basis functions in (7.37) according to their level information, we obtain the
space decomposition (7.33). Further one may use (7.33) to construct an additive
multilevel preconditioner B for the underlying HB stiffness matrix A (assuming
A is SPD) and show that [494,495] the preconditioner is optimal in 1D but not
in higher dimensions R

d i.e.

κ(B−1 A) =


O(1) if d = 1;

O(h| log h|2) if d = 2;

O(h2−d ) if d ≥ 3.

(7.40)

In R
2, we illustrate the generalized form of (7.35)

φ
(k−1)
i (x) = φ

(k)
i∗ (x) + 1

2

∑
�∈{neighbouring fine level nodes

φ
(k)
� (x) (7.41)

φ
i
(k−1)(x)

φ
i
*
(k)(x)/2

Figure 7.7. Illustration of the fundamental result (7.41) in R
2 for the HB basis.

Here large • points are the coarse points and small • ones are the fine level points.
Observe the difference between φ(k) and φ(k−1) the same coarse point (large) �.
The � (and small �) points indicate the position of neighbouring φ(k)/2.
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in Figure 7.7, where the particular node i at the centre has five neighbouring
fine level nodes and i∗ is the fine level k numbering given to the node i of
level (k − 1). Clearly the hierarchical basis ‘loses’ its advantages visible in
Figure 7.6, or the fine level basis functions in (7.41) (inside the sum

∑
� are no

longer orthogonal to each other!). It appears to be difficult to achieve the won-
derful splitting (7.34) (associated with orthogonal basis) in higher dimensions.

7.5 Discussion of software and the supplied Mfiles

The Schur complements based preconditioners are widely used in coupled ma-
trix problems (Chapter 12). For a single and sparse matrix, several well-written
codes exist that use this kind of preconditioners.

(1) The AMLI package (Mfiles) for elliptic PDEs (Maya Neytcheva)

http : //www.netlib.org/linalg/amli.tgz

(2) The Finite Element ToolKit (FEtk) from

http : //www.fetk.org/

and its 2D MATLAB r© (light) version

http : //scicomp.ucsd.edu/∼mholst/codes/mclite/index.html

(3) The BILUM package (Jun Zhang and Youcef Saad):

http : //cs.engr.uky.edu/∼jzhang/bilum.html

(4) The pARMS library (parallel solvers for distributed sparse linear systems
of equations [336]):

http : //www − users.cs.umn.edu/∼saad/software/pARMS/

For a sparse matrix, the use of multic.m (Chapter 4) may be used to
develop a code making use of Schur complements for preconditioning. The
use of HB ordering is an advanced proposal and below we supply a Mfile that
illustrates it.

[1] HB1.m – Illustration of a standard FEM ordering and conversion to a HB
ordering for a 1D example.
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Sparse wavelet preconditioners [T5]:
approximation of Ãn×n and Ã−1

n×n

The subject of “wavelets” is expanding at such a tremendous rate that it
is impossible to give, within these few pages, a complete introduction to
all aspects of its theory.

Ronald A. Devore and Bradley J. Lucier. Wavelets. Acta
Numerica (1992)

If A is a bounded operator with a bounded inverse, then A maps any or-
thogonal basis to a Riesz basis. Moreover, all Riesz bases can be obtained
as such images of an orthogonal basis. In a way, Riesz bases are the next
best thing to an orthogonal basis.

Ingrid Daubechies. Ten Lectures on Wavelets. SIAM Publications
(1992)

The discovery of wavelets is usually described as one of the most important
advances in mathematics in the twentieth century as a result of joint efforts
of pure and applied mathematicians. Through the powerful compression prop-
erty, wavelets have satisfactorily solved many important problems in applied
mathematics, such as signal and image processing; see [269,166,441,509] for
a summary. There remain many mathematical problems to be tackled before
wavelets can be used for solution of differential and integral equations in a
general setting.

In this chapter, we aim to give an introduction to wavelet preconditioning
and focus more on discrete wavelets. As far as the solution of operator equations
is concerned, the construction of compactly supported and computable wavelet
functions remains a challenge for the future. We discuss these issues in the
following.

Section 8.1 Introduction to multiresolution and orthogonal wavelets
Section 8.2 Operator compression by wavelets and sparsity patterns

310
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Section 8.3 Band WSPAI preconditioner
Section 8.4 New centering WSPAI preconditioner
Section 8.5 Optimal implementations and wavelet quadratures
Section 8.6 Numerical results
Section 8.7 Discussion of software and Mfiles

In this chapter, we shall use the tilde notation (e.g. ỹ) to mean a quantity in a
wavelet space and the hat notation (e.g. ŷ) for a function in the Fourier space.
The bar notation is used for a complex conjugate in the context of Fourier
analysis (e.g. e−iω = cos(ω) − i sin(ω) = cos(ω) + i sin(ω) = eiω).

8.1 Introduction to multiresolution
and orthogonal wavelets

Although the subject area is large, we hope to summarize and capture enough
main issues for a general reader to follow the argument even before diving into
the subject. We pay particular attention to the success and failure of wavelets
as far as applications are concerned. We refer to the interested reader to [152,
302,441,172,173] and many other wavelet books as listed on

http://www.wavelet.org
for further reading. To give a definition for a wavelet function in 1D, it is useful
to mention the Riesz basis for the space L2(R) – a concept of stable basis, much
more used in theoretical analysis [151].

Definition 8.1.1. A functional basis { f j (x)}∞j=−∞ for L2(R) is called a Riesz
basis if its linear span is dense in L2(R) and there exists positive constants
A ≤ B < ∞ (for any linear combination) such that

A
∥∥∥{c j }

∥∥∥2

l2
≤

∥∥∥∥∥ ∞∑
j=−∞

c j f j (x)

∥∥∥∥∥
2

2

≤ B
∥∥∥{c j }

∥∥∥2

l2
, (8.1)

where

‖{c j }‖2
l2 =

∞∑
j=−∞

|c j |2.

A function ψ ∈ L2(R) is called a R-function, if the sequence defined by

ψ j,k(x) = 2 j/2ψ(2 j x − k), j, k = 0, ±1, ±2, . . . , (8.2)

forms a Riesz basis in L2(R).
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Definition 8.1.2. A R-function ψ ∈ L2(R) is called a wavelet (or R-wavelet)
if there exists a (dual) R-function ψ̌ ∈ L2(R) such that〈

ψ j,k, ψ̌ l,m

〉
= δ j,lδk,m, j, k, l, m = 0, ±1, ±2, . . . , (8.3)

with ψ̌l,m(x) = 2l/2ψ̌(2l x − m) and the inner product is defined as usual〈
f, g

〉
=

∫ ∞

−∞
f (x)g(x)dx, with ‖ f ‖2 =

〈
f, f

〉1/2
. (8.4)

Here the definition is for a general biorthogonal wavelet with (8.3) usually
referred to as the biorthogonal property [446,447]. Of particular importance
is the special case of orthogonal wavelets where ψ(x) ≡ ψ̌(x) and then (8.3)
becomes the orthogonal property〈

ψ j,k, ψl,m

〉
= δ j,lδk,m, j, k, l, m = 0, ±1, ±2, . . . . (8.5)

8.1.1 Multiresolution analysis

All wavelets generate a direct sum of the L2(R) space. The partial sums of
this direct sum will generate a function called the scaling function, charac-
terized by the multiresolution analysis (MRA) property of a wavelet. Recall
that a wavelet function (8.2) is associated with its basis functions ψ j,k(x) =
2 j/2ψ(2 j x − k), j, k = 0, ±1, ±2, . . . , where the first index j refers to the
basis resolution (dilation of ψ) while the second index k implements the space
covering (translation of ψ).

Let W j be the subspace formed by those resolution j basis functions, more
precisely, the closure of their linear span1

W j = closL2(R)

{
ψ j,k | k = 0, ±1, ±2, . . . .

}
Define the closed subspace (the partial sum of W�’s up to j − 1) for any j

V j =
j−1∑

�=−∞
W� = · · · + W j−2 + W j−1. (8.6)

Then clearly (as all basis functions ψ j,k are included)

L2(R) =
∞∑

j=−∞
W j = closL2(R)

( ∞⋃
j=−∞

V j

)
.

1 A closure of a set is roughly defined as the same set plus any limits of all possible sequences of
this set. Consult any functional analysis book.
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We now consider how V j can be generated by some R-function φ(x)

V j = closL2(R)

{
φ j,k | k = 0, ±1, ±2, . . . .

}
(8.7)

with φ j,k(x) = 2 j/2φ(2 j x − k), j, k = 0, ±1, ±2, . . .. In particular, we shall
focus on the subspace V0.

Definition 8.1.3. A function φ ∈ L2(R) is called a multiresolution analysis
(MRA) and therefore a scaling function, if the sequence of subspaces V j as
from (8.7) satisfies

(1) Vk ⊂ Vk+1 i.e. · · · ⊂ V−1 ⊂ V0 ⊂ V1 · · ·
(2) L2(R) = closL2(R)

( ∞⋃
k=−∞

Vk

)
.

(3)
∞⋂

k=−∞
Vk = {0}.

(4) f (x) ∈ Vk ⇐⇒ f (2x) ∈ Vk+1.
(5) {φ0,k} = {φ(x − k)} forms a Riesz basis for the subspace V0.

8.1.2 Two-scale equations, orthogonality and Fourier analysis

We shall briefly discuss the process of constructing the scaling and wavelet
functions with desirable properties. This is where the real difficulty lies for a
general setting.

The so-called two-scale equations arise from the simple observation that
V1 = V0 + W0, spanned by basis functions φ1,k = 21/2φ(2x − k) with the scal-
ing function φ(x) ∈ V0 and the wavelet function ψ(x) ∈ W0. Therefore

φ(x) =
∞∑

k=−∞
αkφ1,k(x) =

∞∑
k=−∞

pkφ(2x − k),

ψ(x) =
∞∑

k=−∞
βkφ1,k(x) =

∞∑
k=−∞

qkφ(2x − k),

(8.8)

for some sequences {pk}, {qk}. Eventually we hope for such sequences to be of
finite length (small and compact support).

The task of constructing φ, ψ is greatly simplified by converting (8.8) to the
Fourier space using the Fourier transform

f̂ (ω) = (F f )(ω) =
∫ ∞

∞
e−iωx f (x)dx . (8.9)
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One can verify that (letting z = e−iω/2 and P(z) = 1
2

∑∞
k=−∞ pk zk)∫ ∞

∞
e−iωx

∞∑
k=−∞

pkφ(2x − k)dx = 1

2

∞∑
k=−∞

pk

∫ ∞

∞
e−iω(y+k)/2φ(y)dy

= 1

2

∞∑
k=−∞

pke− ikω
2

∫ ∞

∞
e− iωy

2 φ(y)dy

= P(z)φ̂(ω
2 )

and consequently (8.8) becomes

φ̂(ω) = P(z)φ̂(
ω

2
), ψ̂(ω) = Q(z)φ̂(

ω

2
), (8.10)

with the Laurent polynomial series given by (noting z = e−iω/2 i.e. |z| = 1)

P(z) = 1

2

∞∑
k=−∞

pk zk, Q(z) = 1

2

∞∑
k=−∞

qk zk . (8.11)

Further, requirements on φ, ψ will be imposed on the choice of P(z), Q(z)

P(1) = 1, P(−1) = 1, Q(1) = 0,

and more specifically on their coefficients {pk}, {qk}; see [152,173]. In partic-
ular, using the Parseval equality and the convolution theorem [226,455,324],〈

f, g
〉
= 1

2π

〈
f̂ , ĝ

〉
,

( f ∗ g)(x) =
∫ ∞

−∞
f (x − y)g(y)dy = 1

2π

∫ ∞

−∞
f̂ (ω)̂g(ω)eiωx dω,

(8.12)

the ‘biorthogonality condition’
〈
φ(· − j), ψ(· − k)

〉
= δ jk becomes

P(z)Q(z) + P(−z)Q(−z) = 1, |z| = 1, (8.13)

while the orthogonality condition
〈
φ(· − j), φ(· − k)

〉
= δ jk becomes2

|P(z)|2 + |P(−z)|2 = 1, |z| = 1, (8.14)

which follows from the above Parseval inequality.
To simplify the presentation, we focus on the construction of orthogonal

wavelets in the Daubechies’ family [173] with the compact support of length

2 Note in some presentations [302,441] one defines H (ω) = P(e−iω) = P(z) and G(ω) =
Q(e−iω) = Q(z) so a shift to ω by π results in −z and hence the two orthogonal relations
become respectively H (ω)G(ω) + H (ω + π )G(ω + π ) = 1 and |H (ω)|2 + |H (ω + π )|2 = 1.
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N + 1 on level 0 i.e.

φ(x) =
N∑

k=0

pkφ(2x − k). (8.15)

Here one solution to the orthogonality condition (8.13) is the following

Q(z) = −z P(−z), |z| = 1, (8.16)

from which one works out the sequence {qk}, by equating the corresponding
coefficients, and then the wavelet ψ as follows

qn = (−1)n p1−n for n = 1 − N , 2 − N , . . . , 0, 1 or

qk = (−1)k pN−k for k = 0, 1, 2, . . . , N

ψ(x) =
N∑

k=0

(−1)k pN−kφ(2x − k)

(8.17)

since (N + 1) = 2M is practically even. (Hence the famous Daubechies’ order
four wavelets corresponds to N = 3 and M = 2.)

It remains to find P(z) or the coefficients {pk}. We first remark that it is
not difficult to find P(z) such that (8.14) and P(1) = 1 are satisfied. We hope
for P(z) to possess other useful properties. Central to the success of wavelets’
compression is the so-called property of vanishing moments:∫ ∞

−∞
xkψ(x)dx = 0, k = 0, 1, . . . , M − 1, (8.18)

where N = 2M − 1 is odd (as before). If pτ (x) is any polynomial with degree

τ < M , then
〈
pτ , ψ

〉
= 0. In the Fourier space, the above vanishing moment

property takes the form (for k = 0, 1, . . . , M − 1)∫ ∞

−∞
xkψ(x)dx = x̂ kψ(x)(2π ) = i k dkψ̂

dωk
(2π ) = 0, or

dk P(z)

dzk
(−1) = 0.

(8.19)

Here the equality x̂ k f (x) = i k dk f̂
dωk is applied. Therefore the desirable P(z) is

expected to satisfy (8.19), (8.14) and P(1) = 1.
To satisfy (8.19), the clue comes from working with the cardinal B-spline

Bm(x) of order m

N1(x) =
{

1, 0 ≤ x ≤ 1,

0 otherwise,

Nm(x) = Nm−1(x) ∗ N1(x) =
∫ ∞

−∞
Nm−1(x − y)N1(y)dy =

∫ 1

0
Nm−1(x − y)dy.
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With this scaling function in the context of a MRA

Nm(x) =
∞∑

k=−∞
pk Nm(2x − k),

we can find more explicitly the result (note Pm(−1) = 0)

N̂m(ω) = Pm(z)N̂m(
ω

2
) with Pm(z) = 1

2

∞∑
k=−∞

pk zk =
(

1 + z

2

)m

. (8.20)

This result can be used to define P(z) to satisfy (8.19), if we choose

P(z) = PM (z)SM−1(z) =
(

1 + z

2

)M

SM−1(z). (8.21)

It is left to construct the degree (M − 1) polynomial SM−1(z) such that (8.14)
and P(1) = 1 are satisfied. Refer to [173,152,441].

The famous Daubechies’ order N + 1 = 4 wavelet with M = 2 vanishing
moments used the following choice

S1(z) = 1√
2

√
2 −

√
3

(
(2 +

√
3 − z

)
,

P(z) =
(

1 + z

2

)M

S1(z)

= 1

2

(
1 + √

3

4
+ 3 + √

3

4
z + 3 − √

3

4
z2 + 1 − √

3

4
z3

)
.

We finally clarify the notation for filter coefficients. In the above formulation,
the partition of unity condition P(1) = 1 means that

P(1) = 1

2

∞∑
k=0

pk = 1 or
∞∑

k=0

pk = 2.

Also the condition Q(1) = 0 means that

Q(1) = 1

2

N∑
k=0

qk = 0.

To be consistent with the notation of [441,390] and §1.6.2, we set

ck = pk√
2
, dk = qk√

2
= (−1)k pN−k√

2

to ensure that the wavelet filter coefficients satisfy

∞∑
k=0

ck =
√

2,

∞∑
k=0

dk = 0, (8.22)
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which is necessary for the wavelet transform matrix W (§1.6.2) to be orthogonal
(think about the 2 × 2 matrix W in the Harr case with N = 1). An amazing
and yet remarkable feature of this analysis is that the Fourier transform helped
us to satisfy all requirements of a wavelet function ψ(x), by finding the filter
coefficients {pk}, without formulating ψ(x) directly.

Remark 8.1.4. This remark is obvious but may appear controversial. The com-
monly used wavelet construction in the Fourier space is clearly elegant in anal-
ysis and has achieved all the requirements of an orthogonal (or biorthogonal)
wavelet. However, a major drawback of using the Fourier space is almost surely
to restrict the usefulness of the resulting construction for the simple reason that
the underlying functions are not explicitly available! This has partially con-
tributed to the slow progress in applying wavelets to solve real life differential
and integral equations. For some applications [61], it may still be useful to use
the Parseval equality (8.12) to ‘evaluate’ the coefficients of a wavelet expansion
in the Fourier space.

There exist other FEM basis like constructions without using the Fourier
transforms but the wavelets or their dual wavelets are not as compact [166,397,
170,156].

8.1.3 Pyramidal algorithms

Following the previous subsection, as in [60,166,221,68,441], the filter coeffi-
cients c j ’s and d j ’s for the orthogonal wavelet setting define the scaling function
φ(x) and the wavelet function ψ(x). Further, dilations and translations of φ(x)
and ψ(x) define a multiresolution decomposition for L2 in d-dimensions, in
particular,

L2(Rd) = V0
⊕

W0
⊕ · · · ⊕ WJ−1

⊕
WJ

⊕ · · ·

= V0

∞⊕
j=0

W j ,
(8.23)

where the subspaces satisfy the relations{
V� ⊃ V�−1 ⊃ · · · ⊃ V1 ⊃ V0 ⊃ V−1 ⊃ · · · ,
V�+1 = V�

⊕
W�.

In numerical realizations, we select a finite dimension space VJ (as the finest
scale) as our approximation space to the infinite decomposition of L2 in (8.23)
i.e. effectively use

V0

J−1⊕
j=0

W j = V0

⊕
W0

⊕
W1

⊕
· · ·

⊕
WJ−1 (8.24)

to approximate L2(Rd); we mainly consider d = 1.
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n×n

The pyramidal algorithm [344], as used in Section 1.6.2, refers to the
conversion of coefficients of each f j+1(x) ∈ V j+1 to those of f j+1(x) =
f j (x) + g j (x) ∈ V j+1 = V j ⊕ W j with

f j+1(x) =
∑

m

x j+1
m 2( j+1)/2φ(2 j+1x − m) ∈ V j+1,

f j (x) =
∑

m

x j
m2 j/2φ(2 j x − m) ∈ V j ,

g j (x) =
∑

m

y j
m2 j/2ψ(2 j x − m) ∈ W j .

 (8.25)

� Wavelet decomposition from V j+1 to V j and W j . With the choice of qk in
terms of pk from (8.17), one can verify that∑

k

[
pl−2k pm−2k + ql−2kqm−2k

] = 2δl,m

and furthermore

2φ(2x − m) =
∑

k

[ p̄m−2kφ(x − k) + q̄m−2kψ(x − k)] , or

21/2φ(2x − m) = 1√
2

∑
k

[ p̄m−2kφ(x − k) + q̄m−2kψ(x − k)] .

Applying this to (8.25), we obtain (noting that ck, dk are real)

x j
k = 1√

2

∑
l

p̄l−2kx j+1
l =

∑
l

cl−2kx j+1
l =

N∑
l=0

clx
j+1
l+2k,

y j
k = 1√

2

∑
l

q̄l−2kx j+1
l =

∑
l

dl−2kx j+1
l =

N∑
l=0

dlx
j+1
l+2k .

The overall process can be dipicted by

to decompose :

to retain :

f J (x)→
↘

f J−1(x) →
↘

gJ−1(x)

f J−2(x) →
↘

gJ−2(x)

· · · →
↘

· · ·

f j (x) →
↘

g j (x)

· · · →
↘

· · ·

f0(x)

g0(x)

� Wavelet reconstruction from V j and W j to V j+1. We use the two-scale
equation (8.8) with a shifted value x i.e.

2 j/2φ(x − m) = 1√
2

N∑
k=0

pk2( j+1)/2φ(2(x − m) − k),

2 j/2ψ(x − m) = 1√
2

N∑
k=0

qk2( j+1)/2φ(2(x − m) − k).
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The following is immediately obtained from equating (8.25)

x j+1
k = 1√

2

∑
l

[
pk−2lx

j
l + qk−2ly

j
l

]
=

N∑
�=0

[
c�x j

k(�) + d�y j
k(�)

]
,

where the functional notation k(�) = (k − �)/2 should be interpreted as a whole
integer; a term does not exist (so is zero) if k(�) is not an integer i.e.

vk(�) =
{

v j , if rem(k − �, 2) = 0 and j = k(�) = (k − �)/2,

0, otherwise.
(8.26)

The overall reconstruction process can be depicted by

to decompose :

to retain :

f J (x) ←
↖

f J−1(x) ←
↖

gJ−1(x)

f J−2(x) ←
↖

gJ−2(x)

· · · ←
↖

· · ·

f j (x) ←
↖

g j (x)

· · · ←
↖

· · ·

f0(x)

g0(x)

8.1.4 Discrete wavelets as matrix computation tools

As remarked before, constructing user-friendly wavelets with compact supports
and fewer requirements on the geometry of a domain continues to be a chal-
lenging and interesting topic. Presently the most useable wavelets are those
tensor-products based biorthogonal ones that are defined by a collection of
flexible patches covering a general domain [166,266].

Following the work of [60,397,169,479,266], it became clear that the tensor-
product wavelets can offer remarkable improvements for solving the boundary
integral equations. This is mainly due to the excellent compression rates that
can be achieved. See Section 8.5.

However on solving a PDE, while some problems have been solved success-
fully, two comments may be made.

(i) most of the wavelet methods proposed so far have theoretical advantages
over the traditional methods in terms of defining a Riesz basis and better
conditioning of stiffness matrices for self-adjoint problems. The recent
work of [155] even showed clear advantages of wavelets over the FEM on
adaptive solution.

(ii) the wavelet methods, as practical methods, are not yet ready to compete
with the traditional FEM approach. One reason was that the compactness
of a wavelet, which defines the sparsity of the resulting stiffness matrix, is
not easy to to realize, while the FEM can always produce a sparse matrix
with more regular sparsity patterns.

Therefore for PDE problems, it is recommended to use first the FEM dis-
cretization to derive a sparse matrix problem and then to use the discrete
wavelets for preconditioning. While this idea is also applicable to integral
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equations, whenever possible, we should try the optimal implementation of
using wavelets as functions rather than as discrete wavelet transforms for dense
matrices.

As mentioned in Section 1.6.2, when using a FWT based on pyramidal
algorithms for a sparse matrix, one may or may not need to refer to the functional
wavelet theory as this may not make sense for many cases. For pure matrix
problems e.g. from signal and image processing, the wavelets can offer an
excellent solution in most cases [441].

The advantages of using a DWT to solve a matrix problem may be explained
using certain smoothness measure of the underlying matrix as done in [205]
where we measure the norm of column and row differences. However a better
method is given by [440] who interprets the functional vanishing moment con-
ditions in terms of vanishing vector moments. This offers a purely algebraic
way of using wavelets for a wide class of matrix computations. Below we shall
discuss how this discrete approach can be used for preconditioning purposes.

8.2 Operator compression by wavelets
and sparsity patterns

We are primarily interested in solving a pseudo-differential equation, which
includes a large class of second-order PDEs of practical interest and integral
equations [169,60]. The usual choices and questions are:

(i) which scaling and wavelet functions to use or construct?
(ii) do the wavelet functions process finite supports?

(iii) how to compute the wavelet matrix by suitable quadrature?
(iv) what sparsity patterns does the final matrix take?

Amazingly enough, the last question (iv) can be answered for a large class
of pseudo-differential equations even before the three questions are answered
as long as we make the usual assumption on the decaying of the distributional
kernel of the operator and on the availability of some vanishing moments of
the wavelet. The sparsity pattern concerned is the so-called ‘finger-like’ pattern
as shown on the right plot of Figure 1.1. The first three questions (i–iii) are
tough and it may take a few more years for the subject to become mature. What
is more, as the theoretical inverse of a pseudo-differential operator is another
pseudo-differential operator in a different order, we can predict the sparsity
pattern of an inverse matrix in the wavelet space! This is the very property
that is much needed to guarantee the efficiency of a SPAI type preconditioner
(Chapter 5). In this viewpoint, the wavelet filters (rather than the underlying
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wavelet function explicitly) will play a major role for sparse matrices from
PDEs; for dense matrices from integral equations, one may avoid transforming
a dense matrix by using the implicit wavelet preconditioning (Chapter 10).

Let T be a pseudo-differential operator with the symbol σ (x, ξ ) of order λ.
Then it can be written as an ‘integral operator’

T ( f )(x) = σ (x, D) f =
∫

R

eixξ σ (x, ξ ) f̃ (ξ )dξ

=
∫

R

eixξ σ (x, ξ )
1

2π

∫
R

e−iyξ f (y)dy dξ

=
∫

R

K (x, y) f (y)dy, K (x, y) = 1

2π

∫
R

ei(x−y)ξ σ (x, ξ )dξ.

(8.27)

Note the range of λ is usually −1 ≤ λ ≤ 2 with

(a) λ = 2 corresponding to a second-order differential operator (e.g. ∇2)
(b) λ = 1 corresponding to a hyper-singular integral operator (e.g. Nk)
(c) λ = 0 corresponding to a double-layer integral operator (e.g. Mk,MT

k )
(d) λ = −1 corresponding to a single-layer integral operator (e.g. Lk)

where the order of an operator is closely related to its mapping properties
(e.g. refer to Theorem 1.7.21). The distributional kernel satisfies the normal
condition

|∂ l
x∂

k
ξ σ (x, ξ )| ≤ Cl,k(1 + |ξ |)λ−k (8.28)

and σ (x, ξ ) has compact support in x ; the result is also true in R
d for d ≥ 2.

For the 1D case in [a, b], let ψ(x) be some suitable wavelet function that has
M vanishing moments∫ b

a
ψ(x)x j dx = 0 for j = 0, 1, 2, . . . , M − 1. (8.29)

Suppose J levels of grids have been set up and we are interested in computing
(or estimating) the particular matrix element

αI I ′ =
〈
T ψI , ψI ′

〉
=

〈
KψI , ψI ′

〉
=

∫ b

a

∫ b

a
K (x, y)ψI (x)ψI ′ (y)dxdy =

∫
I

∫
I ′

K (x, y)ψI (x)ψI ′ (y)dxdy

(8.30)
with the wavelet basis functions ψI , ψI ′ supported on the intervals I
(level j), I ′ (level j ′) respectively. Then to estimate αI I ′ , assuming I, I ′ are
not overlapping, we expand K into a Taylor series up to degree M around the



322 Wavelet preconditioners [T5] for Ãn×n and Ã−1
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center of I × I ′ and substitute into (8.30), using (8.29), to yield

|αI I ′ | ≤ CM,λ, j, j ′

dist(I, I ′)M+λ+1
, (8.31)

where the generic constant C may be further specified in particular situations.
Refer to [60,166,167].

We now consider how (8.31) informs us of the overall sparsity pattern of
the stiffness matrix Ã = (αI I ′ ). Let the wavelet functions on level j = J −
1, . . . , 1, 0 be denoted by

ψ
j

1 (x), ψ j
2 (x), . . . , ψ j

n j
(x),

and the scaling functions on level 0 by

φ0
1(x), φ0

2(x), . . . , φ0
n0

(x).

Opposite to the right plots of Figure 1.1, we order these functions from the
finest level to the coarsest level so the matrix Ã will arise from these blocks as
follows

〈
T ψ J−1

� , ψ J−1
k

〉 〈
T ψ J−1

� , ψ J−2
k

〉
· · ·

〈
T ψ J−1

� , ψ0
k

〉 〈
T φ J−1

� , φ0
k

〉
〈
T ψ J−2

� , ψ J−1
k

〉 〈
T ψ J−2

� , ψ J−2
k

〉
· · ·

〈
T ψ J−2

� , ψ0
k

〉 〈
T φ J−2

� , φ0
k

〉
...

...
. . .

...
...〈

T ψ0
� , ψ J−1

k

〉 〈
T ψ0

� , ψ J−2
k

〉
· · ·

〈
T ψ0

� , ψ0
k

〉 〈
T φ0

� , φ
0
k

〉
〈
T φ0

� , ψ
J−1
k

〉 〈
T φ0

� , ψ
J−2
k

〉
· · ·

〈
T φ0

� , ψ
0
k

〉 〈
T φ0

� , φ
0
k

〉


, (8.32)

where the pairing (�, k) should go through all basis functions within each level.
Applying (8.31) to (8.32), we can see that each wavelet–wavelet block (square
or rectangular) has concentrated its large nonzeros near the main diagonal and
small elements decaying away from the main diagonal whilst the wavelet-
scaling blocks along the bottom row and right most column do not necessarily
have as many small elements. This is clearly shown in Figure 8.1.

The idea of making use of the inverse matrix pattern in the wavelet matrix
to propose a robust finger-patterned SPAI preconditioner was first recognized
in [157,158], although mainly the Laplacian equation was considered. Unfor-
tunately no comprehensive experiments were carried out and no numerical
algorithms were presented to compute the approximate inverse for the wavelet
matrix. In fact, as we see in Chapter 10, obtaining a finger-like patterned SPAI
preconditioner is not computationally feasible due to high cost and alternative
algorithms are needed.
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Figure 8.1. Illustration of the finger-like sparsity pattern in a wavelet basis (J =
5 levels). Recall that V5 = W4 + W3 + W2 + W1 + W0 + V0.

8.3 Band WSPAI preconditioner

The first use of orthogonal wavelets to design a sparse preconditioner for sparse
problems was made in [116,483], although the work was motivated by the gen-
eral smoothness observation of some elliptic operator rather by the pseudo-
differential argument. The resulting algorithm defines the wavelet sparse ap-
proximate inverse (WSPAI) preconditioner. The message was clear. We wish to
explore the preconditioning techniques (as from Chapters 4 and 5) in a wavelet
space.

As we intend to work with sparse matrices from FEM applications, it may not
be necessary to use wavelet functions or invoke the wavelet compression theory
directly. (However it is feasible to formulate the vanishing moment conditions
in the discrete case [441].) As in Section 1.6.2, let W be an orthogonal transform
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matrix. Then the linear system (1.1) will become

Ãx̃ = b̃ with Ã = W AW T , x = W T x̃, b̃ = W b, (8.33)

since W W T = W T W = I . If a biorthogonal transform is used, the idea will be
similar as one works with

Ãx̃ = b̃ with Ã = W AW̌ , x = W̌ x̃, b̃ = W b,

since W W̌ = I . If A is sparse, Ã will also be sparse (even in the case of very
few or no vanishing moments), though possibly denser than A if A is extremely
sparse (e.g. tridiagonal).

We look for a SPAI type preconditioner M̃ as in Chapter 5 for matrix Ã. It
turns out that such a preconditioner would correspond to a SPAI preconditioner
M (which may or may not be found directly and easily) in the original space:

min
M

‖AM − I‖F = min
M

‖W AW T W MW T − I‖F

= min
M̃

‖ ÃM̃ − I‖F ,
(8.34)

where Ã = W AW T and M̃ = W MW T are respectively the counterparts of A
and M in the wavelet setting. Following Chapter 5, (8.34) is solved via n least
squares problems

min
m̃ j

‖ Ãm̃ j − e j‖2, j = 1, 2, . . . , n. (8.35)

It only remains to specify a suitable sparsity pattern S for M̃ .

Algorithm 8.3.5. (WSPAI).

(1) Compute the transformed matrix, Ã = W AW T .
(2) Apply Algorithm 5.4.5 to obtain M̃.
(3) Use M̃ to solve (8.33) by some iterative solver (e.g. Algorithm 3.6.18).
(4) Apply the inverse wavelet transform to compute the solution, x = W T x̃.

As discussed in the previous section, the best pattern S is the finger-like
pattern. However a direct use of such a S leads to high cost because there exist
dense columns (see Figure 8.1). One solution is discussed in Chapter 10. The
choice made in [116] is to use a banded sparsity pattern as this would balance
the work required for each column.

The results are quite promising, although the WSPAI method cannot precon-
dition PDE problems with jumps in coefficients. For such a case, an improved
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algorithm combining simple scaling (such as those from Chapter 4) is proposed
in [107] in a two-stage setting{

D−1 Ax = D−1b,

Ã1 x̃ = b̃1,

where Ã1 = W A1W T = W D−1 AW T .

8.4 New centering WSPAI preconditioner

The first use of orthogonal wavelets to design a sparse preconditioner dense
problems was in [130]. The motivation there was to improve on existing sparse
preconditioners of the forward type (Chapter 4).

For dense matrices arising from the BEM discretization, two observations
emerge. Firstly the conditioning alone is not a major issue as such matrices are
less ill-conditioned than those sparse ones from FEM/PDE contexts. Secondly
simple preconditioners based on the standard DWT do not work as they cannot
preserve a diagonal operator splitting (necessary for eigenvalue clustering) in the
original BEM space. It should be remarked that the eigenspectra of matrices A
and Ã are identical, even though the latter appears approximately sparse (under
a thresholding).

To introduce our new DWT, we first examine how the standard DWT works;
we adopt the same notation used in Section 1.6.2. Table 8.1 shows a typical
example of applying a three-level pyramidal algorithm to a vector s = a =
s(4) of size n = 2L = 24, where three forms (1 for components, 2 for vectors,
3 for matrices) of transform details are shown. Clearly local features in a are
scattered in W a, that is, the standard DWT is not centred.

Let A be such a ‘finger’-like sparse matrix, truncated from Ã after some
thresholding i.e. A = drop( Ã). For such matrices, matrix-vector products can be
formed very efficiently. That is to say, if it is desirable to solve Au = z by some
iterative methods without preconditioning, then as far as certain applications
are concerned we have obtained an efficient implementation. Here u = W x and
z = W b.

However, approximately, A is spectrally equivalent to the original matrix
A. Therefore, as the original problem requires preconditioning, we need to
precondition Au = z. Indeed, [422] reports that with GMRES, the number of
iteration steps for Ãu = z and Au = z are the same.

Moreover, it is not an easy task to use A as a preconditioner because solv-
ing the linear system Au = z results in many fill-ins. We also note that such
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Figure 8.2. Comparison of the standard pyramidal algorithm (left) and the new
wavelet ordering algorithm (right) of J = 3 levels for transforming a sized 8 vector
a = (a j ). In both plots, the boxes � denote the ‘scaling’ coefficients (‘Sums’) and
the circles © the ‘wavelet’ coefficients (‘differences’). The numbers indicate the
final order for ã.

a ‘finger’-like matrix also gives problems in designing approximate sparse
inverses; see [116]. Below we consider a new implementation of DWT’s avoid-
ing the generation of such ‘finger’-like matrices.

8.4.1 A new nonstandard DWT

To begin with, we re-consider how a DWT should ideally deal with a local
feature like that in the vector a shown in Table 8.1 (left) before introducing
our proposed changes to the basic pyramidal algorithm. It turns out that a
local feature preserving scheme is necessary and this amounts to removing the
permutation matrices Pj ’s in the standard DWT. The difference in ordering the
transformed quantity may be illustrated by Figure 8.2, where one can see that
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Table 8.2. The new centering DWT matrix [130].

Ŵν =



c0Ø c1 Ø c2 Ø · · · cm−1
ØI Ø Ø Ø Ø · · · Ø
d0Ø d1 Ø d2 Ø · · · dm−1
ØØ Ø I Ø Ø · · · Ø

c0 Ø
. . .

. . .

Ø I . . .
. . .

...
...

...
... · · · · · · . . .

. . .
. . .

. . .
c2Ø · · · cm−1 c0 Ø c1 Ø
ØØ · · · Ø Ø I Ø Ø
d2Ø · · · dm−1 d0 Ø d1 Ø
ØØ · · · Ø Ø Ø Ø I


n×n

. (8.36)

the standard DWT algorithm orders vertically in a level by level fashion while
our new DWT algorithm orders horizontally in an ‘in-place’ way.

We first define a new one-level DWT matrix in (8.36) of Table 8.2, similar to
W ν in (1.47). Here I is an identity matrix of size 2(L−ν) − 1 and Ø’s are block
zero matrices. For ν = L , both I and Ø are of size 0 i.e. ŴL = W L = WL .

Further a new DWT (from (1.44)) for a vector s(L) ∈ Rn can be defined by

ŵ = Ŵ s(L)

with

Ŵ = Ŵr+1Ŵr+2 · · · ŴL (8.37)

based on (L + 1 − r ) levels. For L = 4 and m = 4 (Daubechies’ wavelets for
n = 2L = 16), Table 8.1 (right) shows details of a three-level transform using
Ŵ4 and Ŵ3. One may verify that, unlike the left side of Table 8.1, the very
last column (ŵ) on the right side of Table 8.1 would possess a locally centered
sparse structure depending only on the number of wavelet levels and not on
size n.

For a matrix An×n , the new DWT would give

Â = Ŵ AŴ �.

Now to relate Â to Ã from a standard DWT, or rather Ŵ to W , we define

P = P�
L P�

L−1 · · · P�
r+2 P�

r+1, (8.38)
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which is a permutation matrix with Pk’s from (1.47). Firstly, by induction, we
can prove the following

Ŵ k =
(

L−k∏
�=1

Pk+�

)�
Wk

(
L−k∏
�=1

Pk+�

)
for k = r + 1, r + 2, · · · , L ,

that is,

ŴL = WL ,

ŴL−1 = P�
L WL−1 PL ,

...

Ŵr+1 = P�
L P�

L−1 · · · P�
r+2Wr+1 Pr+2 · · · PL−1 PL .

Secondly, we can verify that

PW = (
P�

L P�
L−1 · · · P�

r+1

)
(Pr+1Wr+1 · · · PL WL )

= Ŵr+1
(
P�

L P�
L−1 · · · P�

r+2

)
(Pr+2Wr+2 · · · PL WL )

...

= Ŵr+1Ŵr+2 · · · ŴL−2 P�
L WL−1 (PL WL )

= Ŵr+1Ŵr+2 · · · ŴL

= Ŵ .

Consequently from Ŵ = PW , Â = P ÃP� define our new DWT transform
[130].

The practical implication of these relations is that the new DWT can be imple-
mented in a level by level manner, either directly using Ŵν’s (via Ŵ ) or indirectly
using Pν’s (via P) after a standard DWT, and we obtain the same result.

To illustrate the new DWT, we apply the new DWT to a non-constant diagonal
matrix A and the transformed matrix, which has an essentially band-like pattern,
is shown in Figure 8.3 along with the standard DWT (the left plot). Clearly such
a pattern (in the middle plot) may be used more advantageously than a finger-like
one (for example, in the applications of [116]).

As far as preconditioning is concerned, to solve (1.1), we propose the fol-
lowing:

Algorithm 8.4.6.

1. Apply the new DWT to Ax = b to obtain Âu = z;
2. Select a suitable band form M of Â;
3. Use M−1 as a preconditioner to solve Âu = z iteratively.
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Figure 8.3. Illustration of the finger-like sparsity pattern (left) versus the new DWT
pattern (middle) and its coarsest level version (right) for a diagonal matrix.

Here the band size of M determines the cost of a preconditioning step. If this
size is too small, the preconditioner may not be effective. If the size is so large
(say nearly n − 1) that the preconditioner approximates Â−1 very accurately,
then one may expect that one or two iterations are sufficient for convergence
but each iteration is too expensive. Therefore, we shall next examine the pos-
sibility of constructing an effective preconditioner based on a relatively small
band.

8.4.2 Band matrices under the new DWT

To discuss combining the new DWT with the operator splitting ideas in the
next subsection, we first consider the process of transforming a band matrix.
Let J denote the actual number of wavelet levels used (1 ≤ J ≤ (L + 1 − r )).
Mainly we try to address this question: under what conditions does the new
DWT transform a band matrix A into another band matrix Â (instead of a
general sparse matrix)? Here, by a band matrix, we mean a usual band matrix
with wrap-round boundaries. The correct condition turns out to be that J should
be chosen to be less than (L + 1 − r ). This will be stated more precisely in
Theorem 8.4.12.

To motivate the problem, we show in Figures 8.3 and 8.4 respectively the
DWT of a diagonal matrix and a nondiagonal matrix, using J = 5. Here with
m = 4 (so r = 1) and L = 8, a band structure in Â is achieved by not using the
maximum level J = L − r + 1 = 8. For a given band matrix A, to establish
the exact band width for the transformed matrix Â under the new DWT, we
need to view the one-step transformation matrix Ŵν as a band matrix. For
ease of presentation, we first introduce some definitions and a lemma before
establishing the main theorem.
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Figure 8.4. Illustration of the finger-like sparsity pattern (left) versus the new
DWT pattern (middle) and its coarsest level version (right) for a Caldron–Zygmund
matrix as from (8.39).

Definition 8.4.7. (Band(α, β, k)). A block band matrix An×n, with wrap-round
boundaries and blocks of size k × k, is called a Band(α, β, k) if its lower block
band width is α and upper block band width β (both including but not counting
the main block diagonal).

Note that when k = 1, we write Band(α, β, 1) = Band(α, β).

Definition 8.4.8. (Band(α, β, k, τ )). A Band(α, β, k) matrix An×n is called
Band(α, β, k, τ ) if each k × k block has a total band width of 2k − 1 − 2τ ,
that is, if there are τ bands of zeros at both ends of the anti-diagonal.

Lemma 8.4.9. For non-negative integers α, β, γ, δ, k, τ , the following results
hold:

(1) Band(α, β)Band(γ, δ) = Band(α + γ, β + δ);
(2) Band(α, β, k)Band(γ, δ, k) = Band(α + γ, β + δ, k);
(3) Band(α, β, k) = Band((α + 1)k − 1, (β + 1)k − 1);
(4) Band(α, β, k, τ ) = Band((α + 1)k − 1 − τ, (β + 1)k − 1 − τ ).

Lemma 8.4.10. With Daubechies’ order m wavelets, the one-step transforma-
tion matrix Ŵν , for n = 2L , is Band(0, (m/2 − 1), 2(L−ν+1), 2(L−ν) − 1) and is
therefore Band(2(L−ν+1) − 2(L−ν), 2(L−ν)m − 2(L−ν)).

Proof. Note that the band information of Ŵν does not actually involve L or
n, and the apparent involvement of L is due to index ν. It suffices to consider
ν = L . Then ŴL is consisted of 2 × 2 blocks with m/2 blocks on each row. That
is, it is a Band(0, m/2 − 1, 2, 0) matrix. Then use Lemma 8.4.9 to complete the
proof.

Remark 8.4.11. Clearly Band(α, β, k) = Band(α, β, k, 0). However, for
block matrices, it is often necessary to keep them as blocks until a final step in
order to obtain improved results. For example, with Lemma 8.4.9.2–8.4.9.3,
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Band(1, 1, 2)Band(1, 1, 2) = Band(2, 2, 2) = Band(5, 5), but with Lemma
8.4.9.3,

Band(1, 1, 2)Band(1, 1, 2) = Band(3, 3)Band(3, 3) = Band(6, 6).

Similarly as blocks, Band(3, 2, 4)Band(1, 1, 4) = Band(4, 3, 4) = Band(19,
15) but as bands,

Band(3, 2, 4)Band(1, 1, 4) = Band(15, 11)Band(7, 7) = Band(22, 18)

– an over-estimate! This suggests that if the band matrix A is Band(α, β, 2),
then Theorem 8.4.12 below can be further improved.

Theorem 8.4.12. Assume that An×n is a Band(α, β) matrix. Then the new DWT
of � levels, based on Daubechies’ order m wavelets, transforms A into Â which
is at most a Band(λ1, λ2) matrix with

λ1 − α = λ2 − β = m(2(�−1) − 1).

Proof. For the new DWT with � levels, the transform is Â = Ŵ AŴ �

Ŵ = ŴL−�+2ŴL−�+3 · · · ŴL .

From Lemma 8.4.10, the total lower and upper band widths of Ŵ will be,
respectively

low =
L∑

ν=L−(�−2)

(
2L−ν+1 − 2L−ν

)
and up =

L∑
ν=L−(�−2)

(m − 1)2L−ν .

Therefore the overestimate for the lower band width of Â will be

λ1 = α + low + up = α +
L∑

ν=L−(�−2)

2L−ν = α + m(2(�−1) − 1).

Similarly we get the result for λ2 and the proof is complete.

Note that as indicated before, parameters λ1, λ2 do not depend on the problem
size n. When α = β for A, λ1 = λ2 for Â. For a diagonal matrix A with distinct
diagonal entries, for instance, a Band(0, 0) matrix, with m = 4, J = � = 5,
and n = 256, the standard DWT gives a ‘finger’-like pattern in Ã as shown in
Figure 8.3 (left plot) while the new DWT gives a Band(46, 46) matrix in Â as
shown in Figure 8.3 (middle plot). Here Theorem 8.4.12 gives over estimates
λ1 = λ2 = 4(2(5−1) − 1) = 60, a Band(60, 60) matrix.

As we shall see, preserving a banded matrix (or a diagonal matrix) under the
new DWT is important for preconditioning a class of singular BIEs [130] using
also banded preconditioners. However for other problems where a banded arrow
matrix is more desirable and the coarsest level is not too ‘coarse’ (� � L), it
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may become desirable to order the ‘sums’ (scaling coefficients) on the coarsest
level separately from the rest of wavelet coefficients. In this way, the resulting
DWT (as a variation of [130]) has a tighter band (with added arrows) as shown
in the right plots of Figures 8.3 and 8.4, where Figure 8.4 shows the results for
the following matrix

(A)ij =
 2

1 + |i − j | , i �= j

0, otherwise.
(8.39)

A similar idea was explored in [204], where all ‘sums’ related terms are ordered
first. In fact, if � levels are applied, the coarsest level nodes are located at
j = 1 : 2� : n and this suggests that one should order nodes j = 2 : 2�−k : n
first and the rest second in order to derive a new ordering (based on the centering
DWT) that excludes k + 1 levels in the centering scheme. We have coded the
general idea in perm0.m that, taking the input k ∈ [0, �], outputs the usual
centering DWT if k = � and the DWTPerMod [204] if k = 0. To see the changes
to the pyramidal algorithm or rather the new centering algorithm [130], we refer
to Figure 8.5.

8.4.3 Applications to preconditioning a linear system

Consider the transformed linear system Ây = b̂ after a new DWT applied to
Ax = b, where Â = Ŵ AŴ �, x = Ŵ �y and b̂ = Ŵ b. We hope to select an
efficient preconditioner M−1 to matrix Â based on operator (matrix) splitting,
that is, M = D̂ and Â = D̂ + Ĉ .

The main issue to bear in mind is the following: any partition D̂ of Â corre-
sponds to a partition D of matrix A (via an inverse DWT process). The latter
partition, directly related to operators, must include all singularities; this will
ensure a good eigenvalue distribution for the preconditioned matrix and its
normal ([128]). Such a selection idea seems difficult to realize. Therefore we
consider the reverse process.

The strategy that we take is to start with a preliminary partition A = D + C
and consider the linear relationships of A, D, C under a DWT, where we may
assume as in Section 2.5.1 D is a Band(α, α) for some integer α (say α = 1
for a tridiagonal matrix). First, apply the new DWT with a smaller number
� = J ≤ (L + 1 − r ) − 2 = L − r − 1) of wavelet levels, to give

Ây = (D̂ + Ĉ)y = b̂, (8.40)

where D̂ = Ŵ DŴ �, Ĉ = ŴCŴ � and b̂ = Ŵ b. Now D̂ is also a band matrix
(with wrap-around boundaries) and more specifically it is at most Band(λ, λ)
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Figure 8.5. Illustration of the coarsest level version of the new wavelet ordering
algorithm [130] for J = 3 levels (left) and for J = 2 levels (right plot). As in
Figure 8.2, the boxes � denote the ‘scaling’ coefficients (‘Sums’) and the circles
© the ‘wavelet’ coefficients (‘differences’). The numbering means that how the
final sequence is ordered. The dotted red lines indicate separation of the coarsest
level.

matrix with λ as predicted according to Theorem 8.4.12. Let B denote the
Band(λ, λ) part of matrix Â, and we can identify the composition of B in terms
of D̂, Ĉ . Specifically B = D̂ + Cd , where D̂ is enclosed in B and Cd is the
band part of matrix Ĉ that falls into the sparsity pattern of B. Secondly, partition
matrix Ĉ = Cd + C f via B. That is, C f contains the remaining elements of Ĉ .
Finally, with B = D̂ + Cd , we effectively partition the coefficient matrix of
(8.40) by (D̂ + Ĉ) = (D f + C f ) = B + C f , with D f = B = D̂ + Cd . Thus
M−1 = D−1

f will be used as a preconditioner. Using inverse transforms, one
can see that using the sparse matrix M = D f is spectrally equivalent to using
a full matrix to precondition matrix A. So the use of DWT is a way to achieve
this purpose efficiently.

It should be remarked that, in implementations, the wavelet transform is
applied to A, not to D and C separately. The above discussion is mainly to
identify the band structure B (say in the middle plot of Figure 8.3) and to explain
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the exact inclusion of Ŵ DŴ � (or D) in matrix M . Thus a new algorithm can
be stated as follows:

Algorithm 8.4.13.

(1) Decide on an operator splitting A = D + C with D a band matrix.
(2) Apply the new DWT to Ax = b to obtain Ây = b̂.
(3) Determine a band-width µ from Theorem 8.4.12 (to find B that encloses

D̂).
(4) Select the preconditioner as the inverse of a band-width µ matrix of Â and

use it to solve Ây = b̂ iteratively.

Here the band size µ = λ1 + λ2 + 1 (total band width) is known in advance,
once m (wavelet order) and � (wavelet levels) have been selected, and gener-
ally small, with respect to problem size n. For example if D is Band(1, 1)
(tridiagonal), with m = 6 and � = 3, the total band width for B will be
µ = 2 × 6 × (23−1 − 1) + 1 = 37. In [129], we applied such an algorithm to a
generalized BEM that involves the radial basis function interpolation [79] and
obtained improvements to the Krylov solver used.

Note that Algorithm 2 includes Algorithm 1 as a special case if λ is chosen
as a fixed integer in the second step.

Remark 8.4.14. Recall that wavelets compress well for smooth (or for smooth
parts of) functions and operators. Here matrix C , after cutting off the non-
smooth parts D of A, is smooth except on the bands near the cuts (artificially
created). So most nonzeros in Ĉ will be centered around these cuts and Cd will
be significant.

8.5 Optimal implementations and wavelet quadratures

Optimal wavelet implementations refer to obtaining a sparse matrix from using
quadratures involving the wavelet functions rather than DWTs. Although it is be-
yond this book to present wavelet quadratures, we wish to make these remarks.

� As far as the improvement for conditioning is concerned, a PDE can be
solved by wavelets methods with the most advantage as conditioning, which
is is normally extremely poor with FEM with piecewise polynomials, can be
better controlled. However, wavelets compression cannot help PDEs since
the usual FEM with piecewise polynomials leads to excellent sparsity while
wavelets struggle on sparsity (depending on operators and domains).
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� For an integral equation example, the opposite is true. Much can be gained
from using wavelet functions for discretization since an approximate sparse
matrix Ã (it does not matter how sparse it is) is generated and the usual BEM
matrix from using piecewise polynomials gives the dense matrix. However,
conditioning is not a major issue in the case of an integral equation.

We anticipate much progress to come in wavelets research.

8.6 Numerical results

To illustrate the DWT-based preconditioners, we have developed a Mfile
run8.m to test the matrices as defined in Section 4.9. For simplicity, we have
not transformed all solution quantities from ũ in the wavelet space to u in the nor-
mal space on the finest level; these tasks can be achieved by ifwt.m together
with perm2.m (or perm0.m and iperm0.m) depending which permutations
are involved.

In Figures 8.6–8.8, we display the convergence results for three of the test
matrices with the scaling [107] applied to the second matrix before applying
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Figure 8.6. Convergence results of the wavelet preconditioners for test matrix 1
(Section 4.9).
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the DWT. Clearly one observes that all these three examples are solved much
faster than the previous methods in the original polynomial spaces. The hard
example matrix0 that cannot be solved easily by methods from Chapters 4
and 5 remains a challenge for the DWT methods.

8.7 Discussion of software and the supplied Mfiles

Several sources of software appear to exist for wavelet applications. None are
completely general and suitable for solving operator equations, especially for
preconditioning, reflecting the current state of affairs in wavelet research. Nev-
ertheless, we recommend the following sites for general study.

(1) The MATLAB r© wavelet toolbox

http : //www.mathworks.com/wavelet.html

(2) The wavelet digest (pointing to various software)

http : //www.wavelet.org/

(3) The Numerical Recipes [390]:

http : //www.nr.com/

(4) The TOMS (ACM Transactions on Mathematical Software):

http : //www.netlib.org/toms/

This book has supplied these Mfiles for investigating preconditioning related
issues.

[1] perm2.m – Computes the new DWTper matrix for the wavelet matrix Ã,
that is obtained from using fwt.m (Chapter 1).

[2] perm0.m– Computes the new DWTPerc matrix, that includes the DWTPer
and DWTPerMod as special cases.

[3] fwts.m – A sparse matrix version of fwt.m (see Section 1.9), which
is identical to fwt.m for a dense matrix but is much faster for a sparse
matrix due to MATLAB’s sparse matrix facilities. (See also iwts.m for
the corresponding inverse DWT.)

[4] iperm2.m – The inverse DWTPer transform (undo the work ofperm2 for
recovering the original solution together with ifwt.m from Section 1.9).

[5] iperm0.m – The inverse DWTPer transform (undo the work of
perm0).
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[6] spyc.m – An utility Mfile for displaying a sparse matrix with colours
(based on the spy command).

[7] ch8.m – A driver Mfile, illustrating the use of perm2.m and perm0.m as
well as their use in developing preconditioners for GMRES.

[8] cz.m – Generation of a test matrix of the Calderon-Zygmund type.
[9] run8.m – The main driver Mfile for illustrating fwt.m, perm2.m and

perm0.m using the test matrices in Section 4.9.
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Wavelet Schur preconditioners [T6]

There seem to be at least two important issues for which wavelet-like
expansions have already proven to work with great success, namely pre-
conditioning linear systems stemming from Galerkin approximations for
elliptic problems and compressing full stiffness matrices arising in con-
nection with integral or pseudodifferential operators, to facilitate nearly
optimal complexity algorithms for the solution of the corresponding dis-
crete problems.

Wolfgang Dahmen, et al. Multiscale methods for pseudodifferential
equations. Recent Advances in Wavelet Analysis (1994)

In the usual FEM setting, Schur complement methods from Chapter 7 per-
form the best if there is some kind of ‘diagonal’ dominance. This chapter
proposes two related and efficient iterative algorithms based on the wavelet
formulation for solving an operator equation with conventional arithmetic. In
the new wavelet setting, the stiffness matrix possesses the desirable properties
suitable for using the Schur complements. The proposed algorithms utilize the
Schur complements recursively; they only differ in how to use coarse levels to
solve Schur complements equations. In the first algorithm, we precondition a
Schur complement by using coarse levels while in the second we use approx-
imate Schur complements to construct a preconditioner. We believe that our
algorithms can be adapted to higher dimensional problems more easily than
previous work in the subject. The material is organized in the following

Section 9.1 Introduction
Section 9.2 Wavelets telescopic splitting of an operator
Section 9.3 An exact Schur preconditioner with level-by-level wavelets
Section 9.4 An approximate preconditioner with level-by-level wavelets
Section 9.5 Some analysis and numerical experiments
Section 9.6 Discussion of the accompanied Mfiles

340
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9.1 Introduction

The motivation of this work follows from the observation that any one-scale
compressed results (matrices) can be conveniently processed before apply-
ing the next scale. Our main algorithms will be designed from level-by-level
wavelets, which is related to the BCR work1 exploring fully the sparsity exhib-
ited.

In this way, regular patterns created by past wavelet scales are not destroyed
by the new scales like in the BCR work and unlike in the standard wavelet
bases; we define the notation and give further details in Section 9.2. This rad-
ical but simple idea will be combined in Section 9.3 with the Schur comple-
ment method and Richardson iterations in a multi-level iterative algorithm.
Moreover the Richardson iterations can be replaced by a recursive general-
ized minimal residuals (GMRES) method [415]. The essential assumption for
this new algorithm to work is the invertibility of an approximate band ma-
trix; in Subsection 9.5.2 we show that for a class of Calderon–Zygmund and
pseudo-differential operators such an invertibility is ensured. In practice we
found that our method works equally well for certain operators outside the type
for which we can provide proofs. In Section 9.4, we present an alternative way
of constructing the preconditioner by using approximate Schur complements.
Section 9.5 discusses some analysis issues and several numerical experiments
to illustrate the effectiveness of the present algorithms.

We remark that our first algorithm is similar to the framework of a non-
standard (NS) form reformulation of the standard wavelets bases (based on the
pyramid algorithm) but does not make use of the NS form itself, although our
algorithm avoids a finger matrix (just like a NS form method) that could arise
from overlapping different wavelet scales. As a by-product, the NS form re-
duces the flops from O(n log n) to O(n). However, the NS form does not work
with conventional arithmetic although operations with the underlying matrix
(that has a regular sparse pattern) can be specially designed; in fact the NS form
matrix itself is simply singular in conventional arithmetic. The recent work in
[221] has attempted to develop a direct solution method based on the NS form
that requires a careful choice of a threshold; here our method is iterative. In the
context of designing recursive sparse preconditioners, it is similar to the ILUM
type preconditioner to a certain extent [418]. Our second algorithm is similar
to the algebraic multi-level iteration methods (AMLI, Section 7.1) that were
developed for finite elements [30,34,469]; here our method uses wavelets and
does not require estimating eigenvalues.

1 The nonstandard (NS) form work by Beylkin, Coifman and Rokhlin [60] is often known as the
BCR paper.
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9.2 Wavelets telescopic splitting of an operator

This section will set up the notation to be used later and motivate the methods in
the next sections. We first introduce the standard wavelet method. For simplicity,
we shall concentrate on the Daubechies’ order m orthogonal wavelets with
low pass filters c0, c1, . . . , cm−1 and high pass filters d0, d1, · · · , dm−1 (such
that d j = (−1) j cm−1− j ). In fact, the ideas and expositions in this paper apply
immediately to the more general bi-orthogonal wavelets [166].

Following the usual setting of [60,166,221,68,441], the filter coefficients
c j ’s and d j ’s define the scaling function φ(x) and the wavelet function ψ(x).
Further, dilations and translations of φ(x) and ψ(x) define a multiresolution
analysis for L2 in d-dimensions, in particular (refer to (8.6)),

L2(Rd) =
∞⊕

j=−∞
W j = V0

∞⊕
j=0

W j

= V0

⊕
W0

⊕
W1

⊕
· · ·

⊕
W�−1

⊕
W�

⊕
· · · ,

(9.1)

where V0 will be used as a coarsest subspace and all subspaces satisfy the
relations { · · · ⊃ V� ⊃ V�−1 ⊃ · · · ⊃ V1 ⊃ V0 ⊃ V−1 ⊃ · · · ,

V j+1 = V j
⊕

W j .

In numerical realizations, we select a finite dimension space V� (in the finest
scale) as our approximation space to the infinite decomposition of L2 in (9.1)
i.e. effectively

V� = V0

�−1⊕
j=0

W j (9.2)

is used to approximate L2(Rd). Note that the wavelet approximation is for R
d

while the HB basis (§7.4) is mainly exact for R (for d > 1, the HB will not define
an orthogonal sum [494]). Consequently for a given operator T : L2 → L2, its
infinite and exact operator representation in wavelet bases

T = P0T P0 +
∞∑
j=0

(
P j+1T P j+1 − P jT P j

)
= P0T P0 +

∞∑
j=0

(
Q jT Q j + Q jT P j + P jT Q j

)
is approximated in space V� by

T� = P�T P� = P0T P0 +
�−1∑
j=0

(
Q jT Q j + Q jT P j + P jT Q j

)
,
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whereP j : L2 → V j andQ j = P j+1 − P j : L2 → V j+1 − V j ≡ W j are both
projection operators. For brevity, define operators

A j = Q jT Q j : W j → W j , B j = Q jT P j : V j → W j ,

C j = P jT Q j : W j → V j , T j = P jT P j : V j → V j .

Then one can observe that

T j+1 = A j + B j + C j + T j . (9.3)

A further observation based on T j+1 : V j+1 → V j+1 and V j+1 = V j
⊕

W j is
that the wavelet coefficients of T j+1 will be equivalently generated by the block
operator [

A j B j

C j T j

]
:

(
W j

V j

)
→

(
W j

V j

)
.

Now we change the notation and consider the discretization of all continuous
operators. Define matrix T� = A as the representation of operatorT� in space V�.
Assume that A on the finest level (scale) j = � is of dimension τ� = n. Then the
dimension of matrices on a coarse level j is τ j = τ�/2�− j for j = 0, 1, 2, . . . , �.
The operator splitting in (9.3) for the case of d = 1 (higher dimensions can
be discussed similarly [60,221]) corresponds to the two-dimensional wavelet
transform

T̃ j+1 = W j+1Tj+1W �
j+1 =

[
A j B j

C j Tj

]
τ j+1×τ j+1

(9.4)

where the one level transform from j + 1 to j (for any j = 0, 1, 2, · · · , �) is

W j+1 = (
W j+1

)
τ j+1×τ j+1

=
[

Pj

Q j

]
,

A j = (
A j

)
τ j ×τ j

= Q j Tj+1 Q�
j , B j = (

B j
)
τ j ×τ j

= Q j Tj+1 P�
j ,

C j = (
C j

)
τ j ×τ j

= Pj Tj+1 Q�
j , Tj = (

Tj
)
τ j ×τ j

= Pj Tj+1 P�
j ,

with rectangular matrices Pj and Q j (corresponding to operators P j and Q j )
defined respectively as

Pj =


c0 c1 · · · · · · cm−1

c0 c1 · · · cm−1

. . .
. . .

. . .

c2 c3 · · · cm−1 c0 c1


τ j ×τ j−1

,
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Q j =


d0 d1 · · · · · · dm−1

d0 d1 · · · dm−1

. . .
. . .

. . .

d2 d3 · · · dm−1 d0 d1


τ j ×τ j−1

.

For a class of useful and strongly elliptic operators i.e. Calderon–Zygmund
and pseudo-differential operators, it was shown in [60] that matrices A j =
(α j

k,i ), B j = (β j
k,i ), C j = (γ j

k,i ) are indeed ‘sparse’ satisfying the decaying
property ∣∣∣α j

k,i

∣∣∣ +
∣∣∣β j

k,i

∣∣∣ +
∣∣∣γ j

k,i

∣∣∣ ≤ cm, j

(1 + |k − i |)m+1 , (9.5)

where |k − i | ≥ 2m and cm, j is a generic constant depending on m and j only.
Refer also to (8.31).

To observe a relationship between the above level-by-level form and the
standard wavelet representation, define a square matrix of size τ� × τ� = n × n
for any j = 0, 1, 2, . . . , �

W j =
[

Iν j

W j

]
, (9.6)

where ν j = n − τ j ; clearly ν� = 0 and W � = W�. Then the standard wavelet
transform can be written as

W = W 1 · · · W �−1W �, (9.7)

that transforms matrix A into Ã = W AW �.
Thus the diagonal blocks of Ã are the same as A j ’s of a level-by-level form.

However the off-diagonal blocks of the former are different from B j and C j

of the latter. To gain some insight into the structure of the off-diagonal blocks
of matrix Ã with the standard wavelet transform, we consider the following
case of � = 3 (three levels) and m = 4 (order 4) wavelets. Firstly after level 1
transform, we obtain

Ã3 = W 3 AW
�
3 = W3T3W �

3 =
[

A2 B2

C2 T2

]
n×n

.

Secondly after level two transform, we get

Ã2 = W 2 Ã3W
�
2 =

 A2 B2W �
2

W2C2

[
A1 B1

C1 T1

]
n×n

.
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Figure 9.1. The level-by-level form (left) versus the nonstandard wavelet form [60] (right).

Finally after level three transform, we arrive at

Ã1 = W 1 Ã2W
�
1 =


A2 B2W �

2

[
I3n/4

W �
1

]
[

I3n/4

W1

]
W2C2

 A1 B1W �
1

W1C1

[
A0 B0

C0 T0

]


n×n

.

(9.8)

Clearly the off-diagonal blocks of Ã1 are perturbations of that of the level-by-
level form off-diagonal blocks B j and C j ; in fact the one-sided transforms for
the off-diagonal blocks are responsible for the resulting (complicated) spar-
sity structure. This can be observed more clearly for a typical example with
n = 128 (three levels and m = 4) in Figure 9.1 where the left plot shows
the level-by-level representation set-up that will be used in this paper and in
Figure 9.2 where the left plot shows the standard wavelet representation as
in (9.8).

Motivated by the exposition in (9.8) of the standard form, we shall propose
a preconditioning and iterative scheme that operates on recursive one-level
transforms. Thus it will have the advantage of making full use of the NS form
idea and its theory while avoiding the problem of a non-operational NS form
matrix.

Remark 9.2.1. Starting from the level-by-level set-up, taking T0 and the col-
lection of all triplets {(A j , B j , C j }0≤ j≤�−1 as a sparse approximation to T� is
the idea of the NS form [60,221]. By way of comparison, in Figure 9.1, the NS
form representation versus the level-by-level form are shown. It turns out that



346 Wavelet Schur preconditioners [T6]

1 64 96 112 128
1

64

96

112

128

1 64 96 112 128
1

64

96

112

128

Figure 9.2. The standard wavelet form representation (left) versus an alternative
centering form [130] (right) for the example in Figure 9.1.

this work uses the identical set-up to the NS form without using the NS form
formulation itself because we shall not use the proposed sparse approxima-
tion. Note that the centering algorithm [130] (see the right plot in Figure 9.2)
is designed as a permutation of the standard wavelet form (see the left plot
of Figure 9.2) and is only applicable to a special class of problems where its
performance is better.

9.3 An exact Schur preconditioner with
level-by-level wavelets

We now present our first and new recursive method for solving the linear system
Ax = b defined on the finest scale V� i.e.

T�x� = b�, (9.9)

where T� = A� = A is of size τ� × τ� = n × n as discussed in the previous
section, and x�, b� ∈ R

n . Instead of considering a representation of T� in
the decomposition space (9.2) and then the resulting linear system, we pro-
pose to follow the space decomposition and the intermediate linear system
in a level-by-level manner. A sketch of this method is given in Figure 9.3
(the left plot) where we try to show a relationship between the multireso-
lution (MR for wavelet representation) and the multi-level (ML for precon-
ditioning via Schur) ideas from the finest level (top) to the coarsest level
(bottom).
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Figure 9.3. Illustration of Algorithms 9.3.2 (left) and 9.4.4 (right). Here we take
� = 3 levels (3 indicates the finest level and 0 the coarsest level), use ‘�’ to indicate
a DWT step (one level of wavelets) and ‘©’ to denote the direct solution process
on the coarsest level. The arrows denote the sequence of operations (written on
the arrowed lines) with each algorithm interacting the two states (two columns on
the plots) of multiresolution wavelets and multi-level Schur decomposition. The
left plot shows that for Algorithm 9.3.2, a Richardson step (or GMRES) takes the
results of a DWT step to the next level via the Schur decomposition while the right
plot shows that the Schur decomposition takes the results of a DWT step to the
next level via a Schur approximation.

Firstly at level �, we consider V� = V�−1
⊕

W�−1 and the wavelet transform
(9.4) yields

T̃ � x̃� = b̃� (9.10)

where x̃� = W�x� and b̃� = W�b�. Since

T̃ � =
[

A�−1 B�−1

C�−1 T�−1

]
n×n

, (9.11)
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following the general result in (9.5), it is appropriate to consider the approxima-
tion of A�−1, B�−1, C�−1 by band matrices. To be more precise, let Bandµ(D)
denote a banded matrix of D with semi-bandwidth µ(

Bandµ(D)
)

ik =
{

Dik, if |i − k| ≤ µ,

0, otherwise

where integer µ ≥ 0. Define A�−1 = Bandµ(A�−1), B�−1 = Bandµ(B�−1),
C�−1 = Bandµ(C�−1) for some suitable µ (to be specified later). Then matrix
T̃ � = T � − R� can be approximated by

T � =
[

A�−1 B�−1

C�−1 T�−1

]
n×n

. (9.12)

Or equivalently matrix

R� =
[

A�−1 − A�−1 B�−1 − B�−1

C�−1 − C�−1 0

]
n×n

(9.13)

is expected to be small in some norm (refer to the Section 9.5.2). Write equation
(9.10) as (

T � − R�

)
x̃� = b̃�. (9.14)

Consequently we propose to use M� = T � as our preconditioner to equation
(9.14). This preconditioner can be used to accelerate iterative solution; we shall
consider two such methods: the Richardson method and the GMRES method
[415].

The most important step in an iterative method is to solve the preconditioning
equation:

T �y� = r� (9.15)

or in a decomposed form[
A�−1 B�−1

C�−1 T�−1

] (
y(1)
�

y(2)
�

)
=

(
r (1)
�

r (2)
�

)
. (9.16)

Using the Schur complement method we obtain
A�−1z�−1 = r (1)

�

z2 = r (2)
� − C�−1z�−1(

T�−1 − C�−1 A
−1

B�−1

)
y(2)
� = z2

y(1)
� = z�−1 − A

−1
B�−1 y(2)

� .

(9.17)

Here the third equation of (9.17), unless its dimension is small (i.e. when
V�−1 is the coarsest scale), has to be solved by an iterative method with the
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preconditioner T�−1; we shall denote the preconditioning step by

T�−1x�−1 = b�−1, (9.18)

where T�−1 is of size τ�−1 × τ�−1. This sets up the sequence of a multilevel
method where the main characteristic is that each Schur complements equation
in its exact form is solved iteratively with a preconditioner that involves coarse
level solutions.

At any level j (0 < j ≤ � − 1), the solution of the following linear system

Tj x j = b j , (9.19)

with Tj of size τ j × τ j and through solving

T̃ j x̃ j = b̃ j ,

can be similarly reduced to that of

Tj−1x j−1 = b j−1, (9.20)

with Tj−1 of size τ j−1 × τ j−1. The solution procedure from the finest level to
the coarsest level can be illustrated by the following diagram (for j = 1, 2, . . . ,

� − 1):

Tj x j = b j =⇒
Transform

=⇒
τ j × τ j

=⇒ T̃ j x̃ j = b̃ j

Set

����������������������

j = j − 1

�����(
T j − R j

)
x̃ j = b̃ j�����

T j y j = r j

Schur

�����Solver

Tj−1x j−1 = b j−1 ⇐=
Precondition

⇐=
τ j−1 × τ j−1

⇐=

A j−1z1 = r (1)
j

z2 = r (2)
j − C j−1z1(

Tj−1 − C j−1 A−1
j−1 B j−1

)
y(2)

j

= z2

y(1)
j = z1 − A−1

j−1 B j−1 y(2)
j
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where as with (9.12) and (9.13)

T j =
[

A j−1 B j−1

C j−1 Tj−1

]
n×n

and R j =
[

A j−1 − A j−1 B j−1 − B j−1

C j−1 − C j−1 0

]
n×n

.

(9.21)

The coarsest level is j = 0, as set up in the previous section, where a system
like (9.20) is solved by a direct elimination method. As with conventional multi-
level methods, each fine level iteration leads to many coarse level iteration
cycles. This can be illustrated in Figure 9.4 where � = 3 and µ = 2 (top plot),
3 (bottom plot) are assumed and at the coarsest level (

⊗
) a direct solution is

used. In practice, a variable µ = µ j on level j may be used to achieve certain
accuracy for the preconditioning step i.e. convergence up to a tolerance is
pursued whilst by way of comparison smoothing rather convergence is desired
in an usual multilevel method. Our experiments have shown that µ = 1, 2 are
often sufficient to ensure the overall convergence.

0

1

2

3

0

1

2

3

Figure 9.4. Iteration cycling patterns of Algorithm 9.3.2 with � = 3 levels: top for
µ = 2 and bottom for µ = 3. In each case, one solves a fine level equation (starting
from the finest level � = 3) by iteratively solving coarser level equations µ times;
on the coarsest level

⊗
(here level 0) a direct solution is carried out.
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We now summarize the formulation as an algorithm. The iterative solver for
(9.19) at level j can be the Richardson method

T j x̃
(k)
j = R j x̃

(k−1)
j + b̃ j for k = 1, 2, · · · , µ j

or the GMRES method [415] for solving T̃ j x̃ j = b̃ j (or actually a combination
of the two). For simplicity and generality, we shall use the word ‘SOLVE’ to
denote such an iterative solver (either Richardson or GMRES).

Algorithm 9.3.2. (Recursive wavelet Schur I).

(1) Set j = � and start on the finest level.
(2) Apply one level DWT to Tj x j = b j to obtain T̃j x̃ j = b̃ j .
(3) Use µ j steps of SOLVE for T̃j x̃ j = b̃ j .
(4) In each step, implement the preconditioner T j : i.e. solve T j y j = r j or

Restrict to the coarse level:


A j−1z1 = r (1)

j

z2 = r (2)
j − C j−1z1(

Tj−1 − C j−1 A−1
j−1 B j−1

)
y(2)

j = z2

y(1)
j = z1 − A−1

j−1 B j−1 y(2)
j

(5) Use SOLVE for the above third equation with the preconditioner Tj−1 i.e.
solve Tj−1x j−1 = b j−1.

(6) Set j := j − 1.
(7) If j = 0 (on the coarsest level), apply a direct solver to Tj x j = b j

and proceed with Step 8; otherwise return to Step 2.
(8) Set j := j + 1.
(9) Interpolate the coarse level j − 1 solution to the fine level j :

x (2)
j = x j−1, x (1)

j = z1 − Ā−1
j B̄ j x j−1 i.e.

x j =
[

x (1)
j

x (2)
j

]
=

[
x (1)

j

x j−1

]
.

(10) Apply one level inverse DWT to ỹ j to obtain y j .
(11) If j = � (on the finest level), check the residual error – if small enough

accept the solution x0 and stop the algorithm. If j < �, check if µ j steps
(cycles) have been carried out; if not, return to Step 2 otherwise continue
with Step 8 on level j .
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The rate of convergence of this algorithm depends on how well the ma-
trix T j approximates Tj and this approximation is known to be accurate for
a suitable µ and for a class of Calderon–Zygmund and pseudo-differential
operators [60]. For this class of problems, it remains to discuss the invert-
ibility of matrix A j which is done in Section 9.5.2; a detailed analysis on
T j ≈ Tj may be done along the same lines as Lemma 9.5.7. For other problem
classes, the algorithm may not work at all for the simple reason that A j may
be singular e.g. the diagonal of matrix A = T� in (9.9) may have zero entries.
Some extensions based on the idea of [107] may be applied as discussed in
[108].

It turns out that our recommended implementation is to specify SOLVE
on the finest level by GMRES and to follow by simple Richardson iterations
on coarse levels (see gmres_nr.m). In [208], an all GMRES version was
considered.

Remark 9.3.3. We remark that for a class of general sparse linear systems,
Saad, Zhang, Botta, Wubs et al. [412,70,417,418] have proposed a recursive
multilevel preconditioner (named as ILUM) similar to this Algorithm 9.3.2.
The first difference is that we need to apply one level of wavelets to achieve a
nearly sparse matrix while these works start from a sparse matrix and permute
it to obtain a desirable pattern suitable for Schur decomposition. The second
difference is that we propose an iterative step before calling for the Schur
decomposition while these works try to compute the exact Schur decomposition
approximately. Therefore it is feasible to refine our Algorithm 9.3.2 to adopt
the ILUM idea (using independent sets) for other problem types. However one
needs to be careful in selecting the dimensions of the leading Schur block if a
DWT is required for compression purpose.

9.4 An approximate preconditioner with
level-by-level wavelets

In the previous algorithm, we use coarse level equations to precondition the
fine level Schur complement equation. We now propose an alternative way of
constructing a preconditioner for a fine level equation. Namely we approximate
and compute the fine level Schur complement before employing coarse levels
to solve the approximated Schur complement equation. A sketch of this method
is shown in Figure 9.3 and demonstrates the natural coupling of wavelet rep-
resentation (level-by-level form) and Schur complement. To differentiate from
Algorithm 9.3.2, we change the notation for all matrices.
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At any level k for k = 1, 2, . . . , �, consider the solution (compare to (9.19))

A(k)xk = bk . (9.22)

Applying one-level of DWT, we obtain

Ã(k) x̃k = b̃k with Ã(k) = Wk A(k)W �
k =

[
A(k)

11 A(k)
12

A(k)
21 A(k)

22

]
. (9.23)

Note that we have the block LU decomposition

A(k) =
[

A(k)
11 0

A(k)
21 I

] [
I A(k)

11

−1
A(k)

12

0 S(k)

]

where S(k) = A(k)
22 − A(k)

21 A(k)
11

−1
A(k)

12 is the true Schur complement. To approxi-
mate this Schur complement, we must consider approximating the second term
in the above S(k). We propose to form band matrix approximations

B11 = Bandµ(A(k)
11 ) ≈ A(k)

11

−1
,

A12 = Bandµ(A(k)
12 ) ≈ A(k)

12 ,

A21 = Bandµ(A(k)
21 ) ≈ A(k)

21 .

For level k = 0, these approximations are possible for a small bandwidth µ; see
Section 9.5.2. Seeking a band approximation to the inverse of A(k)

11 makes sense
because A(k)

11 = Ak is expected to have a decaying property (refer to (9.5)). Let
S denote the set of all matrices that have the sparsity pattern of a band µ matrix
Bandµ(A(k)

11 ). The formation of a sparse approximate inverse (SPAI) is to find a
band matrix B11 ∈ S such that

min
B∈S

‖A(k)
11 B − I‖F = ‖A(k)

11 B11 − I‖F .

Refer to [46,320,131]. Briefly as with most SPAI methods, the use of F-norm
decouples the minimization into least squares (LS) problems for individual
columns c j of B11. More precisely, owing to

‖A(k)
11 B11 − I‖2

F =
τk∑

j=1

‖A(k)
11 c j − e j‖2

2,

the j-th LS problem is to solve A(k)
11 c j = e j which is not expensive since c j is

sparse. Once B11 is found, define an approximation to the true Schur comple-
ment S(k) as

S(k) = A(k)
22 − A(k)

21 B11 A(k)
12 ,

and set A(k−1) = S(k). This generates a sequence of matrices A(k).
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Now comes the most important step about the new preconditioner. Setting
M (0) = A(0) = S(1), on the coarsest level, the fine level preconditioner M (�) is
defined recursively by

M (k) =
[

B(k)
11

−1
0

A(k)
21 I

] [
I B(k)

11 A(k)
12

0 S(k)

]
, (9.24)

where S(k) ≈ M (k−1) is an approximation to the true Schur complement S(k) of
A(k). Here k = 1, 2, . . . , �. Observe that this preconditioner is defined through
the V-cycling pattern recursively using the coarse levels.

To go beyond the V-cycling, we propose a simple residual correction idea.
We view the solution y[ j]

k of the preconditioning equation (compare to (9.15)
and (9.9))

M (k) yk = rk (9.25)

as an approximate solution to the equation

Tk yk = rk .

Then the residual vector is r̄k = rk − Tk y[ j]
k . This calls for a repeated solu-

tion M (k)δ j = r̄k and gives the correction and a new approximate solution
to (9.25):

y[ j+1]
k = y[ j]

k + δ j ,

for j = 1, 2, . . . , νk . In practice we take νk = ν for a small ν (say ν = 2 for a
W-cycling; see the top plot in Figure 9.4) as our experiments suggest that ν ≤ 2
is sufficient to ensure the overall convergence.

Thus an essential feature of this method different from Algorithm 9.3.2 is
that every approximated Schur complement matrix needs to be transformed
to the next wavelet level in order to admit the matrix splitting (9.23) while
inverse transforms are needed to pass coarse level information back to a fine
level as illustrated in Figure 9.3. Ideally we may wish to use A(k) = A(k)

22 −
A(k)

21 B(k)
11 A(k)

12 generate the approximate Schur complement but taking A(k)
21 and

A(k)
12 as full matrices would jeopardize the efficiency of the overall iterative

method. We proposed to use band matrices (or thresholding) to approximate
these two quantities just as in (9.13) with Algorithm 9.3.2.

To summarize, the solution of the preconditioning equation from the finest
level to the coarsest level and back up is illustrated in Figure 9.5 for k =
�, . . . , 2, 1, where ‘
’ means the same entry and exit point. The general algo-
rithm for solving M (�) y� = r� can be stated as follows:
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Figure 9.5. Flow chart of Algorithm II (Implementation of the algebraic multi-
level iteration preconditioner). Here on a typical fine level k (starting from the
finest level �), we illustrate on the top half of the diagram the process of restricting
to the coarse level k − 1 (up to the coarsest level 0) whilst on a typical coarse
level k (starting from �) we show on the bottom half of the diagram the process
of interpolating to the fine level k + 1 (up to the finest level �). Consult Figure 9.4
for the overall cycling pattern.
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Algorithm 9.4.4. (Recursive wavelet Schur II).

Set-up Stage

for k = �, � − 1, · · · , 2, 1
(1) Apply one level DWT to Tk to obtain A(k)

11 , A(k)
12 , A(k)

21 , A(k)
22 .

(2) Find the approximate inverse B(k)
11 ≈ A(k)

11

−1
.

(3) Generate the matrix Tk−1 = A(k) = A(k)
22 − A(k)

21 B(k)
11 A(k)

12 .
end

Solution Stage

(1) Set k = � and start on the finest level.
(2) Apply one level DWT to rk and consider T̃k ỹk = r̃k .
(3) Solve the preconditioning equation M (k) ỹk = r̃k by

Restrict to the coarse level:


z1 = B(k)

11 r̃ (1)
k

z2 = r̃ (2)
k − A(k)

21 z1

Tk−1 ỹ (2)
k = z2

(4) Solve for the above third equation at the next level Tk−1 yk−1 = rk−1.
(5) Set k := k − 1.
(6) If k = 0 (on the coarsest level), apply a direct solver to Tk yk = rk

and proceed with Step 8; otherwise return to Step 2.
(7) Set k := k + 1.
(8) Interpolate the coarse level k − 1 solution to the fine level k:

ỹ(2)
k = yk−1, ỹ(1)

k = z1 − B(k)
11 A(k)

12 ỹ(2)
k i.e.

ỹk =
[

ỹ(1)
k

ỹ(2)
k

]
=

[
ỹ(1)

k

yk−1

]
.

(9) Apply one level inverse DWT to ỹk to obtain yk.
(10) When k = � (on the finest level), check the residual error – if small enough

accept the solution y� and stop the algorithm.
When k < �, check if ν cycles have been carried out; if not, find the residual
vector and return to Step 2 otherwise continue with Step 7 on level k.

Remark 9.4.5. It turns out that this algorithm is similar to the algebraic multi-
level iteration methods (AMLI) that was developed for a class of symmetric
positive definite finite element equations in a hierarchical basis [30,34,469]. In
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fact, let νk = ν and then S(k) is implicitly defined by the following

S(k) = A(k−1)
[

I − Pν

(
M (k−1)−1

A(k−1)
)]−1

,

where Pν is a degree ν polynomial satisfying

0 ≤ Pν(t) < 1, 0 < t ≤ 1, Pν(0) = 1.

As with AMLI, for ν = 1, the valid choice P1(t) = 1 − t implies S(k) = M (k−1)

and gives rise to the V-cycling pattern and For ν > 1, the polynomial Pν(t) is

chosen to improve the preconditioner; ideally κ
(

M (k)−1
A(k)

11

)
≈ O(1) asymp-

totically. Refer to these original papers about how to work out the coefficients
of Pν(t) based on eigenvalue estimates. However we do not use any eigenvalue
estimates to construct Pν .

We also remark that an alternative definition of a recursive preconditioner
different from AMLI is the ILUM method as mentioned in Remark 9.3.3, where
in a purely algebraic way (using independent sets of the underlying matrix
graph) A(k)

11 is defined as a block diagonal form after a suitable permutation; refer
to (7.17). This would give rise to another way of approximating the true Schur

complement S(k) = A22 − A(k)
21 A(k)

11

−1
A(k)

12 . However the sparsity structures of
blocks A(k)

21 and A(k)
12 will affect the density of nonzeros in matrix S(k) and an

incomplete LU decomposition has to be pursued as in [412,70,418].

9.5 Some analysis and numerical experiments

The two algorithms presented are essentially the normal Schur type precondi-
tioners applied to the wavelet spaces. The beauty of adopting the wavelet idea
here lies in avoiding the somewhat difficult task of ensuring the ‘top left’ block
A11 is easily invertible – wavelets do this automatically for a large class of
operators! The supplied Mfiles follow the usual style of a multigrid (multilevel)
implementation.

9.5.1 Complexity analysis

Here we mainly compare the complexity of Algorithms 9.3.2 and 9.4.4 in a
full cycle. Note that both algorithms can be used by a main driving iterative
solver where each step of iteration will require n2 flops (one flop refers to 1
multiplication and 1 addition) unless some fast matrix vector multiplication
methods are used. One way to reduce this flop count is to use a small threshold
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so that only a sparse form of Ã is stored. Also common to both algorithms are
the DWT steps which are not counted here.

To work out flop counts for differing steps of the two algorithms, we list the
main steps as follows

Algorithm 9.3.2 Algorithm 9.4.4
Set-up Approximate inverses:

µ2n2
i

3 band solves: 3niµ
2 2 band-band 8niµ

2

Main 4 band-vector 8niµ multiplications:
step multiplications: 4 band-vector 8niµ

3 off-band-vector 3(ni − 2µ)ni multiplications:
multiplications (Ri ):

Therefore an ν-cycling (iteration) across all levels would require these flops
(assuming ν ≤ 3)

FI =
�−1∑
i=1

6n2νi

22i
+ 3nµ2

2i
+ 2nµ

2i
≈ 6ν

4 − ν
n2,

and

FI I =
�−1∑
i=1

n2

22i
µ2 + 8

�−1∑
i=1

nµ2ν2

2i
+ nµ

2i
≈ µ2

3
n2,

after ignoring the low order terms. Therefore we obtain FI I /FI = (4−ν)µ2

9ν
; for a

typical situation with µ = 10 and ν = 2, FI I /FI ≈ 10. Thus we expect Algo-
rithm I to be cheaper than II if the same number of iteration steps are recorded.
Here by Algorithm I we meant the use of a Richardson iteration (in SOLVE of
Algorithm 9.3.2); however if a GMRES iteration is used for preconditioning
then the flop count will increase. Of course as is well known, flop count is not
always a reliable indicator for execution speed; especially if parallel computing
is desired a lot of other factors have to be considered.

Remark 9.5.6. For sparse matrices, all flop counts will be much less as DWT
matrices are also sparse. The above complexity analysis is done for a dense
matrix case. Even in this case, setting up preconditioners only adds a few equiv-
alent iteration steps to a conventional iteration solver. One can usually observe
overall speed-up. For integral operators, the proper implementation is to use
the biorthogonal wavelets as trial functions to yield sparse matrices Ai , Bi , Ci

directly (for a suitable threshold); in this case a different complexity analysis
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is needed as all matrices are sparse and experiments have shown that although
this approach is optimal a much larger complexity constant (independent of n)
is involved. For structured dense matrices where FFT is effective, wavelets may
have to be applied implicitly to preserve FFT representation.

9.5.2 An analysis of preconditioner I in Section 9.3

We now show that Algorithm 9.3.2 does not break down for a class of
Calderon–Zygmund and pseudo-differential operators [60], or precisely that
Ai = Bandµ(Ai ) is always invertible. More importantly the bandwidth µ can
be very small, independent of the problem size (n).

For our analysis purpose, we assume that all principal submatrices Ai (re-
sulting from matrix A� = A) are nonsingular and diagonalizable. Of course this
is a much weaker assumption than requiring matrix A being symmetric positive
definite. For non-negative integers of µ and m, define the function

b(n, m, µ) =
n−µ−1∑

k=1

2

(µ + k)m+1
,

which is understood in the usual summation convention i.e. if µ ≥ n −
1, b(n, m, µ) = 0. We can verify the simple properties: b(n, m, µ) ≤ (µ +
1)1−mb(n, 1, µ) if m ≥ 1, b(n, m, µ) < b(∞, m, µ), and

b(n, 1, µ) < b(∞, 1, µ) ≤ b(∞, 1, 0) =
∞∑

k=1

2/k2 = π/3.

Therefore if m > 1, limµ→∞ b(∞, m, µ) = 0 as limµ→∞(µ + 1)1−m = 0. Then
the following result holds.

Lemma 9.5.7. Let matrix Oi = Ai − Ai with Ai from Algorithm 9.3.2 and
cm,i ≤ c in (9.5) for a generic constant c that does not depend on m, n, µ.
Then

‖Oi‖∞ ≤ cb(τi , m, µ) < cb(∞, m, µ).

Proof. It suffices to consider the case of i = 1, i.e. A1. Write A1 = (akj ) for
simplicity. Since A1 = Bandµ(A1) is banded and of dimension τ1, to estimate
the ∞-norm of O1, take any row index k ∈ [1, τ1] with µ ≥ 2m (note that for
the first and last µ rows there is only one nonzero sum at the right-hand side of
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the following line 1 as O1 is an off band matrix)

τ1∑
j=1

|(O1)k j | =
k−µ−1∑

j=1

|Akj | +
τ1∑

j=k+µ+1

|Akj |

≤ cm,1

[
k−µ−1∑

j=1

1

1 + |k − j |m+1
+

τ1∑
j=k+µ+1

1

1 + |k − j |m+1

]

= cm,1

[
k−1∑

j=µ+1

1

1 + jm+1
+

τ1−k∑
j=µ+1

1

1 + jm+1

]

≤ cm,1

[
k−µ−1∑

j=1

1

(µ + j)m+1
+

τ1−µ−k∑
j=1

1

(µ + j)m+1

]

≤ cm,1

[
τ1−µ−1∑

j=1

1

(µ + j)m+1
+

τ1−µ−1∑
j=1

1

(µ + j)m+1

]
≤ cb(τ1, m, µ).

Therefore

‖O1‖∞ = max
1≤k≤τ1

τ1∑
j=1

|(O1)k j | ≤ cb(τ1, m, µ).

Using the properties of function b completes the proof.

Note that this Lemma suggests ‖Oi‖∞ can be arbitrarily small if µ is large.
However it is more useful to quantify how large µ needs to be in order for Ai

be invertible. This is now stated as follows.

Theorem 9.5.8. Under the above assumption of Ai , the band matrix Ai (used
in the preconditioning) is invertible if m ≥ 2 (i.e. there are 2 or more vanishing
moments) and the semi-bandwidth µ of Ai satisfies µ ≥ µmin where

µmin =
(

cπ

3|λs
i |

) 1
m−1

− 1

and λs
i denotes the smallest eigenvalue of Ai (in modulus).

Remark 9.5.9. The theorem implies that Algorithm 9.3.2 does not break
down. The confirmation in Lemma 9.5.7 of a fast decay in elements of Oi

or fast deduction of ‖Oi‖∞ (as µ is large) ensures that a small bandwidth µ

is practically sufficient; this justifies the efficient approximation of T̃ i by T i

in Algorithm 9.3.2. For instance, when c = 20 and λs
i = 0.1, µmin = 2.8 if

m = 5 and µmin = 13.5 if m = 3. Here the requirement of m ≥ 2 (number
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of vanishing moments) is not restrictive. Also as remarked before, the as-
sumption of nonsingularity and diagonalization is assured if A� = A is SPD
[30,469].

Proof. Following Lemma 9.5.7, let λ(Ai ) and λ(Ai ) denote an eigenvalue of the
matrix Ai and Ai respectively. From the eigenvalue perturbation theorem (for
a diagonalizable matrix), ∣∣λ(Ai ) − λ(Ai )

∣∣ ≤ ‖Oi‖∞.

Using the above inequality with Lemma 9.5.7 yields the sufficient condition

(µ + 1)m−1 π

3
c ≤ |λs

i |

and further the required result for µmin. With such a µ ≥ µmin, the
preconditioning matrix Ai has only nonzero eigenvalues and hence is
invertible.

9.5.3 Numerical experiments

The new presented algorithms have recently been tested in [108] with compar-
isons with other preconditioners; here we only illustrate the same matrices (in
Section 4.9) as tested in previous chapters.

We test these supplied Mfiles (especially the first one) implementing Algo-
rithm 9.3.2.

(1) gmres_nr.m – Method 1 for implementing Algorithm 9.3.2 with the
SOLVE step replaced by a GMRES(k) iteration method on the finest level
and a Richardson iteration method for ν steps on all other all levels.

(2) richa_nr.m – Method 2 for implementing Algorithm 9.3.2 with the
main iteration method iteration method on the finest level and all coarse
level correction equations all given by Richardson iterations.

and display the results in Figures 9.6–9.8. As pointed in [108], Algorithm 9.4.4
only works for definite problems (and so it does not work for matrix1); this
is similar to the behaviour of the AMLI algorithm (Section 7.1).

Clearly the Schur methods in the wavelet space perform better than the single
scale methods (of Chapter 4 and 5) as well as the normal wavelet methods
(of Chapter 8). Here matrix3 also involves ‘geometric singularities’ which
affect the decaying rate (8.30) away from the diagonal and so the result is not
surprisingly less remarkable (Figure 9.8).
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9.6 Discussion of the accompanied Mfiles

The literature does not seem to have similar software similar to that described.
This book has supplied these Mfiles for investigating preconditioning-related

issues.

[1] gmres_nr.m – Implement Method 1 as described above (of Algorithm
9.3.2).

[2] richa_nr.m – Implement Method 2 as described above (of Algorithm
9.3.2).

[3] run9.m – The drive Mfile for experimenting gmres_nr.m and
richa_nr.m.

[4] iwts.m – The sparse version of an inverse DWT (compare to the full
matrix version ifwt.m).
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In fact, advancements in the area (of wavelets) are occurring at such a rate
that the very meaning of “wavelet analysis” keeps changing to incorporate
new ideas.

Björn Jawerth and Wim Sweldens SIAM Review, Vol. 36 (1994)

As indicated in Chapter 8, it is often viable to apply a DWT to a sparse linear
system to derive a wavelet type preconditioner. In this chapter we consider
a new way of obtaining the same wavelet preconditioner without applying a
DWT. The assumption is that the sparse representation of A in a single scale
finite element basis is already available and the corresponding wavelet Ã is less
sparse than A.

Our idea is to work with this sparse matrix A in order to implicitly compute
the representation Ã of A and its preconditioner M̃ in the wavelet basis. Thus the
main advantage is that the new strategy removes the costs associated with form-
ing the wavelet matrix Ã explicitly and works with a sparse matrix A directly
while making full use of the robust preconditioning property of wavelets. The
general difficulty of specifying a suitable pattern S (Chapter 5) is resolved in
the new setting. The obtained preconditioners are good sparse approximations
to the inverse of A computed by taking advantage of the compression obtained
by working in a wavelet basis. In fact, efficient application to both sparse and
dense A can be considered as shown in the following.

Section 10.1 Introduction
Section 10.2 Wavelet based sparse approximate inverse
Section 10.3 An implicit wavelet sparse approximate inverse preconditioner
Section 10.4 Implementation details
Section 10.5 Dense problems
Section 10.6 Some theoretical results

364
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Section 10.7 Combination with a level-1 preconditioner
Section 10.8 Numerical results
Section 10.9 Discussion of the supplied Mfile.

10.1 Introduction

We consider the fast solution of the linear system (1.1) i.e.

Ax = b (10.1)

where A is a large n × n matrix. Such linear systems arise in finite element
or finite difference discretizations where typically A is sparse, and in bound-
ary element discretizations where typically A is dense. The previous chap-
ters have discussed various preconditioning techniques to accelerate the GM-
RES method. The challenge cases are when A is ill conditioned and especially
indefinite.

We shall consider improving the inverse type preconditioners (Chapter 5),
using the wavelet idea but without applying it explicitly. Recall that system
(10.1) may be replaced by the left preconditioned linear system

M Ax = Mb, (10.2)

or the right preconditioned linear system

AM y = b, (10.3)

or the left and right preconditioned linear system

M2 AM1 y = M2b. (10.4)

It is the latter system that we shall be concerned with in this chapter.
The following observations motivate the new preconditioning idea.

(1) SPAI. Sparse approximate inverse techniques (Chapter 5) are widely used
to produce preconditioners M . The prescribed sparsity pattern S for M is
a detrimental factor in the success of a SPAI approach. The pattern found
from applying an adaptive process is generally reliable but the method
is expensive while the cheaper PSM approach is practical but not always
robust for a large class of problems. Besides, there is no sound theory to
support PSM for a small index power.

(2) Wavelets. When A is a discretization of a pseudo-differential operator one
can view A−1 as the discretization of an integral operator whose kernel acts
like the Green’s function associated with A (as in (8.27)). The inverse A−1 is
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typically dense but representation in a wavelet basis compresses A−1 when
the Green’s function is smooth away from the diagonal. The compression
of the matrix A−1 in the wavelet basis allows it to be well approximated by a
sparse matrix. Furthermore, A−1 has a special finger pattern in the wavelet
basis and the finger pattern of the large entries is predictable, i.e. S can
be specified a priori in the context of SPAI. However designing generally
efficient schemes and adaptive quadratures for a wavelet method is not yet
a trivial task.

(3) Least squares method. The usual procedure of obtaining the F-norm min-
imization of ‖AM − I‖ may be generalized to accommodate the related
minimization ‖AM − L‖ for any matrix L . We shall consider the case of
L = W T , with W a DWT matrix.

We shall propose to compute a SPAI type preconditioner, making use of the
sparsity pattern predictability of a wavelet matrix.

As before, denote representation in the wavelet basis with ·̃ so that, in the
wavelet basis, (10.1) becomes

Ãx̃ = b̃. (10.5)

One can approximate Ã−1 with a finger-patterned sparse approximate inverse
of Ã because Ã−1 = Ã−1.

Remark 10.1.1. The WSPAI preconditioner Section 8.3 for (10.5) restricts
the pattern of the sparse approximate inverse to banded form or block diagonal.
This simplifies the computation but interactions between wavelets at differ-
ent scales are omitted in the calculation of the preconditioner. This is in line
with the theory of Dahmen and Kunoth [168], who show that diagonal pre-
conditioning yields a condition number that is independent of the number of
unknowns.

However, as observed by [157], sometimes diagonal preconditioning is not
sufficient for efficient iterative solution and it is suggested to compute finger-
patterned sparse approximate inverses for (10.5) in the slightly different con-
text where (10.5) is obtained directly from the underlying partial differential
equation (PDE) or boundary integral equation (BIE) with discretization using
wavelet basis functions. Use of the full finger pattern for the sparse approximate
inverse means that all interactions between scales are included in this precon-
ditioner. This makes the preconditioner more robust but can sometimes make
the computation of the sparse approximate inverse prohibitively expensive be-
cause a small number of dense columns or rows can be present in the finger
pattern.
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Without using analytical information, one may compute a sparse approx-
imate inverse of Ã where the sparsity pattern of the approximate inverse is
determined adaptively as in [75]. The adaptive sparse approximate inverse al-
gorithm does not require the entries of Ã to be available. and allows second
generation wavelets to be used efficiently. As noted before for example in [147],
adaptive sparse approximate inverse algorithms can be more expensive to im-
plement than sparse approximate inverse algorithms for which the pattern of
the approximate inverse is known in advance. Outside the sparse approximate
inverse framework, the preconditioners from Chapter 9 do not require Ã to be
computed.

The new preconditioner will take advantage of the structure possessed by A−1

when it is represented in the wavelet basis. Like Cohen and Masson [157] we
incorporate all of the interactions between wavelets at different scales, which is
sometimes necessary to produce a robust preconditioner. We describe strategies
that overcome the computational difficulties presented by the subsequent spar-
sity pattern of the preconditioner. Many of our computations involve A rather
than Ã because our formulation applies the discrete wavelet transform implic-
itly. When A is sparse it is often sparser than Ã and working with A rather than
Ã reduces the cost of computing the sparse approximate inverse. The cost of
computing Ã is also removed.

Before proceeding, we clarify the main notation. A typical discrete wavelet
transform is applied to the vector x ∈ R

n as done in (1.48). For simplicity we
assume n = 2N for some N ∈ Z, but the theory in this paper applies whenever
n = 2N p for some N , p ∈ Z. Let c0, c1, . . . , cm−1 and d0, d1, . . . , dm−1 be the
low pass and high pass filter coefficients of the transform. Then the level L ≤ N
discrete wavelet transform of x is the vector x̃ = (sL , dL , dL−1, . . . , d1), that
can be rewritten as

sk = Uksk−1, s0 = x

where

Uk =


c0 c1 c2 . . . cm−1

c0 c1 c2 . . . cm−1
...

c2 . . . cm−1 c0 c1


is an n/2k × n/2k−1 matrix and

dk = Vksk−1
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where

Vk =


d0 d1 d2 . . . dm−1

d0 d1 d2 . . . dm−1
...

d2 . . . dm−1 d0 d1


is an n/2k × n/2k−1 matrix. When m − 1 > n/2k−1 the entries wrap around,
for example, when m = 4 the 1 × 2 level N matrices are

UN = [
c0 + c2 c1 + c3

]
,

VN = [
d0 + d2 d1 + d3

]
;

alternatively one may prefer to restrict m (or increase n) so that m − 1 ≤ n/2k−1.
The level L DWT can be written

x̃ = W x = WL WL−1 . . . W1x (10.6)

with, similar to (1.49),

Wk =
 Uk

Vk
0

0 In−n/2k−1

 .

The rest of this chapter is structured as follows. In Section 10.2 we review the
wavelet sparse approximate inverse preconditioner of [116] as from Section 8.3.
In Section 10.3 we introduce our new preconditioner that avoids transforming
A and in Section 10.4 we discuss how to implement our new algorithm and
how to compute the entries of the wavelet basis vectors, which are required to
implement the new method, before commenting on the relative costs of the new
preconditioner in relation to the preconditioner of [116]. In Section 10.5 we
consider modifications to these preconditioners for the case when A is dense
while in Section 10.6 we present some theory on the conditioning of the new
preconditioned iteration matrix. In Section 10.8 we present some numerical
experiments, before we summarize our supplied Mfile in Section 10.9.

10.2 Wavelet-based sparse approximate inverse

As shown in [157] and Section 8.2, for a wide class of PDE problems, A−1 is
sparse in the wavelet basis. Noting this we review the preconditioning method
of [116].

Let W be as in (10.6). Since Ã−1 = W A−1W T = (W AW T )−1 = Ã−1, Chan,
Tang and Wan [116] propose a sparse approximate inverse preconditioner M̃
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for Ã computed by solving a minimization problem analogous to minimizing
‖AM − I‖F in Chapter 5 as (8.34) i.e.

‖AM − I‖F = ‖W AW T W MW T − I‖F
(10.7)= ‖ ÃM̃ − I‖F

Algorithm 8.3.5 implementing this idea made the simplification on the sparsity
pattern of M̃ , which in turn restricted its robustness.

As established in [157], for a wide class of pseudo-differential equations,
both Ã and Ã−1 have a finger pattern which is not fully used by Algorithm 8.3.5
or [116]. Thus a sparse approximate inverse of Ã is justified and a finger pattern
for M̃ can usually be prescribed. Finger-patterned matrices, though sparse, can
have a small number of dense columns and rows. As noted by [232] the presence
of dense columns in M̃ require that care be taken in its computation. Reducing
the sparsity pattern of M̃ to block diagonal, as described by [116], is one way
to solve this problem but relinquishes robustness because interactions between
scales are disregarded.

In this chapter we present a new and cheaper way of using wavelets to give
a sparse preconditioner with a predictable pattern but without computing Ã.
Interactions between wavelets at different scales are included.

10.3 An implicit wavelet sparse approximate
inverse preconditioner

We describe a new wavelet sparse approximate inverse preconditioner that is
closely related to the preconditioner in Algorithm 8.3.5 but the requirement that
Ã be available is removed and the wavelet transform is applied implicitly. This
is facilitated by changing the way in which the sparse approximate inverse is
computed. Additionally we use the whole finger pattern for the preconditioner
to ensure that all interactions between scales are included.

Observe that

‖ ÃM̃ − I‖F = ‖W AW T W MW T − I‖F

= ‖W AMW T − I‖F
(10.8)= ‖W W T AMW T − W T ‖F

= ‖AM̂ − W T ‖F

where M̃ = W MW T and M̂ = MW T = W T M̃ . Here the new idea is that once
M̂ is computed, the solution (10.1) becomes that of

W AM̂ ỹ = W b (10.9)
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which does not require transforming A, b before hand. Note that system (10.9)
can be solved by the two-sided solver gmrest_k.m (see Algorithm 3.6.18).

It is not difficult to see that M̂ has a predictable sparsity pattern, because
M̃ has a predictable sparsity pattern. Minimizing ‖AM̂ − W T ‖F reduces to n
independent least squares problems in the same way as minimizing ‖AM −
I‖F . These observations lead to a new algorithm.

Algorithm 10.3.2. (Wavelet SPAI without transforms).

(1) Compute M̂, the minimizer of ‖AM̂ − W T ‖F subject to the prescribed
sparsity pattern for M̂.

(2) Solve W AM̂ ỹ = W b.
(3) Compute x = M̂ ỹ.

Here M̂ is a quasi-approximation to A−1 represented from the wavelet basis
to the standard, single scale basis. We establish in Theorem 10.6.3 that this
matrix possesses a band pattern like that shown in Figure 10.1(b) and which
is analogous to the finger pattern shown in Figure 10.1(a). In fact W possesses
such a band pattern and our practical experience has shown that the pattern of
W provides a suitable pattern for M̂ .

In fact we have implicitly applied a one-sided wavelet transform to M ,
compared with the two-sided wavelet transform of M in Algorithm 8.3.5. In
this way we achieve compression and structure in A−1 and like the Cohen and
Masson [157] preconditioner, our preconditioner includes interactions between
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Figure 10.1. Visualizations of (a) a finger patterned matrix and (b) a one-sided
finger patterned matrix. (See also Figure 10.2.)
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different scales. The one-sided application of the wavelet transform provides
less compression than the two-sided application but our practical experience is
that the compression achieved is sufficient.

In general the preconditioner M̂ is unsymmetric, even when A is symmetric.
Symmetrization techniques such as the one presented for Algorithm 8.3.5 are
precluded because the nonsymmetric pattern of M̂ is dictated by the decay of
the inverse of A and the properties of the wavelet basis. Though in general it
is more expensive to solve unsymmetric systems than symmetric systems, use
of this new strategy for symmetric systems is justified because construction
of the preconditioner in Algorithm 10.3.2 is cheaper than construction of the
preconditioner in Algorithm 8.3.5.

10.4 Implementation details

We now discuss how to solve in practice the least squares problem in
Algorithm 10.3.2. Analysis of the least squares problem reveals two impor-
tant considerations for practical implementation of the algorithm. We show
how to address these considerations by modifying slightly how the precondi-
tioner is constructed, and by finding cheaper ways of computing the wavelet
matrix W . We finish with some comments about the complexity of computing
the matrices Ã and W .

Consider the problem of minimizing ‖AM̂ − W T ‖F at Step 1 of Algo-
rithm 10.3.2. Let Sj be the set of indices of the nonzero entries of m̂ j where
m̂ j is the j th column of M̂ . The classical approach to solving the minimization
problem is to observe that

‖Am̂ j − w j‖2 = ‖A(:, Sj ) m̂ j (Sj ) − w j‖2

= ‖A(Tj , Sj ) m̂ j (Sj ) − w j (Tj )‖2

where Tj indexes the nonzero rows of A(:, Sj ) and w j is the j th column of W T .
With the reduced QR factorization A(Tj , Sj ) = Q R we have

‖A(Tj , Sj ) m̂ j (Sj ) − w j (Tj )‖2 = ‖Q R m̂ j (Sj ) − w j (Tj )‖2, (10.10)

which can be minimized by solving R m̂ j (Sj ) = QT w j (Tj ) by back substitu-
tion.

We make two observations. Firstly, the entries w j (Tj ) must be known. Sec-
ondly, the principal cost of minimizing (10.10) is that of computing the QR
factorization of A(Tj , Sj ). This requires O(|Tj ||Sj |2) arithmetic operations, be-
coming O(|Sj |3) when A is banded because then |Tj | ∼ |Sj |. Algorithm 10.3.2
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becomes impractical in its basic form when L = N because then |Sj | = n for
some columns j . The following modifications address the second observation.

1. Use a wavelet transform of level L < N . Note max j=1,n |Sj | ≈ 2L .
2. Compute m̂ j by minimizing (10.10) whenever |Sj |/n > ρ for some param-

eter ρ ∈ (0, 1). Otherwise compute m̂ j by solving Am̂ j = w j using a small
number of GMRES steps.

3. Restrict Sj . This approach is used by [116]. We do not use this approach
because we aim to include the off diagonal finger pattern into our precondi-
tioner.

To illustrate the issue of sparsity of W T (as well as the one-sided finger patterns),
we show some results on Figure 10.2 for some selected DWT levels. Clearly
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Figure 10.2. Illustration of the density of nonzeros in matrix W T and Ã(threshold
of 0.08) for A = cz(64, 2) with two different levels. Clearly there is more com-
pression shown in Ã and more density in W T as the level increases.
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there is a fine balance between the density of nonzeros per column and the
wavelet level used.

The ability to compute the necessary entries of W T is crucial. Many discrete
wavelet transforms are applied level by level, with

W T = W T
1 W T

2 . . . W T
L−1W T

L .

The matrices W T
i represent single levels of the transform and are often readily

available, although W T may not be. Computation of W T by multiplying the
factors W T

i is possible because W T and its factors are sparse.
More generally, the kth column of W T can be computed by inverse-

transforming the kth Euclidean vector ek using any transform algorithm. Only
O(L) wavelets need to be computed in this way because the wavelets at each
level are translations of each other – thus only one wavelet at each level must
be computed.

Complexity issues. It remains to comment on the relative costs of Algo-
rithms 8.3.5 and 10.3.2. Sparse approximate inverse and setup are considered.
In computing the sparse approximate inverse in Algorithm 8.3.5, the restricted
pattern for M̃ yields |Sj | = c for some constant c. However |Tj | is difficult to
estimate because it depends on the pattern of Ã. Nevertheless, one can bound
the costs of computing M̃ by O(n2c2). A realistic estimate is O(nc2) because
there are few dense columns of Ã.

In Algorithm 10.3.2, recall that |Tj | ∼ |Sj | when A is banded. The
cost of computing M̂ is then bounded by O(n[max j=1,n |Sj |]3). Note that
max j=1,n |Sj | ≈ 2L , yielding a cost O(n23L ). When L is kept constant the cost
becomes linear in n.

Setup for Algorithm 8.3.5 involves computing Ã. Setup for Algorithm 10.3.2
involves computing W . The former requires wavelet forward-transforming 2n
vectors. The latter requires inverse wavelet transforming O(L) ≤ O(log2 n)
vectors. W may be stored and reused for other problems of the same size. We
will show that Ã can be computed in O(12mnα) arithmetic operations when
A has bandwidth α, and W can be computed in O(4m(m − 1)n) arithmetic
operations. Ã and W may be computed naively by multiplication of sparse
matrices. This is easily implemented but introduces a computational overhead,
although the arithmetic operation estimates will be realized. Computation of Ã
remains more expensive than that of W .

Algorithm 1.6.18 is the typical pyramid algorithm for the forward discrete
wavelet transform. Let α ∈ Z be large compared with m/2. Then the complexity
of transforming a vector with α nonzeros is approximately O(2m × 2α[1 −
1/2L ]) and the transform of the vector contains approximately 2α[1 − 1/2L ]
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nonzeros. It follows that transforming a banded matrix with α nonzeros in each
column involves transforming n columns each with α nonzeros and then n
rows each with 2α[1 − 1/2L ] nonzeros. The complexity of this transformation
is approximately

O
(
2mn × [

2α[1 − 1/2L ] + 2
(
2α[1 − 1/2L ]

)
[1 − 1/2L ]

]) ≈ O(12mnα).

Algorithm 1.6.19 is the typical pyramid algorithm for the inverse discrete
wavelet transform. The complexity of inverse transforming the Euclidean vector
whose nonzero entry appears in sl or dl is approximately O(2m(m − 1)2l). Thus
the complexity of transforming L Euclidean vectors whose nonzeros appear in
s1, s2, . . . , sL respectively is approximately

O

(
L∑

l=1

2m(m − 1)2l

)
≈ O(4m(m − 1)2L ).

When n = 2L the second estimate becomes O(4m(m − 1)n) and we see that
computing Ã is approximately 12α/4(m − 1) times more expensive than com-
puting W .

10.5 Dense problems

Although our primary purpose is to precondition sparse problems arising
from PDEs, we consider in this section the application of Algorithms 8.3.5
and 10.3.2 to dense problems where A is either fully available, or is partially
available, for example, using the fast multipole method; see Section 3.8 and
[248,405].

Consider the general problem of finding M that minimizes ‖B M − C‖F

subject to a specified sparsity pattern for M . When B = Ã and C = I this
corresponds to the minimization problem at Step (2) of Algorithm 8.3.5. When
B = A and C = W T this corresponds to the minimization problem at Step 1 of
Algorithm 10.3.2.

Let Sj index the non-zero entries of m j , where m j is the j th column of
M . A generalization of the argument in Section 10.4 shows that the minimiza-
tion problem reduces to solving n problems of the form R m j (Sj ) = QT c j (Tj )
where we have the QR factorization B(Tj , Sj ) = Q R, where Tj indexes the
nonzero rows of B(:, Sj ), and where c j is the j th column of C .

The principal task in solving each least squares problem is the QR factoriza-
tion of the t × s = |Tj | × |Sj | matrix B(Tj , Sj ). This operation has complexity
O(ts2). Note that s depends upon the chosen sparsity pattern for M , and that t ,
loosely speaking, depends upon the sparsity of B.
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When A is dense then Ã in Algorithm 8.3.5 is also dense. However, if A is also
smooth then Ã will have a structure containing many small entries. Computation
of a column of the sparse approximate inverse of a dense matrix using the least
squares approach has complexity O(ns2) and for all but the smallest s is too
expensive. Computation using the GMRES approach (for example, when the
column is dense) is also expensive because it requires repeated matrix vector
multiplication with a dense matrix.

We consider two adaptations to the method of computing the sparse approx-
imate inverse. Write B = S + F where S is sparse and F is dense.

1. B is replaced by S in the least squares minimization problems. Thus we
minimize ‖SM − C‖F instead of ‖B M − C‖F .

2. Dense columns of M are computed by solving Sm j = c j instead of Bm j =
c j using GMRES.

We propose that (2) is always necessary for computing dense columns, but that
(1) is required only when s = |Sj | is not small.

In both cases the idea is to let S be a good sparse approximation to B so
that M , which approximates S−1, is a good preconditioner for B. A similar
approach is taken by Chen [131] who shows that if the continuous operator
S underlying S is bounded and the continuous operator F underlying F is
compact thenS−1(S + F) = I + S−1F andS−1F is compact. One expects the
corresponding matrix S−1(S + F) to have the clustered eigenvalues associated
with the discretization of such an operator.

The choice of S and F is crucial. The following strategies are proposed in
[94].

1. Algebraic. S is obtained from B by discarding entries whose absolute value
falls below a specified threshold.

2. Topological. When B is obtained by a finite element discretization, S is
obtained by discarding those entries bi j of B whose corresponding nodes i
and j are not (at some given level) mesh neighbours.

3. Geometric. When B is obtained by a finite element discretization, S is ob-
tained by discarding those entries of bi j of B whose corresponding nodes i
and j are separated by more than a specified distance.

For Algorithm 8.3.5 we propose Strategy 1 because Strategies 2 and 3 do
not directly apply since the entries in Ã do not directly relate to connections
between nodes in a mesh (unless one works with the sparse graph G( Ã) obtained
algebraically). However, analogous strategies to 2 and 3 can be developed by
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replacing relationships between nodes with relationships between supports of
wavelet basis functions, see for example Hawkins and Chen [271].

For Algorithm 10.3.2 one could apply any of these strategies. In some cir-
cumstances details of the mesh may be available but the entries of A are not
explicitly known. Then Ã cannot easily be computed and our method is partic-
ularly useful. Under this context Carpentieri et al. [94] propose strategies 2 and
3. This situation arises, for example, in particle simulations or integral equa-
tion formulations for Laplace’s equation when they are solved using the fast
multipole method [248,405]. Here matrix vector multiplication with A can be
performed cheaply and to a specified accuracy but A is not computed explicitly.
One way to obtain columns of A for the purposes of computing a least squares
sparse approximate inverse is to multiply Euclidean vectors by A. This naive
approach may be very expensive, because all columns of A will be needed,
though they will not be needed or stored simultaneously when the precondi-
tioner is sparse. A better way to compute the sparse approximate inverse in this
case might be to use Algorithm 10.3.2 with Adaptation 1, replacing A in the
sparse approximate inverse computations by a sparse approximation S to A. The
entries of S might be obtained using only near field contributions associated
with the singularity.

10.6 Some theoretical results

In this section we justify the banded pattern chosen for M̂ and present a theo-
retical bound on ‖W AM̂ − I‖F . This provides a measure of the conditioning
of the iteration matrix W AM̂ .

The following theorem establishes that A−1W , which we approximate by
M̂ , has the banded pattern illustrated in Figure 10.1(b). Let {ψi }n

i=1 be a wavelet
basis in L2 with m vanishing moments. Such properties of wavelets are dis-
cussed fully by Strang and Nguyen [441]. Let Ii denote the support of ψi ,
and suppose that ‖ψi‖2 = 1. Let {hi }n

i=1 be a single scale basis in L2, with Ī i

denoting the support of hi , and with ‖hi‖2 = 1.

Theorem 10.6.3. Suppose that the Green’s function K (x, y) satisfies∣∣∣∣∂m K

∂xm
(x, y)

∣∣∣∣ ≤ Cm

|x − y|m+1
, for x �= y (10.11)

for some constant Cm. Let N̂ be the discrete operator of K (x, y) from the
wavelet basis {ψ j }n

j=1 to the single scale basis {hi }n
i=1. Then

|N̂ i j | ≤ b(I j , Ī i )
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with

b(I j , Ī i ) = C |I j |(2m+1)/2 1

dist(I j , Ī i )m+1

for some constant C.

Before the proof of Theorem 10.6.3, we remark that such a proof is typical
of wavelet compression results where Taylor expansions are combined with
applying the vanishing moments’ conditions (see [441, Ch.7] and [13]).

Proof. We begin by expanding K as a Taylor series in x about x0 = inf I j to
give

K (x, y) = K (x0, y) + (x − x0)
∂K

∂x
(x0, y) + · · ·

+ (x − x0)m−1

(m − 1)!

∂m−1 K

∂xm−1
(x0, y) + R(x, y)

where the remainder

R(x, y) = (x − x0)m

m!

∂m K

∂xm
(ξ, y)

for some ξ ∈ I j . All terms in the Taylor series, except for the remainder term, are
orthogonal to ψ j because of the vanishing moments properties of the wavelets.

Now

N̂ ij =
∫

Ī i

∫
I j

K (x, y) ψ j (x) dx hi (y) dy,

and ∫
I j

K (x, y) ψ j (x) dx =
∫

I j

R(x, y) ψ j (x) dx

=
∫

I j

(x − x0)m

m!

∂m K

∂xm
(ξ, y) ψ j (x) dx

= ∂m K

∂xm
(ξ, y)

∫
I j

(x − x0)m

m!
ψ j (x) dx .

It follows that∫
Ī i

∫
I j

K (x, y) ψ j (x) dx hi (y) dy

=
∫

Īi

∂m K

∂xm
(ξ, y)

∫
I j

(x − x0)m

m!
ψ j (x) dx hi (y) dy

=
(∫

I j

(x − x0)m

m!
ψ j (x) dx

) ∫
Īi

∂m K

∂xm
(ξ, y) hi (y) dx .
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The Cauchy–Schwartz inequality gives∣∣∣∣∫
Īi

∂m K

∂xm
(ξ, y) hi (y) dy

∣∣∣∣
≤

(∫
Īi

∂m K

∂xm
(ξ, y)2 dy

)1/2 (∫
Īi

hi (y)2 dy

)1/2

≤
(∫

Īi

∂m K

∂xm
(ξ, y)2 dy

)1/2

‖hi‖2

=
(∫

Īi

∂m K

∂xm
(ξ, y)2 dy

)1/2

≤ | Īi |1/2 sup
y∈ Īi

∣∣∣∣∂m K

∂xm
(ξ, y)

∣∣∣∣ .
A similar argument shows∣∣∣∣∣

∫
I j

(x − x0)m

m!
ψ j (x) dx

∣∣∣∣∣ ≤ |I j |(2m+1)/2

m! (2m + 1)1/2
.

Combining these gives∣∣∣∣∣
∫

Īi

∫
I j

K (x, y) ψ j (x) dx hi (y) dy

∣∣∣∣∣≤ |I j |(2m+1)/2

m! (2m + 1)1/2
| Īi |1/2 sup

y∈ Īi

∣∣∣∣∂m K

∂xm
(ξ, y)

∣∣∣∣
≤ |I j |(2m+1)/2

m! (2m + 1)1/2
| Īi |1/2 Cm

dist(I j , Īi )m+1

≤ C |I j |(2m+1)/2 1

dist(I j , Īi )m+1

where

C = Cm
| Īi |1/2

m! (2m + 1)1/2
.

Here we make use of the fact that the functions {hi } are a fixed scale basis and
so | Īi | is constant.

Choose ε > 0 and let S = {(i, j) : |b(I j , Īi )| > ε}. Denote by N̂S the matrix
obtained by cutting N̂ to the pattern S. Then

max
(i, j)

|N̂S
i j − N̂ i j | ≤ max

(i, j)/∈S
|b(I j , Īi )|

≤ ε.

Theorem 10.6.4. If we choose S as the sparsity pattern for M̂ then

‖W AM̂ − I‖F ≤ nε‖A‖F .
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Proof. Denote the j th column of N̂S by n̂S
j . Similarly denote the j th column of

M̂ by m̂ j and the j th column of W by w j .
Then

‖W AM̂ − I‖2
F = ‖AM̂ − W T ‖2

F

=
n∑

j=1

‖Am̂ j − w j‖2
2

≤
n∑

j=1

‖An̂S
j − w j‖2

2

= ‖ AN̂
S − W T ‖2

F

≤ ‖N̂S − A−1W T ‖2
F‖A‖2

F

≤ ‖N̂S − N̂‖2
F‖A‖2

F

≤ n2ε2‖A‖2
F .

Remark 10.6.5. These results give a guide to the effectiveness of M̂ for small
ε. The eigenvalues of the preconditioned matrix will have a desirable distribu-
tion when ε is small, because they will be clustered close to 1.

Theorem 10.6.4 suggests that one should choose ε sufficiently small, so that
the pattern S leads to a sufficiently small bound ‖W AM̂ − I‖2

F for the pre-
conditioner M̂ . A similar bound for ‖ ÃM̃ − I‖F is given by [116]. In practice,
good results can be obtained when ε is large.

10.7 Combination with a level-one preconditioner

The idea of an implicit DWT may be combined with the method of [107] to
allow the application of a level-one preconditioner to A:

Ax = b ⇒ D−1 Ax = D−1b ⇒ D−1 AM̃ = W T , (10.12)

where D−1 is some suitable preconditioner that can ‘smooth out’ A.
Moreover, to avoid forming D−1 A, the implicit idea may be generalized to

yield

AM̃ = DW T i.e. min
M̃

‖AM̃ − D̃‖F , (10.13)

where D̃ = DW T is the one-sided DWT of D, which will be sparse if D is.
On the other hand, regardless of the sparsity of D̃, the solution of (10.13) will
mainly involve A and hence be no more expensive than solving (10.7) or (10.8).
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Once M̃ (whose sparsity is again assured by an one-sided finger pattern; see
Figure 10.2) is computed, the solution of (10.1) comes from applying Algorithm
3.6.18 to

D̃−1AM̃ ỹ = D̃−1b. (10.14)

10.8 Numerical results

The new preconditioning strategy has been tested on a range of sparse and
dense linear systems arising from discretization of partial differential equations
and boundary integral equations. In [270], experiments were also presented on
using other DWTs [9,447] In all cases the preconditioner has been shown to be
very useful in reducing the number of GMRES iterations required to solve the
linear system.

Here we have used the supplied Mfile ch0_w2.m to demonstrate the
working of Algorithm 10.3.2 for accelerating GMRES [415,413] itera-
tions. The test matrices from Section 4.9 are again used. In Figures 10.3
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Figure 10.3. Convergence results for matrix0 by Algorithm 10.3.2. This indef-
inite matrix is the hardest problem for all preconditioners.
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Figure 10.4. Convergence results for matrix2 by Algorithm 10.3.2. This matrix
is known to be difficult for the usual application of the wavelet preconditioner [116].

(via ch0_w2(0,4,4)) and 10.4 (via ch0_w2(2,4,6)), we show the con-
vergence results respectively for matrix0 and matrix2. Although the con-
vergence does not appear too fast for matrix0, we did observe convergence
while all the previous methods cannot solve this matrix problem. Formatrix2,
the improvement is also dramatic with the implicit preconditioner.

10.9 Discussion of the supplied Mfile

Combination of advantages of excellent sparsity from a conventional FEM and
predictability in large elements of an inverse matrix from a wavelet method is
a feasible approach for developing robust preconditioners. The proposed im-
plicit method may be further refined, for example, in better treatment of coarse
level-related preconditioners. There does not appear to exist software similar
to the method described.

We supply a sample Mfile for experimenting our test matrices:

[1] ch0_w2.m – The main driver file for testing the matrices from Section 4.9.
The Mfile may be adapted for testing other matrices.
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Remark 10.9.6. � So far we have discussed seven classes of general precon-
ditioning techniques for solving (1.1) using an iterative method. For a given
(and less well-known) problem type, one is extremely fortunate if one of the
above classes can lead to an efficient solution. For harder problems, specific
and problem-dependent techniques may have to be developed. In the next four
chapters, we shall consider some useful application problems each offering at
least one open problem that deserves further research work. For all numeri-
cal methods, parallel computing offers a potentially revolutionizing method to
speeding up; this is discussed in Chapter 15.
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Application I: acoustic scattering modelling

An important class of problems in which significantly higher accuracies
are needed relate to low-observable applications, where the quantities of
interest are small residuals of large incident fields.

Oscar P. Bruno. Fast, high-order, high-frequency integral methods
for computational acoustics and electromagnetics. Lecture

Notes in Computational Science and Engineering 31.
Springer-Verlag (2003)

However, wavelet representation of an oscillating matrix appears to be as
dense as the original, i.e. oscillatory kernels cannot be handled efficiently
by representing them in wavelet bases.

A. Averbuch et al. On efficient computation of multidimensional
oscillatory integrals with local Fourier bases.

Nonlinear Analysis (2001)

The acoustic scattering modelling provides a typical example of utilizing a
boundary element method to derive a dense matrix application as shown in
Chapter 1. Such a physical problem is only a simple model of the full wave
equations or the Maxell equations from electromagnetism. The challenges are:

(i) the underlying system is dense and non-Hermitian;
(ii) the kernel of a boundary integral operator is highly oscillatory for high

wavenumbers, implying that a large linear system must be solved. The os-
cillation means that the fast multipole method and the fast wavelet methods
are not immediately applicable.

This chapter reviews the recent work on using preconditioned iterative
solvers for such linear systems arising from acoustic scattering modelling and
points out the various challenges for future research work. We consider the
following.

383
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Section 11.1 The boundary integral equations for the Helmholtz equation in
R

3 and iterative solution
Section 11.2 The low wavenumber case of a Helmholtz equation
Section 11.3 The high wavenumber case of a Helmholtz equation.
Section 11.4 Discussion of software

Different from (1.53), we shall consider the exterior problem as specified below.

11.1 The boundary integral equations for the Helmholtz
equation in R

3 and iterative solution

Whenever the underlying physics allows the use of time-harmonic dependence
assumption, the space-dependent part of a function can be elegantly separated
and the result is often a much simplified equation. In our case, we shall obtain
the Helmholtz equation. This section will consider the fast solution issues.

11.1.1 The time-harmonic wave equation

The linear and dissipative wave equation for the velocity potential u = u(p, t)

∂2u

∂t2 + γ
∂u

∂t
− c2∇2u = 0 (11.1)

that models the propagating acoustic waves reflected and diffracted off a
bounded scatterer (e.g. submarine) under some incident field (e.g. sonar trans-
ducer), with the use of a time-harmonic dependence assumption

u = u(x, y, z, t) = u(p, t) = φ(p) exp(−iωt),

reduces (11.1) to

(∇2 + k2)φ = 0, (11.2)

where k =
√

ω2 + iγ /c is the wavenumber, c the speed of sound in a homo-
geneous isotropic medium (often water) exterior to the scatterer and γ is the
damping coefficient. Here the angular frequency ω = 2π f corresponds to the
frequency f . Once φ(p) or u(p, t) is determined, the velocity field and the pres-
sure difference due to the wave disturbance can be computed respectively by
v = gradu/ρ and p = −(∂u/∂t) − γ u with ρ the density of the medium. Here
we are mainly interested in the case of no damping γ = 0 so k = ω/c ≥ 0.
Note that, opposite (11.2), the resembling equation (∇2 − k2)φ = 0 is much
easier to solve since it will be more like a Laplace equation.
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11.1.2 A unique BIE formulation in R
3

To reformulate (11.2) defined in some infinite domain �+, exterior to the closed
surface ∂�, into a boundary integral equation defined over ∂� only, we may
use the indirect approach with the layer potentials as shown in Section 1.7 or
the direct approach with the Green’s theorems (1.57) and (1.71); see [16,159].
In any case, we need to specify the boundary conditions. At the finite surface
∂�, these may be one of the following

(i) Dirichlet: φ(p) = f (p); ( f (p) = 0 for an acoustically soft scatterer)

(ii) Neumann:
∂φ

∂n
(p) = f (p); ( f (p) = 0 for an acoustically rigid scatterer)

(iii) Impedance:
∂φ

∂n
(p) + λφ(p) = f (p), (a more realistic assumption on the

scatterer)

where λ = iχρω with χ the acoustic impedance and n = n p is the unit outward
normal to ∂� at p. The wave potential φ is consisted of two components:
φ(p) = φs(p) + φinc(p) with φs(p) the scattered and radiated wave and φinc(p)
the incident field. The commonly used Sommerfeld radiation condition ensures
that all waves are outgoing and gradually damped at infinity

lim
r→∞ r

{ p

r
· grad φs(p) − ikφs(p)

}
= lim

r→∞ r

{
∂φs(r )

∂r
− ikφs(r )

}
= 0,

lim
r→∞ r

{
∂φinc(r )

∂r
+ ikφinc(r )

}
= 0,

(11.3)
where p = (x, y, z), r = |p| and p · grad φ = r ∂φ

∂r .
An application of Green’s second theorem (1.71) leads to [16,159]∫

∂�

(
φ(q)

∂Gk(p, q)

∂nq
− Gk(p, q)

∂φ(q)

∂nq

)
d Sq =


1

2
φ(p) − φinc(p), p ∈ ∂�

φ(p) − φinc(p), p ∈ �+
(11.4)

where the free-space Green’s function, or the fundamental solution,

Gk(p, q) = eik|p−q|

4π |p − q| = eikr

4πr
(11.5)

satisfies the Helmholtz equation in the sense of ∇2Gk(p, q) + k2Gk(p, q) =
δ(p − q) and nq is as before the unit outward normal to ∂� at q. However, for
any boundary condition over ∂�, it is well known that (11.4) does not possess a
unique solution for the characteristic (or resonance) wavenumbers, the location
of which will depend on the shape of the surface ∂�. As φinc(p) is always given
(or can be measured), we shall assume φinc(p) = 0 to simplify the discussion.
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The Burton and Miller method [83] for overcoming the non-uniqueness
problem consists of differentiating (11.4) along the normal at p to give∫

∂�

(
φ(q)

∂2Gk(p, q)

∂n p∂nq
− ∂Gk(p, q)

∂n p

∂φ(q)

∂nq

)
d Sq = 1

2

∂φ(p)

∂n p
(11.6)

and then taking a linear combination of (11.4) and (11.6) in the form

−1

2
φ(p) +

∫
∂�

φ(q)

(
∂Gk(p, q)

∂nq
+ α

∂2Gk(p, q)

∂n p∂nq

)
d Sq

(11.7)

= α

2

∂φ(p)

∂n p
+

∫
∂�

∂φ(q)

∂nq

(
Gk(p, q) + α

∂Gk(p, q)

∂n p

)
d Sq

where α is a coupling constant. It can be shown that provided that the imag-
inary part of α is non-zero then (11.7) has a unique solution [83] for all real
and positive k. However, this formulation has introduced the kernel function
(∂2Gk(p, q))/(∂n p∂nq ) which has a 1/(|p − q|3) hyper-singularity. Below we
introduce different ways of overcoming this singularity; the use of finite part
integration is a separate method [267]. Here, although (11.7) provides a unique
formulation for any wavenumber k, one may find that in the literature some
authors still choose to experiment on some fixed wavenumber k and carry on
using (11.4) or (11.6) alone.

11.1.3 The piecewise constant approximation for collocation

To implement the piecewise constant collocation method, it is possible to use
the result from [353]∫

∂�

∂2Gk(p, q)

∂n p∂nq
d Sq = k2

∫
∂�

Gk(p, q)n p · nq d Sq , (11.8)

in order to write the hyper-singular integral as∫
∂�

φ(q)
∂2Gk(p, q)

∂n p∂nq
d Sq =

∫
∂�

(φ(q) − φ(p))
∂2Gk(p, q)

∂n p∂nq
d Sq

+ k2φ(p)
∫

∂�

Gk(p, q)n p · nq d Sq .

(11.9)

Let φ and ∂φ/∂n be approximated by interpolatory functions of the form

φ(q) =
m∑

j=1

φ jψ j (q),
∂φ(q)

∂n
=

m∑
j=1

v jψ j (q) (11.10)

where {ψ1, ψ2, . . . , ψm} are a set of linearly independent basis functions. Sub-
stituting (11.10) into (11.7) and (11.9), and applying the collocation method
at points {p1, p2, . . . , pm}, usually chosen such that pi ∈ Si (defined below),
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yields
m∑

j=1

φ j

{
−1

2
ψ j (pi ) +

∫
∂�

(
ψ j (q)

∂Gk(pi , q)

∂nq
+ α

(
ψ j (q) − ψ j (pi )

)
× ∂2Gk(pi , q)

∂n p∂nq

)
d Sq + ψ j (pi )αk2

∫
∂�

Gk(pi , q)n p · nq d Sq

}
(11.11)

=
m∑

j=1

v j

[
α

2
ψ j (pi ) +

∫
∂�

ψ j (q)

(
Gk(pi , q) + α

∂Gk(pi , q)

∂n p

)
d Sq

]
.

For a piecewise constant approximation, the ψ j functions are

ψ j (p) =
{

1, p ∈ Sj

0, otherwise,
(11.12)

where {S1, S2, · · · , Sm} is some partition of the surface ∂� into m nonoverlap-
ping elements. For this choice of basis functions then all the integrals appearing
in (11.11) are at worst weakly singular, since in this case ψ j (p) − ψ j (q) is zero
whenever p and q are in the same element. However, if a higher order approxi-
mation is used then the term involving the second derivative becomes a Cauchy
principal value integral which is difficult to evaluate. Hence, the piecewise
constant approximation collocation method has been widely used in practice.

11.1.4 The high-order Galerkin approximation

In [268], we presented an alternative way of using high-order methods via
the Galerkin formulation to solve the integral equation (11.7). Essentially our
method reformulates the hyper-singular integral equation into a weakly-singular
one. As the operator in (11.6) or (11.7) is not Hermitian, we do not have to
construct complex basis functions because the resulting linear system will not
be Hermitian. Therefore in our Galerkin method, we used the well-known real
trial basis functions ψ j (p) ∈ H τ−1/2(∂�) and construct interpolation functions
with complex coefficients as in (11.8).

Taking the inner product of (11.7) with each basis function in turn gives
m∑

j=1

φ j

∫
∂�

ψi (p)

[
1

2
ψ j (p) +

∫
∂�

(
ψ j (q)

∂Gk(p, q)

∂nq

+ αψ j (q)
∂2Gk(p, q)

∂n p∂nq

)
d Sq

]
d Sp

=
m∑

j=1

v j

∫
∂�

ψi (p)

[
α

2
ψ j (p) +

∫
∂�

ψ j (q)
(

Gk(p, q)α
∂Gk(p, q)

∂n p

)
d Sq

]
d Sp

(11.13)
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where the last integral on the first line∫
∂�

∫
∂�

ψi (p) ψ j (q)
∂2Gk(p, q)

∂n p ∂nq
d Sq d Sp (11.14)

is hyper-singular (to be dealt with) while all other integrals are weakly
singular.

To derive a formulation where we only have to evaluate integrals which are
at worst weakly singular, the following result is essential:

Lemma 11.1.1. (Harris and Chen [268]).
For piecewise polynomial basis functions {ψ j } of any order τ ,∫

∂�

∫
∂�

ψi (p) ψ j (q)
∂2Gk(p, q)

∂n p ∂nq
d Sq d Sp

= 1

2

∫
∂�

∫
∂�

[ψi (p) − ψi (q)]
[
ψ j (q) − ψ j (p)

] ∂2Gk(p, q)

∂n p ∂nq
d Sq d Sp

+ k2
∫

∂�

ψi (p) ψ j (p)

[∫
∂�

n p · nq Gk(p, q) d Sq

]
d Sp,

(11.15)
where all the integrals on the right-hand side are weakly singular.

With this result, we can derive a Galerkin formulation that enables us to use
basis functions of any order τ without having to construct special quadrature
rules to deal with the hyper-singular integrals. The reformulated form of (11.13)
is the following

m∑
j=1

φ j

∫
∂�

[
ψi (p)

(
−1

2
ψ j (p) +

∫
∂�

ψ j (q)
∂Gk(p, q)

∂nq
d Sq

)
+ 1

2
α

∫
∂�

(
(ψi (p) − ψi (q))

(
ψ j (q) − ψ j (p)

) ∂2Gk(p, q)

∂n p∂nq

)
d Sq

+ αψi (p)ψ j (p)k2
∫

∂�

Gk(p, q)n p · nqd Sq

]
d Sp (11.16)

=
m∑

j=1

v j

∫
∂�

ψi (p)

[
α

2
ψ j (p) +

∫
∂�

ψ j (q)

(
Gk(p, q) + α

∂Gk(p, q)

∂n p

)
d Sq

]
d Sp.

In [268] when iterative solution of (11.16) is developed, we generalize the
work of [136] to this case and essentially use the idea of Section 4.7 for con-
structing a sparse preconditioner. Below our attention will be mainly paid to
the collocation method.
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11.1.5 The high-order collocation approximation
using finite part integration

The finite part integration (in the sense of Hadamard) is essentially to assign a
meaning to a singular integral that is otherwise infinity. We now review how to
compute a finite part integral, before applying the idea to (11.7).

For a suitably smooth function f (s), consider the problem of evaluating an
integral of the form ∫ b

a

f (s)

(s − a)2
ds. (11.17)

If F(s) is the anti-derivative of f (s)/((s − a)2) then the finite part of (11.17)
is defined as F(b). In order to approximate (11.17) we need to construct a
quadrature rule of the form∫ b

a

f (s)

(s − a)2
ds =

m∑
j=1

w j f (s j ). (11.18)

The simplest way of doing this is to use the method of undetermined coefficients,
where the quadrature points s1, s2, . . . , sm take assigned values and then (11.18)
is made exact for f (s) = (s − a)i , i = 0, 1, . . . , m − 1. The resulting equations
can be written in matrix form as Aw = g where

Ai j = (s j − a)i−1 and gi =
∫ b

a
(s − a)i−3 ds, 1 ≤ i, j ≤ m, (11.19)

and, to compute gi for i = 1, 2, we can define the following finite part integrals∫ b

a

1

(s − a)2
ds = − 1

b − a
and

∫ b

a

1

s − a
ds = ln(b − a). (11.20)

Now consider using finite part integration for (11.7). One way of interpreting
the hyper-singular operator is finding out an appropriate change of variables
so that the interested integral is effectively reduced to one-dimensional integral
with a hyper-singular integrand and the singularity located at an end point.
Suppose that the surface ∂� is approximated by N nonoverlapping triangular
quadratic surface elements S1, S2, . . . , SN . If pi , i = 1, . . . 6, denote the position
vectors of the six nodes used to define a given element, then that element can
be mapped into a reference element in the (u, v) plane

p(u, v) =
6∑

j=1

ψ j (u, v)p j 0 ≤ u ≤ 1, 0 ≤ v ≤ 1 − u. (11.21)

Now suppose that the singular point corresponds to the point (u1, v1) in the (u, v)
plane. The reference element is divided into three triangular sub-elements by
connecting the point (u1, v1) to each of the vertices of the reference triangle. We
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0 1

1

t

singular point  ←  ←    s

singular point  ←  ←    s

Figure 11.1. Illustration of mapping a triangular domain (top plot in shaded region)
to a rectangular domain (the bottom plot) in order to expose the radial singularity
away from the mid-point in the triangle.

need to decide on a new coordinate transform in which the singularity is only
present in one variable. Since the singularity is in the radial direction (away
from point (u1, v1)), a suitable transform must be polar like.

Within each sub-element we now propose the following transformation

u(s, t) = (1 − s)u1 + stu2 + s(1 − t)u3

v(s, t) = (1 − s)v1 + stv2 + s(1 − t)v3

}
0 ≤ s, t ≤ 1 (11.22)

where (u2, v2) and (u3, v3) are the other vertices of the current sub-triangle. As
illustrated in Figure 11.1, clearly, the only way for (u(s, t), v(s, t)) = (u1, v1) is
for s = 0 as these are bi-linear functions of s and t . Further, the mapping (11.21)
is bijective as its Jacobian is nonzero for all (u, v) of interest. Hence the only
way that p can equal the singular point is when s = 0. After some manipulation
it is possible to show that r (s, t) = |p(s, t) − q| = sr̃ (s, t) where r̃ (s, t) �= 0 for
0 ≤ s, t ≤ 1. The Jacobian of the transformations (11.21) and (11.22) can be
written as

J = s
√

D2
1 + D2

2 + D2
3

∣∣∣∣ (u2 − u1)(v3 − v1) − (u3 − u1)(v2 − v1)

∣∣∣∣ = Jss

(11.23)
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where

D1 =

∣∣∣∣∣∣∣
∂y

∂u

∂z

∂v
∂y

∂v

∂z

∂u

∣∣∣∣∣∣∣ , D2 =

∣∣∣∣∣∣∣
∂z

∂u

∂x

∂v
∂z

∂v

∂x

∂u

∣∣∣∣∣∣∣ , D3 =

∣∣∣∣∣∣∣
∂x

∂u

∂y

∂v
∂x

∂v

∂y

∂u

∣∣∣∣∣∣∣ . (11.24)

Hence, denoting ∂�e the current sub-element, we can write∫
∂�e

f (q)

r3
d S =

∫ 1

0

1

s2

[∫ 1

0

f (q(u(s, t), v(s, t)))

(r̃ (s, t))3
Js dt

]
ds. (11.25)

We note that the inner integration (with respect to t) is nonsingular and can be
approximated by an appropriate quadrature rule. However, the outer integral
needs to be interpreted as a Hadamard finite part in a (desirably) single variable s.
Thus equation (11.7) is tractable.

11.1.6 A new high-order collocation approximation

In order to develop the collocation method that does not use any finite part
integration, we have to tackle the issue of hyper-singularity in (11.7) differently.
It turns out that we can devise such an approach that uses the Green theorem to
’undo’ the double differentiation (∂2Gk(p, q))/(∂n p∂nq ), as shown in [133].

11.1.6.1 Interpretation of the hyper-singular integral
First we prove the following lemma which will be used to transform the hyper-
singular integral to an integral with a weak singularity.

Lemma 11.1.2. Let a ∈ R
3 be a constant vector. Then∫

∂�

a · (q − p)
∂2Gk(p, q)

∂n p∂nq
d Sq =

∫
∂�

a · nq
∂Gk(p, q)

∂n p
d Sq

− k2a ·
∫

�

(q − p)
∂Gk(p, q)

∂n p
dVq

− a · n p

2

(11.26)

where � is some interior region in R
3 with closed surface ∂�.

Proof. Assume that p lies on smooth part of ∂�. That is, n p is well defined. Let
∂�ε be the surface of a sphere centered on p, �̃ be � excluding the interior of
∂�ε and ˜∂� denote the surface bounding �̃. We notice that, for q ∈ �̃, it holds
that

∇2
q

∂Gk(p, q)

∂n p
+ k2 ∂Gk(p, q)

∂n p
= 0. (11.27)
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Applying the Green’s second theorem∫
˜∂�

(
φ1

∂φ2

∂nq
− φ2

∂φ2

∂nq

)
d Sq =

∫
�̃

(
φ1∇2

qφ2 − φ2∇2
qφ1

)
dVq (11.28)

with φ1 = a · (q − p) and φ2 = (∂Gk(p, q))/∂n p leads to (taking note of
(11.27) in the first integral on the right hand side of (11.28))∫

˜∂�

[
a · (q − p)

∂2Gk(p, q)

∂n p∂nq
− a · nq

∂Gk(p, q)

∂n p

]
d Sq

(11.29)

=
∫

�̃

−k2a · (q − p)
∂Gk(p, q)

∂n p
dVq .

The surface integral in (11.29) can be expressed as the sum of integral over the
relevant part of the surface ∂�ε and the integral over the remaining part of ˜∂�,
say ˜∂�ε. As ε → 0, then ˜∂�ε → ∂�, �̃ → � and

lim
ε→0

∫
∂�ε

[
a · (q − p)

∂2Gk(p, q)

∂n p∂nq
− a · nq

∂Gk(p, q)

∂n p

]
d Sq = a · n p

2
.

(11.30)
Hence we obtain∫

∂�

[
a · (q − p)

∂2Gk(p, q)

∂n p∂nq
− a · nq

∂Gk(p, q)

∂n p

]
d Sq

=
∫

�

−k2a · (q − p)
∂Gk(p, q)

∂n p
dVq − a · n p

2

(11.31)

which can be re-arranged to give the desired result so our proof is completed.

11.1.6.2 An initial reformulation
We now consider how to make use of Lemma 11.1.2 to reformulate (11.7) into
a weakly singular equation, by Green’s theorem and introduction of gradient
(tangent) variables.

Firstly, we rewrite the underlying hyper-singular integral as∫
∂�

φ(q)
∂2Gk(p, q)

∂n p∂nq
d Sq

=
∫

∂�

({
φ(q) − φ(p) − ∇φ(p)(q − p)

}∂2Gk(p, q)

∂n p∂nq

)
d Sq

+ φ(p)
∫

∂�

∂2Gk(p, q)

∂n p∂nq
d Sq +

∫
∂�

{∇φ(p)(q − p)}∂
2Gk(p, q)

∂n p∂nq
d Sq
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=
∫

∂�

(
{φ(q) − φ(p) − ∇φ(p)(q − p)}∂

2Gk(p, q)

∂n p∂nq

)
d Sq

+ k2φ(p)
∫

∂�

n p · nq Gk(p, q)d Sq

+
∫

∂�

{∇φ(p) · (q − p)}∂
2Gk(p, q)

∂n p∂nq
d Sq .

Note that the first two integrals are weakly singular. It remains to consider
reformulating the last singular integral.

To this end, taking a = ∇φ(p) and using Lemma 11.1.2, we obtain∫
∂�

{∇φ(p) · (q − p)}∂
2Gk(p, q)

∂n p∂nq
d Sq

=
∫

∂�

∇φ(p) · nq
∂Gk(p, q)

∂n p
d Sq

−k2
∫

�

∇φ(p) · (q − p)
∂Gk(p, q)

∂n p
dσq − 1

2
∇φ(p) · n p. (11.32)

and thus the hyper-singular integral is successfully reformulated as follows∫
∂�

φ(q)
∂2Gk(p, q)

∂n p∂nq
d Sq

=
∫

∂�

(
{φ(q) − φ(p) − ∇φ(p)(q − p)}∂

2Gk(p, q)

∂n p∂nq

)
d Sq

+ k2φ(p)
∫

∂�

n p · nq Gk(p, q)d Sq (11.33)

+
∫

∂�

∇φ(p) · nq
∂Gk(p, q)

∂n p
d Sq

− k2
∫

�

∇φ(p) · (q − p)
∂Gk(p, q)

∂n p
dσq .

Substituting (11.33) into (11.7) yields our initial weakly-singular reformu-
lation:

−1

2
φ(p)

+
∫

∂�

(
φ(q)

∂Gk(p, q)

∂nq
+ α {φ(q) − φ(p) − ∇φ(p) · (q − p)}∂

2Gk(p, q)

∂n p∂nq

)
dSq

+
[
αk2φ(p)

∫
∂�

n p · nq Gk(p, q)d Sq + α

∫
∂�

∇φ(p) · nq
∂Gk(p, q)

∂n p
d Sq

]
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− αk2
∫

�

∇φ(p) · (q − p)
∂Gk(p, q)

∂n p
d Sq − α

2
∇φ(p) · n p

=
[
α

2

∂φ(p)

∂n p
+

∫
∂�

∂φ(q)

∂nq

(
Gk(p, q) + α

∂Gk(p, q)

∂n p

)
d Sq

]
. (11.34)

Although all of the integrals appearing on the right-hand side of (11.34) are
at worst weakly singular, this formulation is not immediately useful for any
subsequent solution. This is because the formulation has introduced a volume
integral over the interior of the radiating or scattering object. One possible
remedy of this problem is to apply Lemma 11.1.2 to a small closed surface ∂�p

(enclosing the relatively small volume �p) associated with each collocation
point p: ∫

∂�

φ(q)
∂2Gk(p, q)

∂n p∂nq
d Sq =

∫
∂�\∂�p

φ(q)
∂2Gk(p, q)

∂n p∂nq
d Sq

+
∫

∂�p

φ(q)
∂2Gk(p, q)

∂n p∂nq
d Sq .

Note that for a fixed p, the first term on the right-hand side is nonsingular
while the second term may be treated by Lemma 11.1.2. Then an equation
similar to (11.34) could be derived and can lead to a viable solution approach
since integration in a small and local volume is practical. However, instead of
pursuing the idea further, we seek another more elegant reformulation replacing
(11.34).

11.1.6.3 A new reformulation
We now follow the same idea in Lemma 11.1.2 but consider a specialized case,
with a view of combining with a kernel substraction idea later.

Corollary 11.1.3. Let a ∈ R
3 be a constant vector and G0(p, q) =

1/(4π |p − q|) as from (11.5). Then∫
∂�

a · (q − p)
∂2G0(p, q)

∂n p∂nq
d Sq =

∫
∂�

a · nq
∂G0(p, q)

∂n p
d Sq − a · n p

2
,

(11.35)
where � is some interior region in R

3 with closed surface ∂�.

This result is a consequence of Lemma 11.1.2.
Clearly (11.35) does not involve any volume integral but the kernel function

G0 is not yet directly related to (11.5) for the Helmholtz problem. It turns out
that another use of the singularity subtraction idea will lead to our desired result.
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First, express the hyper-singular integral as∫
∂�

φ(q)
∂2Gk(p, q)

∂n p∂nq
d Sq =

∫
∂�

φ(q)

(
∂2Gk(p, q)

∂n p∂nq
− ∂2G0(p, q)

∂n p∂nq

)
d Sq

+
∫

∂�

φ(q)
∂2G0(p, q)

∂n p∂nq
d Sq (11.36)

where the first integral on the right-hand side of (11.36) is weakly singular and
can be evaluated using an appropriate quadrature rule. The second integral on
the right hand side of (11.36) can be written as∫

∂�

φ(q)
∂2G0(p, q)

∂n p∂nq
d Sq =

∫
∂�

[
φ(q) − φ(p) − (q − p) · ∇φ(p)

]
× ∂2G0(p, q)

∂n p∂nq
d Sq

(11.37)

+ φ(p)
∫

∂�

∂2G0(p, q)

∂n p∂nq
d Sq

+
∫

∂�

∇φ(p) · (q − p)
∂2G0(p, q)

∂n p∂nq
d Sq

where the first integral on the right-hand side is weakly singular, the second
integral is zero (using (11.8) with k = 0) and the third can be rewritten using
(11.35) in Corollary 11.1.3 with a = ∇φ(p) to give∫

∂�

φ(q)
∂2G0(p, q)

∂n p∂nq
d Sq

=
∫

∂�

[φ(q) − φ(p) − (q − p) · ∇φ(p)]
∂2G0(p, q)

∂n p∂nq
d Sq (11.38)

+
∫

∂�

∇φ(p) · nq
∂G0(p, q)

∂n p
d Sq − 1

2
∇φ(p) · n p.

Using this result, finally, our new weakly-singular reformulation for (11.7) is
the following

−1

2
φ(p) +

∫
∂�

φ(q)
∂Gk(p, q)

∂n p
d Sq

+ α

∫
∂�

φ(q)

(
∂2Gk(p, q)

∂n p∂nq
− ∂2G0(p, q)

∂n p∂nq

)
d Sq

+ α

∫
∂�

[
φ(q) − φ(p) − (q − p) · ∇φ(p)

]
∂2G0(p, q)

∂n p∂nq
d Sq
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+ α

∫
∂�

∇φ(p) · nq
∂G0(p, q)

∂n p
d Sq − α

2
∇φ(p) · n p (11.39)

=
[
α

2

∂φ(p)

∂n p
+

∫
∂�

∂φ(q)

∂nq

(
Gk(p, q) + α

∂Gk(p, q)

∂n p

)
d Sq

]
.

Evidently all integral operators are at worst weakly-singular and so are
more amenable to effective numerical methods – in our case the collocation
method.

The above formulation has again introduced the gradient function ∇φ(p)
(which is unusual in a BEM context) as in the previous subsection. However no
volume integrals are involved. To compute the gradient function on the surface,
if the surface element is parameterized in terms of the two variables u and v,
then 

∂φ

∂u
= ∂φ

∂x

∂x

∂u
+ ∂φ

∂y

∂y

∂u
+ ∂φ

∂z

∂z

∂u
,

∂φ

∂v
= ∂φ

∂x

∂x

∂v
+ ∂φ

∂y

∂y

∂v
+ ∂φ

∂z

∂z

∂v
,

0 = ∂φ

∂x
nx + ∂φ

∂y
ny + ∂φ

∂z
nz .

(11.40)

where the final equation is obtained by using the property that the surface
function does not vary in the direction perpendicular to the surface, that is
∂φ(p)/∂n p = 0. The (u, v) coordinates of the current collocation point can be
substituted into the system of equations (11.40) which can then be solved to
give the gradient function at any (surface) collocation point later.

We shall use the collocation method to solve (11.7) via our new weakly-
singular reformulation (11.39). As before, approximate both φ and ∂φ/∂n by
(11.10) where we now assume that the basis functions ψ1, ψ2, · · · , ψm can be
of any high order (much higher than the commonly-used order 0 for constants),
with m collocation points p1, p2, · · · , pm . Then the weakly-singular collocation
method for solving (11.39) is

m∑
j=1

φ j

[
−1

2
ψ j (pi ) +

∫
∂�

ψ j (q)
∂Gk(pi , q)

∂n p
d Sq

+ α

∫
∂�

ψ j (q)

(
∂2Gk(pi , q)

∂n p∂nq
− ∂2G0(pi , q)

∂n pi ∂nq

)
d Sq

+ α

∫
∂�

[
ψ j (q) − ψ j (pi ) − (q − pi ) · ∇ψ j (pi )

] ∂2G0(p, q)

∂n p∂nq
d Sq
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+ α

∫
∂�

∇ψ j (pi ) · nq
∂G0(pi , q)

∂n p
d Sq − α

2
∇ψ j (pi ) · n p

]
(11.41)

=
m∑

j=1

v j

[
α

2
ψ j (pi ) +

∫
∂�

(
Gk(pi , q) + α

∂Gk(pi , q)

∂n p

)
d Sq

]
.

11.2 The low wavenumber case of a Helmholtz equation

The previous section has discussed various formulations and feasible numerical
methods that would produce a linear system such as (1.1)

Ax = b

with a dense and non-Hermitian matrix A ∈ C
n×n .

As with all linear systems, iterative solvers become necessary whenever n is
sufficiently large. However, for the Helmholtz equation, there exists a minimum
number n = nmin demanded by each wavenumber k to avoid ‘aliasing’ effects
as with the Nyquist principle in signal sampling. One way to find such a nmin

is to allow at least 5 − 10 mesh points in each wavelength1

� = c

f
= 2πc

ω
= 2π

k
. (11.42)

Clearly for moderate wavenumbers k (say k = 1), such a minimum requirement
on n can be easily satisfied – using any larger n ≥ nmin would of course lead
to higher resolution. However for large wavenumbers k (say k = 100), such
a minimum requirement on n may not be satisfied easily; if not, then the final
solution may not make sense and then there is no point discussing errors since
the solution is qualitatively incorrect. We shall discuss this case in the next
section.

If it is feasible to generate and store matrix A, there is a large selection of
fast solvers available.

(1) The conjugate gradient methods of Chapter 3; see [17,472,14,136].
(2) The geometric multigrid methods of Chapter 6; see [259,125,132].
(3) The wavelet transform preconditioners of Chapters 8 and 10; see [130,205,

206].

Related to these techniques is the multilevel preconditioner [5], which may be
designed in various ways (Chapter 6).

1 This concept is quite easy to understand. For instance, consider y = sin(x) in a typical period
[0, 2π ]. We do need at least five discrete points (samples) to represent y properly.
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If it is not feasible to generate and store matrix A, there is still a choice of
two competing fast solvers.

(1) The fast multipole methods of Chapter 3; see [365,395,255,240].
(2) The wavelet discretization methods; see [169,167,272].

11.3 The high wavenumber case of a Helmholtz equation

As remarked following (11.42), if the wavenumber k is large, the immediate
consequence is that the number n from discretization must increase correspond-
ingly because the above-mentioned nmin is large. From the analysis point of
view, for an usual polynomial basis (in a BEM), the numerical error will be
bounded by some power of O(kh) where k is the wavenumber and h the largest
mesh size. Clearly for small and moderate-sized k, the accuracy of the type
O(h) in some power is acceptable but extremely large k the numerical accuracy
may be severely reduced.

Moreover, large wavenumbers also can deteriorate the performance of both
the fast multipole methods and the wavelet discretization methods, since the
usual assumptions by both methods on the smoothness of φ become increasingly
invalid as φ starts to oscillate. This implies that the FMM expansions may need
more than an acceptable number of terms and the wavelet matrices will become
less sparse.

To design suitable numerical methods, one has to realize that the usual
FEM spaces (of piecewise polynomials) are no longer sufficient to approximate
oscillating functions. The oscillating functions must enter a new approximating
space. In [350,35], the method of the partition of unity method was introduced
to the finite element method, which essentially augment the usual spaces by
oscillating functions. For solving the Helmholtz equations, the method has been
considered by [327,78,121,387] to design the so-called plane waves-based basis
functions:

φ(p) =
n∑

j=1

Pj (ξ, η)
m j∑
�=1

α�
j exp

(
ik�

j · r
)
, (11.43)

to replace the usual approximating function (here in R
2)

φ(p) =
n∑

j=1

α j Pj (ξ, η)

where (ξ, η) defines the computational variables, r = (x(ξ, η), y(ξ, η)) and
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k = (k1, k2) to be specified. For simplicity, one may choose

k�
j = (k cos θ�j , k cos θ�j ), θ�j = �

2π

m j
, � = 1, . . . , m j ,

associated with a uniform distribution of wave (scattering) directions. There
exist many other choices one can take in designing hybrid basis functions. It
should be remarked that, although (11.43) is locally based, integrating oscillat-
ing functions is not a trivial matter. As with the nontrivial treatment of wavelet
quadratures, naive integration will undo the benefits gained by the new methods.

Clearly another option is to allow some basis functions to be global and this
will lead to less sparse matrices. It is anticipated that much work will be done
in this area of high wavenumber modelling and simulation.

11.4 Discussion of software

The standard BEM has been implemented in the useful software.
• ‘Boundary elements software’ (by Stephen Kirkup [317]):

http : //www.soundsoft.demon.co.uk/tbemia.htm

• The commercial software BEASY

http : //www.beasy.com/index.html

can deal with complicated and industrial geometries.
There do not appear to exist public codes for high wavenumber modelling.
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Application II: coupled matrix problems

A clustered [eigenvalue] spectrum often translates in rapid convergence
of GMRES.

Michele Benzi and Gene H. Golub. SIAM Journal on Matrix
Analysis and Applications, Vol. 24 (2003)

The coupled matrix problems represent a vast class of scientific problems aris-
ing from discretization of either systems of PDE’s or coupled PDE’s and integral
equations, among other applications such as the Karush–Kuhn–Tucker (KKT)
matrices from nonlinear programming [273,43]. The reader may be aware of
the fact that many coupled (nonlinear) systems may be solved by Uzawa type
algorithms [92,153,144,115], i.e. all equations are ‘artificially’ decoupled and
solved in turns. A famous example of this strategy is the SIMPLE algorithm
widely used in computational fluid dynamics along with finite volume dis-
cretization [473,334]. While there is much to do in designing better and more
robust preconditioners for a single system such as (1.1), one major challenge
in future research will be to solve the coupled problems many of which have
only been tackled recently.

This chapter will first review the recent development on a general coupled
system and then discuss some specific coupled problems. The latter samples
come from a large range of challenging problems including elasticity, particle
physics and electromagnetism. We shall discuss the following.

Section 12.1 Generalized saddle point problems
Section 12.2 The Oseen and Stokes saddle point problems
Section 12.3 The mixed finite element method
Section 12.4 Coupled systems from fluid structure interaction
Section 12.5 Elasto-hydrodynamic lubrication modelling
Section 12.6 Discussion of software and a supplied Mfile

400
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12.1 Generalized saddle point problems

We first consider the general framework of a generalized saddle point problem
[51,52,342]

Ax =
[

A BT

D C

] [
u
p

]
=

[
f
g

]
= b (12.1)

to which the coupled fluid structure interaction is very much related and many
other important classes of coupled problems belong [196]. Here A ∈ R

n×n, B ∈
R

m×n, C ∈ R
m×m, D ∈ R

m×n . It should be remarked that, to develop efficient
preconditioners or iterative solvers, we have to put some restrictions on the type
of the blocks A, B, C, D otherwise the whole matrix is simply arbitrary and
without structures to explore. Although (12.1) defines the general notation for
block matrix problems, some well-known problems may be further specified.

(1) Even for the same class of fluid problems (Section 12.2), matrix A may
be either symmetric or unsymmetric. However, when A, C are symmetric,
D = B leads to a symmetric block matrix. When matrix A is unsymmetric,
it may be advantageous to take D = −B (discussed below) as D = B can
no longer lead to a symmetric block matrix.

(2) For the coupled fluid structure interaction (Section 12.4), A is symmetric
but C is unsymmetric and D �= B. This differs from the fluid problems
(Section 12.2).

(3) The coupled matrix problem from elasto-hydrodynamic lubrication (Sec-
tion 12.5) has no symmetry in its blocks, although each block is discretized
from the familiar operators.

The case of an unsymmetric A implies that (12.1) is a challenging problem
to precondition. In this case, the usual symmetry from D = B is not useful and
hence [52] proposes to replace (12.1) by

Ax =
[

A BT

−B C

] [
u
p

]
=

[
f
g

]
= b. (12.2)

For this case of an unsymmetric A, one set of fairly general assumptions is
made.

(i) D = −B has full rank.
(ii) N (H ) ∩ N (B) = {0}.

(iii) H = 1
2 (A + AT ) is positive semidefinite (i.e. λ(H ) ≥ 0).

(iv) C is symmetric positive semidefinite (i.e. including C = 0).
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These conditions are sufficient to ensure that the coupled matrix A in (12.1) is
nonsingular, (Av, v) = vTAv ≥ 0 for all v ∈ R

m+n and �(λ(A)) ≥ 0.
The above coupled system (12.2), or (12.1), with A ∈ R

(m+n)×(m+n), can be
written in a symmetric and skew-symmetric form

A = H + S, H = 1

2

(
A + AT

)
, S = 1

2

(
A − AT

)
, (12.3)

whereas in the case of A ∈ C
(m+n)×(m+n) the splitting is similar

A = H + S, H = 1

2

(
A + AH

)
, S = 1

2

(
A − AH

)
, (12.4)

where H is Hermitian and S is skew-Hermitian (or −iS Hermitian). In ei-
ther case, λ(H) = �(λ(H)) and λ(S) = i�(λ(S)) or λ(−iS) = �(λ(−iS)) as
(−iS) is Hermitian. One can show that1 λmin(H) ≤ �(λ(A)) ≤ λmax(H) and
λmin(−iS) ≤ �(λ(A)) ≤ λmax(−iS), where −i = 1/ i in the latter relationship
is required even for the real caseA ∈ R

(m+n)×(m+n). For the real case, the choices
of H and S are

H =
[

H
C

]
and S =

[
S BT

−B

]
, (12.5)

where S = 1
2 (A − AT ); in particular H = A and S = 0 if A has symmetry.

Then from writing Ax = b into

(H + αI) − (αI − S)x = b, or (S + αI) − (αI − H)x = b,

the following alternating splitting scheme is proposed for (12.1) [52,38]{
(H + α I )x(k+1/2) = (αI − S)x(k) + b,

(S + α I )x(k+1) = (αI − H)x(k+1/2) + b,
(12.6)

which can also be written as a stationary iteration scheme

x(k+1) = Tαx(k) + c (12.7)

with

Tα = (S + αI)−1(αI − H)(H + α I )−1(αI − S)

and c = (S + αI)−1
[
I + (αI − H)(H + αI)−1

]
b = [

1
2α

(H + αI)(S+
αI)]−1 b. Under the above assumptions, it can be shown [52] that
ρ((1 − β)I + βTα) < 1 for all α > 0 and β ∈ (0, 1); β = 1 is permitted

1 From A = H + i(−iS) for either or complex case and λ j (A)x j = Ax j = Hx j + i(−iS)x j ,
taking inner products with x j (or multiplying x H both sides) gives λ j (A)x H

j x j = x H
j Hx j +

i x H
j (−iS)x j so �(λ j (A)) = x H

j Hx j /(x H
j x j ), �(λ j (A)) = x H

j (−iS)x j /(x H
j x j ). Then the in-

equalities become apparent.
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if uT Au > 0 for all u ∈ R
n (i.e. positive real). Here α > 0 compensates the

semi-indefiniteness of A (or H ).
As all stationary iterations imply a matrix splitting, equation (12.7) admit

the following splitting (Section 3.3.1)

A = M − N , with


M = 1

2α
(H + αI)(S + αI),

N = 1

2α
(H − αI)(S − αI).

(12.8)

As with Section 4.4, if the stationary iteration (12.7) is not converging very fast,
we may use a Krylov subspace iterative method with M as a matrix splitting
preconditioner, i.e. solve the following instead of (12.7)

(I − Tα)x = M−1b, or M−1Ax = b. (12.9)

The preconditioning step Mz = r involves solving two substeps{
(H + αI)v = r,
(S + αI)z = 2αv.

(12.10)

Here the preconditioning step (12.10) can also be solved by a so-called inner pre-
conditioned iterative solver for the purpose of solving the outer equation (12.9).

12.2 The Oseen and Stokes saddle point problems

The Navier–Stokes equations represent an important set of fluid dynamics equa-
tions for the fluid velocity vector u and the pressure variable p at steady state{−ν�u + (u · ∇)u + ∇ p = f,

∇ · u = 0,

(−ν� + (u · ∇) ∇
∇·

) (
u
p

)
=

(
f
0

)
(12.11)

which is defined in some closed domain R
d with suitably specified boundary

conditions [473,164,341,197]. Here ν > 0 is the viscosity parameter, inversely
proportional to two other physical quantities: the Reynolds number Re and the
Peclet number µ.

If ν is not too small, one solution method for (12.11) is the following lin-
earization method (called the Oseen equations){−ν�u + (u · ∇)u + ∇ p = f,

∇ · u = 0,

(−ν� + (u · ∇) ∇
∇·

) (
u
p

)
=

(
f
0

)
(12.12)

where u is taken to be some old iterate.
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If the flow speed is small (i.e. both u and ∇u are small so the dot product is
negligible), a simpler fluid model (dropping one term in (12.11)) is the Stokes
problem{−ν�u + ∇ p = f,

∇ · u = 0,

(−ν� ∇
∇·

) (
u
p

)
=

(
f
0

)
. (12.13)

Upon discretization of (12.12) and (12.13), a coupled linear system of type
(12.1) is obtained

Ax =
[

A BT

B 0

] [
u
p

]
=

[
f
g

]
= b, (12.14)

where A has different symmetry properties for (12.12) and (12.13). Here as a
block matrix (7.1), the (2, 2) block is conveniently 0 which means that the Schur
complement S = A22 − A21 A−1

11 A12 = −B A−1 BT is correspondingly simpler
than the general case. Two observations can be made of this particular situation.

(i) if B is square and invertible, then S−1 = −B−T AB−1 does not involve
A−1.

(ii) if the block matrix A is preconditioned by the block diagonal matrix D1 or
a upper triangular matrix D2 [364,297,485]

D1 =
[

A
−S

]
, D2 =

[
A BT

−S

]
, (12.15)

then the preconditioned matrix D−1A has only 3 eigenvalues: 1, 1
2 ±

√
5

2 or
−0.618, 1, 1.618 while matrix D−1

2 A has 2 eigenvalues ±1, regardless of
the size of matrix A. (Note: the sign (−1) is involved. Without it, the results
are slightly different but also good – see the supplied Mfile wathen.m)

Here the condition in (i) is a strong assumption and cannot be satisfied usually.
However, a related idea of making use of the square matrix B BT (or ‘forcing’
A−1 to commute with BT in S to make up B BT ) turns out to be feasible [314].
The observation (ii) implies that it will be profitable to approximate A, S for
the ‘optimal’ preconditioner.

From the above observation (i) and its remark, we wish to demonstrate
(or to achieve) that approximately S = −B A−1 BT ≈ −(B BT )A−1. This latter
product does not make sense as matrix dimensions do not match. To gain the
preconditioning insight, the clever trick proposed in [314] is the following:
re-consider the terms (involving S) in the continuous spaces and propose a
related matrix that has the correct dimensions to realize the above thinking (of
simplifying and approximating S).
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Ignoring boundary conditions, one notes that for (12.12)

A ∼ −ν∇2 + b · ∇ (convection-diffusion)
B ∼ ∇· (divergence)
BT

∼ ∇ (gradient)
B BT

∼ ∇2 (Laplacian)

(12.16)

where b = u for the Oseen operator and b = 0 for the Stoke’s. Thus at the
operator level, we see that

S A = −B A−1 BT A = −B A−1(BT A) = −B A−1(ABT ) = −B BT ,

S = −(B BT )A−1, S−1 = −A(B BT )−1,
(12.17)

since BT A = ABT . Once this desirable result (of seeing B BT in S) is visible,
it only remains to construct a ‘Schur’ matrix (approximating the true Schur
matrix) accordingly. At the matrix level, matrices B, BT , A are already available
with B, BT rectangular (with B “short and flat” or more columns than rows).
Matrix product ABT makes sense while BT A does not (on account of dimension
alone). The proposal [314] is to construct another convection–diffusion operator
(matrix) in the pressure space, i.e. Ap, that would make the product BT Ap

meaningful. Thus at the matrix level, we expect

ABT
∼ BT Ap

S̃ = −(B BT )A−1
p , S̃−1 = −Ap(B BT )−1.

(12.18)

Further, as B BT is a Laplacian, we should form it directly without multiplying
B BT [314]. Then once the approximated Schur matrix S̃ is available in a product
form, we may use (12.15) to design an effective preconditioner (although the
application of the preconditioner may require an inner iterative solver to ‘invert’
A which is usually done by a multigrid method [396]).

12.3 The mixed finite element method

The mixed finite element method is perhaps the main variational method for
solving high-order PDEs, by introducing auxiliary variables. For linear and
second-order PDEs, such an approach can lead to first-order systems and less
approximations required and hence to more accurate solutions. For nonlinear
problems, this approach offers a better linearization. The order reduction idea
mimics the commonly used approach (of introducing intermediate derivatives)
in dealing with high order ODEs (ordinary differential equations). However,
it should be remarked that theoretical analysis of the mixed FEM is more
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challenging than the traditional FEM [29,164,282,308,355,470,499,197]. For
our purpose here, we wish to highlight the resulting block matrix as an inter-
esting preconditioning problem of the type (12.1).

Consider the model PDE in R
2:

∇ · γ∇u = f (12.19)

or

∇ · (D. ∗ ∇u) = f (12.20)

with D = (D1(x, y), D2(x, y)). The mixed FEM introduces w = γ∇u ≡ Lu
for (12.19) and w = D. ∗ ∇u ≡ Lu for (12.20) so that both model equations
become the first order system (with suitable boundary conditions){

w − Lu = 0, (auxiliary PDE)
∇w = f, (main PDE)

(12.21)

Further a FEM can be applied to this first-order system, resulting the mixed
FEM; what is interesting to note is that the usual FEM spaces H 1 is no longer
needed for the resulting bilinear forms.

The final linear system will take a similar form to (12.14)

Ax =
[

A BT

D 0

] [
w
u

]
=

[
0
g

]
= b, (12.22)

where D = B for special cases. Then the preconditioning techniques discussed
in the previous section will apply.

Remark 12.3.1. For system of PDEs, other auxiliary variables may be defined.
For instance, to solve the Navier–Stokes system (12.11) using the streamline
diffusion formulation [308] in R

2, one would introduce the new variable

ω = ∂u2

∂x1
− ∂u1

∂x2
(12.23)

which can be combined with the second equation ∇ · u = 0 to replace the
second-order term

−ν�u = −ν(�u1, �u2) = ν rot ω,

where rot ω = curl ω = ( ∂ω
∂x2

, − ∂ω
∂x1

). The two variable (u, p) system becomes
the three variable (u, ω, p) system that does not possess second order
derivatives.
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12.4 Coupled systems from fluid structure interaction

The fluid and structure interaction problem is only one simple modelling sit-
uation of a larger topic of investigating dynamics of an elastic solid structure
interacting with its surrounding medium. The particular model that is of interest
to us [137,291,16] consists of a vibrating elastic structure and an acoustic field
exterior to this structure.

The behaviour of the elastic structure under the influence of the applied and
acoustic fields is modelled by linear elasticity. Using a finite element method,
either through discretizing the structural differential equation from beam theory
or by energy conservation of the structure body, a structural equation can be
written. As in [16] we take the latter approach to derive a linear system, which
is of the form

(K − ω2 M)q = f , (12.24)

where K is the stiffness matrix, M the mass matrix, q the displacement, and
f = f k + f φ the total load due to the applied forces ( f k) and the fluid pres-
sure ( f φ). Here ω is the time harmonic frequency for the kinetic energy of
the structure and the stiffness matrix contains a large Lame constant λ. In
the usual discretization scheme, we approximate the structure surface using
piecewise quadratic surfaces defined over triangular elements. Further, prism-
shaped finite elements are formed by projection from these surfaces to the
centre of the structure and we define piecewise quadratic interpolation func-
tions on the triangular faces and piecewise linear functions on the rectangular
faces to approximate q. Overall, the matrices in (12.24) are real, symmetric, and
sparse.

For the corresponding acoustic field, as in Section 11.1, the use of single
frequency harmonic waves of the form �(p, t) = φ(p)e−iωt , where �(p, t) is
the excess pressure at the point p at time t , reduces the linear wave equation
(governing �) to a Helmholtz equation [159,16]

∇2φ(p) + k2φ(p) = 0, (12.25)

where k = ω/c is the acoustic wave number, c being the wave speed. To ensure
that all waves are outgoing at infinity, we use the Sommerfeld radiation condition
(r = |p − q| with p, q ∈ R

3)

lim
r→∞ r

{
∂φ(r )

∂r
− ikφ(r )

}
= 0.
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Formulating the Helmholtz equation in equivalent boundary integral equation
form over the surface of the structure gives∫

S

{
φ(q)

∂Gk(p, q)

∂nq
− Gk(p, q)

∂φ(q)

∂nq

}
d Sq = 1

2
φ(p),

where Gk(p, q) = (eik|p−q|)/(4π |p − q|) is the free-space Green’s function for
the Helmholtz equation. To avoid problems of nonexistence and nonuniqueness
of the solutions of the integral equation at the natural frequencies of the structure,
we use the Burton and Miller formulation,(

−1

2
I + Mk + αNk

)
φ =

[
Lk + α

(
1

2
I + MT

k

)]
∂φ

∂n
, (12.26)

where Lk and Mk are the single- and double-layer Helmholtz potential op-
erators, MT

k and Nk are their normal derivatives, and α is a coupling param-
eter whose imaginary part must be nonzero. The above integral equation is
discretized using the boundary element (BE) method. We use the collocation
method, with triangular elements for the surface of the structure and piecewise
constant interpolation functions for the solution, which discretizes (12.26) as a
linear system of the form

Rφ = iωρBv − c, (12.27)

where ρ is the fluid density, φ is the pressure, v the velocity, and c the inci-
dent wave pressure. The matrices in this system are dense and complex (non-
Hermitian).

For the coupled system, we require that the fluid particle velocity be contin-
uous at the surface of the structure to couple the BE and FE systems. The load
due to the fluid pressure, f φ, can be written in terms of the pressure potential
φ as

f φ = −Lφ with f φ = f − f k,

where L is a matrix derived from the basis functions used in the BE and FE
analyzes. Also, the velocity, v, can be written in terms of the displacement,
q, as

v = −iωL ′q,

where L ′ is a matrix derived from the basis functions used in the FE analysis.



12.4 Coupled systems from fluid structure interaction 409

Then the coupled problem is to solve, simultaneously, the equations{
Rφ = iωρBv − c,

(K − ω2 M)q = f k − Lφ.
(12.28)

This gives the partitioned system for φ and q R −ω2ρBL ′

L K − ω2 M

 φ

q

 =
−c

f k

 ,

which will be written as the generic equation

Ax = b. (12.29)

Diagrammatically, the block structure of the matrix A is

BE BEC
Boundary element block Coupling strip
(small, dense, complex) (full, complex)
FEC FE
Coupling strip Finite element block
(sparse, real) (sparse, real,

symmetric)


. (12.30)

The preconditioner proposed in [291] is a block diagonal preconditioner
taking the following form

M =
[

M1

M2

]
=



BEINV
SPAI approximate 0
inverse for BE block

FEINV
0 SPAI approximate

inverse for FE block


(12.31)

from solving (see (12.30))

min
M1

‖BEM1 − I‖F and min
M2

‖FEM2 − I‖F .

Here the a priori patterns for M1, M2 are based on the patterns of the original
blocks, with sparsification using a dropping strategy based on the global mean
of the absolute values of the entries. It should be remarked that, without precon-
ditioning, iterative methods such as GMRES will not converge as the coupled
system (12.29) is indefinite.
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12.5 Elasto-hydrodynamic lubrication modelling

The elasto-hydrodynamic lubrication modelling is an interesting and multidisci-
plinary research subject [186] involving solid state mechanics, fluid mechanics
and chemistry. Mathematically this is another example of coupled differential
and integral equations. The coupling will translate to a coupled linear system
of dense and sparse matrix blocks, making an interesting problem for testing
iterative solvers and preconditioning.

This section briefly reviews the model equations, the discretized systems
and some preconditioning techniques involving the FWT.

12.5.1 Coupled isothermal equations

The steady-state contact problem may be described by the Reynolds equation
for the lubricating film thickness H (which represents a simplified Navier–
Stokes equation) coupled with the equation for the elastic deformation of the
surrounding surfaces:

d

dx

(
ρH 3

η

∂p

∂x

)
− λ

d

dx
(ρH ) = 0,

H − H0 − x2

2
+ 1

π

∫ ∞

−∞
ln

∣∣x − x ′∣∣ p(x ′)dx ′ = 0,

2

π

∫ ∞

−∞
p(x ′)dx ′ − 1 = 0,

(12.32)

where the three equations are solved for the three dependent unknowns:
H = H (x) the film thickness between two rollers (typically cylinders);
H0 the film thickness at the point of lubricant separation;
p = p(x) the pressure of the lubricant;

in some interval [−L , L] which approximates the interval (−∞, ∞). The
parameter λ is determined by several known quantities including the applied
load w which is linked to the level of difficulties in solving the overall
equations. The density function ρ = ρ(p, θ ) is a known nonlinear function of
pressure p = p(x) and the ambient temperature θ [186]. Here L is assumed to
be large enough to ensure that p(±L) = 0. In [210] and [207], following the
earlier work of [372,421], we considered the line and point contact problems
of two deforming cylinders as the sounding surfaces. In this isothermal case,
the ambient temperature in the fluid is assumed to be constant while in the
thermal case the ambient temperature will be a variable that must be solved
with the main equations.
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Therefore, for the isothermal case where θ is given, the nonlinear equation
(12.32) effectively has two unknown quantities p(x), H0. We shall be primar-
ily interested in exposing the structure of the matrices of the linearized and
discretized equations.

Consider the finite difference method, with a uniform mesh x j , j = 0,

1, . . . , n + 1 with n internal mesh points and mesh size h = �x = 2L/(n + 1).
The boundary conditions for the pressure p(x) are p0 = p(x0) = p(xn+1) =
pn+1 = 0, implying that the true unknowns will be

p(x1), p(x2), · · · , p(xn).

Thus equation (12.32) can be discretized to obtain a nonlinear system of alge-
braic equations, that must be solved by some nonlinear solvers. In details, the
following nonlinear system is derived

ρ(x+
j )H 3(x+

j )

η(x+
j )

(p(x j+1 − p(x j )) − ρ(x−
j )H 3(x−

j )

η(x−
j )

(p(x j − p(x j−1))

− λ

2

[
3ρ(x j )H (x j ) − 4ρ(x j−1)H (x j−1) + ρ(x j−2)H (x j−2)

]
= 0,

H (x j ) = H0 + x2
j

2
−

n+1∑
k=1

p(xk) + p(xk−1)

2π
� jk,

n+1∑
k=1

[p(xk) + p(xk−1)] − π

�x
= 0,

where x1 = x0, x±
j = x j ± �x/2, and

� jk =


(xk − x j )

[
ln(xk − x j ) − 1

] − (xk−1 − x j )
[
ln(xk−1 − x j ) − 1

]
, k − 1 > j,

(x j − xk−1)
[
ln(x j − xk−1) − 1

] − (x j − xk)
[
ln(x j − xk) − 1

]
, k < j,

(xk − x j )
[
ln(xk − x j ) − 1

]
, k − 1 = j,

(x j − xk−1)
[
ln(x j − xk−1) − 1

]
, k = j.

To solve the above system by a Newton–Raphson method, we have to solve
a linear system involving the dense Jacobian matrix J . The logarithmic kernel
in (12.32) defines a smooth integral operator similar to the well-known single-
layer potential for the Laplace equation (1.73). Thus it is feasible to represent it
in some (biorthogonal) wavelet space to obtain a nearly sparse Jacobian matrix
J̃ . This optimal implementation is not yet attempted.

In [210], we took instead the easier option of applying a DWT (Section 1.6.2)
and found the centring DWT algorithm of Section 8.4, i.e. [130] (denoted by



412 Application II: coupled matrix problems

DWTPer in [210]) particularly useful in transforming J and subsequently se-
lecting a (non-diagonal) sparse preconditioner. In [205], the idea was further
refined by detecting the nonsmooth blocks in J and proposing a banded arrow
type sparse preconditioner while an efficient way of computing the wavelet pre-
conditioner based on partially transforming the Jacobian matrix J was presented
in [206]. Based on the idea of a banded arrow preconditioner and a refined per-
mutation [204] (see Chapter 8), an improved banded arrow preconditioner can
be designed [204].

12.5.2 Coupled thermal equations

We now discuss the thermal case where the local mean temperature θ is a
function and must be solved together with the equations, (12.32), for the pressure
p and the film thickness at separation H0. The new equations including the
energy equation, as used by [421,207], will be the following set

d

dx

(
ρH 3

η

∂p

∂x

)
− λ

d

dx
(ρH ) = 0,

H − H0 − x2

2
+ 1

π

∫ ∞

−∞
ln

∣∣x − x ′∣∣ p(x ′)dx ′ = 0,

2

π

∫ ∞

−∞
p(x ′)dx ′ − 1 = 0,

ρ

[
um

∂θ

∂x
+ θ − θb

H
(um − ub)

∂ H

∂x

]
= 3k(θa + θb − 2θ )

2B2 H 2

+
[
(βeθ − 2Bµ)um + Bµue

]∂p

∂x
+ Bµk

3
η�2

m

(12.33)

where θa, θb are the surface temperatures and ua, ub the speeds of the rollers
(the two contacting objects).

When the FDM is applied to (12.33), within each step of a homotopic pa-
rameter continuation [376], a linear system of 2(n + 1) equations in 2(n + 1)
unknowns

p1, p2, · · · , pn; H0; θ1, θ2, · · · , θn+1,

are generated, which may be denoted by D C b1

B A b2

cT
1 cT

2 d

 x = b. (12.34)
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Here the structure of the coefficient matrix can be explored [421,207]:

D — a lower Hessenberg matrix (invertible)
C — a dense matrix
B — a singular matrix
A — a dense matrix (invertible).

In particular, the Schur complement method (using the partition in (12.34))
was found beneficial and the main Schur equation can be solved by the
GMRES method in the DWT space using a banded matrix preconditioner
based on the DWT (centering DWT) of the dense A22 matrix, in the notation
of (7.1),

A22 =
[

A b2

cT
2 d

]
.

Remark 12.5.2. As an individual integral or differential operator can be pre-
conditioned effectively, a block matrix problem requires a careful exploration
of all operators (blocks). The Schur complements method is frequently a nat-
ural choice. The idea of using operator relations to find a more computable
Schur matrix (or approximation) [314] in Section 12.2 may be used more
widely.

12.6 Discussion of software and a supplied Mfile

There has been a lot of attention towards developing block matrix algo-
rithms. Many existing software have a block version. Here we list of a few
examples.

(1) SuperLU (by James Demmel, John Gilbert and Xiaoye Li) is a general pur-
pose library for the direct solution of large, sparse, nonsymmetric systems
of linear equations.

http : //crd.lbl.gov/∼xiaoye/SuperLU/

(2) IFISS (Incompressible flow and iterative solver software by David
Silvester and Howard Elman) aims to solve several types of coupled
fluid problems, using the preconditioned conjugate gradient and multigrid
methods.

http : //www.ma.umist.ac.uk/djs/software.html



414 Application II: coupled matrix problems

(3) BILUM (A software package of multi-level block ILU preconditioning
techniques for solving general sparse linear systems by Youcef Saad and
Jun Zhang).

http : //www.cs.uky.edu/∼jzhang/bilum.html

The supplied Mfile wathen.m is simply to demonstrate the effectiveness
of the block diagonal preconditioning (as a guide to approximation of Schur
complements).
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Application III: image restoration and
inverse problems

An inverse problem assumes a direct problem that is a well-posed prob-
lem of mathematical physics. In other words, if we know completely a
“physical device,” we have a classical mathematical description of this
device including uniqueness, stability and existence of a solution of the
corresponding mathematical problem.

Victor Isakov. Inverse Problems for Partial Differential Equations.
Springer-Verlag (1998)

Image restoration is historically one of the oldest concerns in image
processing and is still a necessary preprocessing step for many appli-
cations.

Gilles Aubert and Pierre Kornprobst. Mathematical Problems
in Image Processing. Springer-Verlag (2002)

However, for the time being it is worthwhile recalling the remark of
Lanczos: “A lack of information cannot be remedied by any mathematical
trickery.” Hence in order to determine what we mean by a solution it will
be necessary to introduce “nonstandard” information that reflects the
physical situation we are trying to model.

David Colton and Rainer Kress. Integral Equation Methods
in Scattering Theory. Wiley (1983)

The research of inverse problems has become increasingly popular for two
reasons:

(i) there is an urgent need to understand these problems and find adequate
solution methods; and

(ii) the underlying mathematics is intriguingly nonlinear and is naturally posed
as a challenge to mathematicians and engineers alike.

415
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It is customary for an introduction to inverse problems of boundary value
problems to discuss the somewhat unhelpful terms of ‘ill-posed problems’ or
‘improperly-posed problems’. Indeed without introducing constraints, all in-
verse problems do not admit meaningful solutions. The suitable constraints,
often based on a knowledge derived from solving the corresponding forward
problems (i.e. the physical and modelling situation), can ensure uniqueness to
an inverse problem.

Image restoration represents a useful topic in the large class of inverse prob-
lems. Our exposition here will mainly highlight the various challenges and
issues in developing fast iterative solvers and suitable preconditioners. The en-
ergy minimization-related PDE models are mainly discussed; there exist other
physics-motivated PDE models [10,11,26,154,419]. We shall first discuss the
modelling equations and then focus on numerical solution techniques. This
chapter will present the following.

Section 13.1 Image restoration models and discretizations
Section 13.2 Fixed point iteration method
Section 13.3 The primal-dual method
Section 13.4 Explicit time marching schemes
Section 13.5 Nonlinear multigrids for optimization
Section 13.6 The level set method and other image problems
Section 13.7 Numerical experiments
Section 13.8 Guide to software and the use of supplied Mfiles

13.1 Image restoration models and discretizations

We denote by u = u(x, y) the true image and z = z(x, y) the observed im-
age, both defined in the bounded, open and rectangular domain � = [a, b] ×
[c, d] ⊂ R

2 [230,18,388]. Without loss of generality, we may take � = [0, b] ×
[0, d]. The observed image z has been contaminated in the data collection stage,
due to either environmental influences or technical limitations.

The purpose of image restoration is to recover u as much as we can using a
degradation model

K u − z = η0, or K u = z + η0, (13.1)

whereη0 is a Gaussian white noise and K is a known linear degradation operator;
for deblurring problems K is often a convolution operator and for denoising
problems K is simply the identity operator. (It should be remarked that if the
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degradation is relatively small, filtering techniques can ‘recover’ the images;
one may even use wavelets [193]. However, the problem that concerns us here
is the harder case where filtering cannot recover the image.)

For the general deblurring problem, operator K takes the convolution
form

(K u)(x, y) =
∫

�

k(x, x ′; y, y′)ud� =
∫ d

0

∫ b

0
k(x, x ′; y, y′)u(x ′, y′)dx ′dy′

(13.2)

where the kernel k is usually called the point spread function (PSF), that mea-
sures the level of degradation in the observed image z. The case of k being
spatially variant (i.e. general) implies a computationally intensive problem (at
least in storage). In many cases, fortunately, the PSF acts uniformly so we may
assume that it is spatially invariant

k(x, x ′; y, y′) = k(x − x ′, y − y′). (13.3)

Then we may write (13.2) in the convolution ‘∗’ notation

(K u)(x, y) = K ∗ u. (13.4)

The PSF is often a smooth function, given analytically e.g.

k(s, t) = 1

4πσ
exp

(−(s2 + t2)/(4σ )
)

for a Gaussian blur with some small σ (say σ = 0.01), so it is safe to assume
that operator K is a compact linear operator in a normed space. If the white
noise η0 has the mean of 0 and the standard deviation of η, solving (13.1) for u
amounts to seeking the solution of

‖K u − z‖2
2 = η2. (13.5)

13.1.1 Solution of a first kind equation

To see that such a problem does not have a stable solution, simply assume η = 0
for a moment and solve

K u = z. (13.6)

Using the Picard theorem (see [160, Theorem 4.8, p. 92]), one can write the
exact solution u to the first kind equation (13.6) as an infinite series in terms of
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singular values µn and singular functions φn, gn of K :

u =
∞∑

n=1

1

µn
(z, gn)φn.

As µn → 0 as n → ∞ (also true for eigenvalues of K ), solving (13.6) nu-
merically (amounting to certain series truncation) is extremely unstable as
small perturbation of z (e.g. with some noise η) will destroy any quality in the
solution.

Clearly image restoration is an inverse problem that may not have a unique or
rather meaningful solution. As remarked before, as with all inverse problems,
some extra constraint or information must be given to ensure the solvability
of (13.1). The typical constraint as regularity condition for u is imposed on
the solution space in order to turn the underlying problem to a well posed
one [476].

13.1.2 Regularity condition: total variation and
bounded variation

To restrict the solution to (13.1) and (13.5), one may consider the L2 space by
requiring

min
u

‖u‖2
2 = min

u

∫
�

|u|2d�

or

min
u

‖∇u · ∇u‖2
2 = min

u

∫
�

|∇u · ∇u|2d�.

These requirements are sufficient to define a unique formulation. It turns out
[64,377] that these extra conditions are only useful in recovering images with
smooth features, as they do not allow jumps or discontinuities which are com-
mon in general images.

A better constraint in solving (13.1) and (13.5) to use is the total variation
semi-norm (the TV norm [408])

min
u

T V (u), T V (u) =
∫

�

|∇u|d� =
∫

�

√
u2

x + u2
yd�, (13.7)

with |∇u| = ‖∇u‖2, which is equivalent to the more rigorous definition
of the norm of bounded variation for the distributional gradient Du of a
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nondifferentiable function u [26,223,99]

min
u

BV (u), BV (u) = sup
φ

{∫
�

udivφd� | φ ∈ C1
0 (�), ‖φ‖∞ ≤ 1

}
.

(13.8)

For vectors (as a discretized function) e.g. u = (u1, . . . , un)T ∈ R
n , the discrete

norm is much easier to understand

T V (u) = BV (u) =
n−1∑
j=1

∣∣u j+1 − u j

∣∣ .

13.1.3 Tikhonov regularization

The solution of the above regularity minimization with the main equation (13.5)
as a constraint may be proceeded by the method of Lagrange multipliers. This
was the approach first adopted by Tikhonov in the early 1960s for solving
inverse problems (see [26,453] and the references therein). In this regularization
framework, the Tikhonov technique proceeds as

min
u

J (u), J (u) = αR(u) + 1

2
‖K u − z‖2

2, (13.9)

where the regularization functional R(u) is selected as the TV-norm [408,110]

R(u) = T V (u) =
∫

�

|∇u|dxdy =
∫

�

√
u2

x + u2
ydxdy. (13.10)

Here the parameter α, usually given a priori, represents a tradeoff between the
quality of the solution and the fit to the observed data. However once a solver
is available for a fixed α, one may use the modular solver in [64] to solve the
fully constrained problem to identify the correct parameter α.

Thus the overall image restoration problem is modelled by the following
minimization formulation [10,64,110,408,476]

min
u

J (u), J (u) =
∫

�

[
α

√
u2

x + u2
y + 1

2
(K u − z)H (K u − z)

]
dxdy

(13.11)

or

min
u

(
α

∥∥∥∇u
∥∥∥

L1

+ 1

2

∥∥∥K u − z
∥∥∥

L2

)
. (13.12)
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The theoretical solution to problem (13.11) is given by the Euler–Lagrange1

equation (assuming homogeneous Neumann boundary conditions)

α∇ ·
( ∇u

|∇u|
)

− K H K u = −K H z, (13.13)

where K H is the adjoint operator of K . Notice that the resulting nonlinear PDE
has an interesting coefficient that may have a zero denominator so the equation
is not well defined at such points (corresponding to flat regions of the solution).
Consider any closed curve (along edges of features in u) in �. One can observe
that the terms

n = ∇u

|∇u| , k = ∇ ·
( ∇u

|∇u|
)

= ∇ · n (13.14)

respectively, define the unit (outward) normal vector and the curvature of this
curve. These quantities are heavily used in the level set method [379,377]. For
1D problems, � = [0, 1], the above equation reduces to

α
d

dx

(∣∣∣du

dx

∣∣∣−1 du

dx

)
− K H K u = −K H z. (13.15)

A commonly adopted idea to overcome this apparent difficulty was to intro-
duce (yet) another parameter β to (13.11) and (13.13) so the new and better-
defined Euler–Lagrange equation becomes

α∇ ·
( ∇u√

|∇u|2 + β

)
− K H K u = −K H z, (13.16)

where in theory u = uβ(x, y) differs from u in (13.13). Observe that when
β = 0 equation (13.16) reduces to the previous (13.13); moreover as β → 0,
we have uβ → u as shown in [3].

13.1.4 Discretizations

The observed image z of size m × n may be thought of as an image function z re-
stricted onto an uniform and finest grid with mesh size h =h1 =b/m =h2 =d/n;

1 Recall that the Euler–Lagrange solution to the functional minimization problem

min
u

J (u), J (u) =
∫

�

F(x, y, u, ux , uy )dxdy

is the following
∂ F

∂u
− ∂

∂x

(
∂ F

∂ux

)
− ∂

∂y

(
∂ F

∂uy

)
= 0.
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here each pixel is located in the centre of a mesh box. Usually the FDM
(finite difference method) is used to discretize the differential operator while
the Nyström method is used to discretize the integral operator. For readers’
benefit, we give a brief summary below (as most research papers do not present
full details often due to space limitation).

Assume we have a lexicographical ordering for the underlying mesh centre
points (image pixels). Denote the forward and backward difference operators
by (see (13.63))

AT
k u = AT

i j u =
[

ui+1, j − ui j

ui, j+1 − ui j

]
=

[
uk+1 − uk

uk+m − uk

]
,

Aku = Ai j u =
[

ui j − ui, j−1

ui j − ui−1, j

]
=

[
uk − uk−m

uk − uk−1

]
,

(13.17)

where we have shown the cases of both a single index k = ( j − 1)m + i
and double indices (i, j) for u. At image boundaries, the differences are ad-
justed accordingly to accommodate the Neumann’s boundary condition. With
the above notation, the differential operator in (13.16) will be approximated
by

∇ ·
( ∇u√

|∇u|2 + β

)
= 1

h2
Ak

( AT
k u√

|AT
k u|2 + h2β

)
, (13.18)

where the term h2β is still denoted by β in practice.
Now we consider the discretization of the integral operator K . Let x̄ j =

jh, ȳk = kh for j = 0, 1, . . . , m; k = 0, 1, . . . , n be the mesh points for the
image domain � with x̄0 = 0, x̄m = b and ȳ0 = 0, ȳn = d. Then the image
pixel ( j, k) has the coordinate (x j , yk) with x j = ( j − 1/2)h, yk = (k − 1)h for
j = 1, . . . , m; k = 1, . . . , n. Therefore our two-dimensional integral in (13.16)
for a fixed pixel x = xi , y = yr may be evaluated by the mid-point quadrature
rule

(K u)(xi , yr ) =
∫

�

k(xi − x ′, yr − y′)u(x ′, y′)dx ′dy′ (13.19)

≈ h2
n∑

k=1

m∑
j=1

k(xi − x j , yr − yk)u(x j , yk) = K u, (13.20)

where K of size mn × mn is a block Toeplitz matrix with Toeplitz blocks
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(BTTB)

K =



• ← ← ← �
↓ K0 K−1 · · · K1−n

↓ K1 K0 · · · K2−n

↓ K2 K1 · · · K3−n

↓ ...
...

. . .
...

↓ Kn−1 Kn−2 · · · K0


n×n

(13.21)

where for | j | ≤ n − 1

K j =


(0, j) (−1, j) · · · (1 − m, j)
(1, j) (0, j) · · · (2 − m, j)

...
...

. . .
...

(m − 2, j) (m − 3, j) · · · (−1, j)
(m − 1, j) (m − 2, j) · · · (0, j)



=


k(0, jh) k(−h, jh) · · · k((1 − m)h, jh)
k(h, jh) k(0h, jh) · · · k((2 − m)h, jh)
...

...
. . .

...
k((m − 2)h, jh) k((m − 3)h, jh) · · · k(−h, jh)
k((m − 1)h, jh) k((m − 2)h, jh) · · · k(0, jh)


with the index pair (i, j) denoting the value k(ih, jh). Clearly the second index
j in the index pair (i, j) is also the block index j for K j , which is of size m × m.
Hence, the discretized equation takes the form

αN (u)u − K H K u = −K H z, (13.22)

or (sometimes seen in the literature)

−αN (u)u + K H K u = K H z,

where N is defined by (13.18).
We shall approximate a BTTB matrix by a BCCB (block circulant matrix

with circulant blocks) of the same size mn × mn

C =


� C0 Cn−1 · · · C2 C1

↓ C1 C0 · · · C3 C2

↓ C2 C1 · · · C4 C3

↓ ...
...

. . .
...

↓ Cn−1 Cn−2 · · · C1 C0


n×n

(13.23)

where each C j is a circulant matrix of size m × m. Refer to [307].
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To manipulate matrix K , it is necessary to discuss the following defini-
tions; note that both conversions can be done in the MATLAB command
reshape.

Definition 13.1.1. (2D FFT-related operations). A matrix A ∈ R
m×n can be

uniquely mapped to the vector a ∈ R
mn and vice versa by (actions of packing

and unpacking)

a = Vector(A) = [
A11 · · · Am1 . . . A1 j · · · Amj . . . A1n · · · Amn

]
, (13.24)

A = Matrix(a) =


a1 · · · a( j−1)m+1 · · · a(n−1)m+1

a2 · · · a( j−1)m+2 · · · a(n−1)m+2
...

...
...

...
...

am · · · a( j−1)m+m · · · a(n−1)m+m

 . (13.25)

Remark 13.1.2. At this point, three remarks are in order. Firstly the dense
matrix K is too large to be stored for a typical image sized 1024 × 1024 (as the
matrix of size 10242 × 10242 has 1099511627776 > 1012 entries!). Once its
root (the first column of K ) is stored, for a given vector v, computing w = Kv

can be done using FFT [103,465] without storing K explicitly as a matrix (as
shown below). Secondly the PSF is frequently given as a matrix (a discrete
kernel array representing the kernel function k evaluated only at (±ih, ±h) as
required by a fixed pixel):

P SF = kernel =


k11 k12 · · · k1n

k21 k22 · · · k2n
...

...
. . .

...
km1 km2 · · · kmn


m×n

=
[

K11 K12

K21 K22

]
(13.26)

i.e. k not available as a function. Here in the partitioned matrix of 4 blocks
of size 	m × 	n , with 	m = m/2 and 	n = n/2, the entry K22(1, 1) = k(0, 0)
contains the center of the point source and K22(1, 2) = k(h, 0), K22(2, 1) =
k(0, h) and so on. Finally the Definition 13.1.1 should remind the reader that
the mapping can be used to apply ‘vector-norms’ to matrices; see [280] for the
S-norm.

Lemma 13.1.3. (Diagonalization of a BCCB matrix). Let C be a BCCB ma-
trix with the root matrix c ∈ R

m×n, as in (13.21), and Fτ denote the 1D discrete
Fourier matrix of size τ as in (1.38). Then matrix C can diagonalized

FC F−1 = diag ( c̃ ) , c̃ = FVector(c) (13.27)
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where F = Fn ⊗ Fm is the 2D FFT matrix (refer to (14.3.3)) and we have
used F−1 instead of the usual notation F H (to avoid adding a constant, since
F H F = mn and FH

n Fn = n – see § 1.6). Thus the matrix-vector product w =
Cv, v ∈ R

mn, can be implemented efficiently as

w = CVector(v) = F−1 diag( c̃ )FVector(v)

= F−1 FVector(c)︸ ︷︷ ︸
Forward 2D FFT

. ∗ FVector(v)︸ ︷︷ ︸
Forward 2D FFT︸ ︷︷ ︸

Inverse 2D FFT

. (13.28)

Note that the 2D FFT transforms are implemented in MATLAB in matrix
form i.e. both input data and output are in matrix form. Thus (13.28), after
setting v = Matrix(v), will be done by

>> c_tilde = fft2(c);

>> v_tilde = fft2(v);

>> w = ifft2( c_tilde .* v_tilde ) ;

>> w = reshape( real(w), m*n, 1);

% Output the vector form

To address how to generate w = Kv using such PSF information i.e. to
make the link of (13.26) to the overall matrix K , the latter may be conveniently
expressed in structural form

(0, 0) (−1, 0) · · · (1 − m, 0) · · · (0, (1 − n)) (−1, (1 − n)) · · · (1 − m, (1 − n))

(1, 0) (0, 0) · · · (2 − m, 0) · · · (1, (1 − n)) (0, (1 − n)) · · · (2 − m, (1 − n))

(2, 0) (1, 0) · · · (3 − m, 0) · · · (2, (1 − n)) (1, (1 − n)) · · · (3 − m, (1 − n))

. . .
. . . · · ·

. . . · · ·
. . .

. . . · · ·
. . .

(m − 1, 0) (m − 2, 0) · · · (0, 0) · · · (m − 1, (1 − n)) (m − 2, (1 − n)) · · · (0, (1 − n))

(0, 1) (−1, 1) · · · (1 − m, 1) · · · (0, (2 − n)) (−1, (2 − n)) · · · (1 − m, (2 − n))

(1, 1) (0, 1) · · · (2 − m, 1) · · · (1, (2 − n)) (0, (2 − n)) · · · (2 − m, (2 − n))

(2, 1) (1, 1) · · · (3 − m, 1) · · · (2, (2 − n)) (1, (2 − n)) · · · (3 − m, (2 − n))

. . .
. . . · · ·

. . . · · ·
. . .

. . . · · ·
. . .

(m − 1, 1) (m − 2, 1) · · · (0, 1) · · · (m − 1, (2 − n)) (m − 2, (2 − n)) · · · (0, (2 − n))

. . . · · ·
. . .

(0, n − 1) (−1, n − 1) · · · (1 − m, n − 1) · · · (0, 0) (−1, 0) · · · (1 − m, 0)

(1, n − 1) (0, n − 1) · · · (2 − m, n − 1) · · · (1, 0) (0, 0) · · · (2 − m, 0)

(2, n − 1) (1, n − 1) · · · (3 − m, n − 1) · · · (2, 0) (1, 0) · · · (3 − m, 0)

. . .
. . . · · ·

. . . · · ·
. . .

. . . · · ·
. . .

(m − 1, n − 1) (m − 2, n − 1) · · · (0, n − 1) · · · (m − 1, 0) (m − 2, 0) · · · (0, 0)



.

As with a Toeplitz matrix (§ 2.5.2), matrix K is determined precisely by the
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collection of all of its first columns (from the top right corner to the bottom
right):

(1 − m, 1 − n) (1 − m, 2 − n) · · · (1 − m, 0) · · · (1 − m, n − 2) (1 − m, n − 1)
(2 − m, 1 − n) (2 − m, 2 − n) · · · (2 − m, 0) · · · (2 − m, n − 2) (2 − m, n − 1)

...
...

...
...

...
...

...
(0, 1 − n) (0, 2 − n) · · · (0, 0) · · · (0, n − 2) (0, n − 1)

...
...

...
...

...
...

...
(m − 2, 1 − n) (m − 2, 2 − n) · · · (m − 2, 0) · · · (m − 2, n − 2) (m − 2, n − 1)
(m − 1, 1 − n) (m − 1, 2 − n) · · · (m − 1, 0) · · · (m − 1, n − 2) (m − 1, n − 1)


(13.29)

which, when used in the column form, provides the root vector for (13.21). In
fact, the PSF (13.26) is often given (along with the data z), in the following
form and with the meaning (to serve (13.29))

P SF =
[

K11 K12

K21 K22

]

=



k((1 − m)h, (1 − n)h) k((1 − m)h, (2 − n)h) · · · k((1 − m)h, (n − 1)h)
k((2 − m)h, (1 − n)h) k((2 − m)h, (2 − n)h) · · · k((2 − m)h, (n − 1)h)

...
...

...
...

k(0, (1 − n)h) k(0, (2 − n)h) · · · k(0, (n − 1)h)
...

...
...

...
k((m − 2)h, (1 − n)h) k((m − 2)h, (2 − n)h) · · · k((m − 2)h, (n − 1)h)
k((m − 1)h, (1 − n)h) k((m − 1)h, (2 − n)h) · · · k((m − 1)h, (n − 1)h)


.

(13.30)

Here we assume that the PSF matrix is of size (2m − 1) × (2n − 1); if a smaller
m × n matrix given instead, we have to pack rows and columns of zeros to
enclose the smaller matrix in order to extend it to a new PSF matrix of size
(2m − 1) × (2n − 1), e.g. the following illustrates how to extend a given smaller
4 × 4 PSF matrix to a required 7 × 7 (watch the centring position of K22(1, 1))


k11 k12 k13 k14

k21 k22 k23 k24

k31 k32 k33 k34

k41 k42 k43 k44

 ⇒



0 0 0 0 0 0 0
0 k11 k12 k13 k14 0 0
0 k21 k22 k23 k24 0 0
0 k31 k32 k33 k34 0 0
0 k41 k42 k43 k44 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0


. (13.31)
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13.1.5 Computation of w = Kv by FFT

In the nonblock version of FFT (Section 2.5.2), we have discussed how to
compute w = Kv type product for a Toeplitz matrix via a circulant matrix. Here
we briefly address the block version. (It should be noted that all discussions for
computing w = Kv with the root matrix R for K apply to w = K Hv, if the new
root matrix RT is used.) First we show the computational details in an example
(that can be reproduced by the Mfile ch13.m). Consider the following PSF
kernel matrix for K (intended for some 3 × 3 image), and the given vector v

R =


1 3 7 3 8
5 6 2 3 2
2 8 8 8 9
3 9 1 9 5
9 7 9 7 4

 , Matrix(v) =
 1 3 5

2 3 1
1 1 2

 .

Here is the ‘wrong’ and direct method to compute w = Kv using K :

w = Kv =



8 2 7 8 6 3 2 5 1
1 8 2 9 8 6 3 2 5
9 1 8 7 9 8 9 3 2
8 3 3 8 2 7 8 6 3
9 8 3 1 8 2 9 8 6
7 9 8 9 1 8 7 9 8
9 2 8 8 3 3 8 2 7
5 9 2 9 8 3 1 8 2
4 5 9 7 9 8 9 1 8





1
2
1

3
3
1

5
1
2


=



81
103
127

106
122
131

113
96

141


. (13.32)

The plan is to embed the above mn × mn BTTB matrix to a larger 4mn × 4mn
BCCB matrix, as was done in the 1D case (Section 2.5.2), which in turn will
be similarly applied by the FFT technique. Once we extend v to

vext = Vector
([

Matrix(v) 0m×n

0m×n 0m×n

])
= Vector





1 3 5 0 0 0
2 3 1 0 0 0
1 1 2 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0




,

the method using an extended BCCB matrix C to compute ṽ = Cvext goes like
in the following Table 13.1, where the boxed elements of size 3 are related to
w = Kv and the rest is to ensure that C is a BCCB (see Section 2.5.2). From
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Table 13.1. Embedding of a BTTB matrix into a large BCCB matrix
(see ch13.m).



8 2 7 0 9 1 8 6 3 0 7 9 2 5 1 0 9 3 0 0 0 0 0 0 9 2 8 0 4 5 8 3 3 0 7 9
1 8 2 7 0 9 9 8 6 3 0 7 3 2 5 1 0 9 0 0 0 0 0 0 5 9 2 8 0 4 9 8 3 3 0 7
9 1 8 2 7 0 7 9 8 6 3 0 9 3 2 5 1 0 0 0 0 0 0 0 4 5 9 2 8 0 7 9 8 3 3 0

0 9 1 8 2 7 0 7 9 8 6 3 0 9 3 2 5 1 0 0 0 0 0 0 0 4 5 9 2 8 0 7 9 8 3 3
7 0 9 1 8 2 3 0 7 9 8 6 1 0 9 3 2 5 0 0 0 0 0 0 8 0 4 5 9 2 3 0 7 9 8 3
2 7 0 9 1 8 6 3 0 7 9 8 5 1 0 9 3 2 0 0 0 0 0 0 2 8 0 4 5 9 3 3 0 7 9 8

8 3 3 0 7 9 8 2 7 0 9 1 8 6 3 0 7 9 2 5 1 0 9 3 0 0 0 0 0 0 9 2 8 0 4 5
9 8 3 3 0 7 1 8 2 7 0 9 9 8 6 3 0 7 3 2 5 1 0 9 0 0 0 0 0 0 5 9 2 8 0 4
7 9 8 3 3 0 9 1 8 2 7 0 7 9 8 6 3 0 9 3 2 5 1 0 0 0 0 0 0 0 4 5 9 2 8 0

0 7 9 8 3 3 0 9 1 8 2 7 0 7 9 8 6 3 0 9 3 2 5 1 0 0 0 0 0 0 0 4 5 9 2 8
3 0 7 9 8 3 7 0 9 1 8 2 3 0 7 9 8 6 1 0 9 3 2 5 0 0 0 0 0 0 8 0 4 5 9 2
3 3 0 7 9 8 2 7 0 9 1 8 6 3 0 7 9 8 5 1 0 9 3 2 0 0 0 0 0 0 2 8 0 4 5 9

9 2 8 0 4 5 8 3 3 0 7 9 8 2 7 0 9 1 8 6 3 0 7 9 2 5 1 0 9 3 0 0 0 0 0 0
5 9 2 8 0 4 9 8 3 3 0 7 1 8 2 7 0 9 9 8 6 3 0 7 3 2 5 1 0 9 0 0 0 0 0 0
4 5 9 2 8 0 7 9 8 3 3 0 9 1 8 2 7 0 7 9 8 6 3 0 9 3 2 5 1 0 0 0 0 0 0 0

0 4 5 9 2 8 0 7 9 8 3 3 0 9 1 8 2 7 0 7 9 8 6 3 0 9 3 2 5 1 0 0 0 0 0 0
8 0 4 5 9 2 3 0 7 9 8 3 7 0 9 1 8 2 3 0 7 9 8 6 1 0 9 3 2 5 0 0 0 0 0 0
2 8 0 4 5 9 3 3 0 7 9 8 2 7 0 9 1 8 6 3 0 7 9 8 5 1 0 9 3 2 0 0 0 0 0 0

0 0 0 0 0 0 9 2 8 0 4 5 8 3 3 0 7 9 8 2 7 0 9 1 8 6 3 0 7 9 2 5 1 0 9 3
0 0 0 0 0 0 5 9 2 8 0 4 9 8 3 3 0 7 1 8 2 7 0 9 9 8 6 3 0 7 3 2 5 1 0 9
0 0 0 0 0 0 4 5 9 2 8 0 7 9 8 3 3 0 9 1 8 2 7 0 7 9 8 6 3 0 9 3 2 5 1 0
0 0 0 0 0 0 0 4 5 9 2 8 0 7 9 8 3 3 0 9 1 8 2 7 0 7 9 8 6 3 0 9 3 2 5 1
0 0 0 0 0 0 8 0 4 5 9 2 3 0 7 9 8 3 7 0 9 1 8 2 3 0 7 9 8 6 1 0 9 3 2 5
0 0 0 0 0 0 2 8 0 4 5 9 3 3 0 7 9 8 2 7 0 9 1 8 6 3 0 7 9 8 5 1 0 9 3 2

2 5 1 0 9 3 0 0 0 0 0 0 9 2 8 0 4 5 8 3 3 0 7 9 8 2 7 0 9 1 8 6 3 0 7 9
3 2 5 1 0 9 0 0 0 0 0 0 5 9 2 8 0 4 9 8 3 3 0 7 1 8 2 7 0 9 9 8 6 3 0 7
9 3 2 5 1 0 0 0 0 0 0 0 4 5 9 2 8 0 7 9 8 3 3 0 9 1 8 2 7 0 7 9 8 6 3 0
0 9 3 2 5 1 0 0 0 0 0 0 0 4 5 9 2 8 0 7 9 8 3 3 0 9 1 8 2 7 0 7 9 8 6 3
1 0 9 3 2 5 0 0 0 0 0 0 8 0 4 5 9 2 3 0 7 9 8 3 7 0 9 1 8 2 3 0 7 9 8 6
5 1 0 9 3 2 0 0 0 0 0 0 2 8 0 4 5 9 3 3 0 7 9 8 2 7 0 9 1 8 6 3 0 7 9 8

8 6 3 0 7 9 2 5 1 0 9 3 0 0 0 0 0 0 9 2 8 0 4 5 8 3 3 0 7 9 8 2 7 0 9 1
9 8 6 3 0 7 3 2 5 1 0 9 0 0 0 0 0 0 5 9 2 8 0 4 9 8 3 3 0 7 1 8 2 7 0 9
7 9 8 6 3 0 9 3 2 5 1 0 0 0 0 0 0 0 4 5 9 2 8 0 7 9 8 3 3 0 9 1 8 2 7 0
0 7 9 8 6 3 0 9 3 2 5 1 0 0 0 0 0 0 0 4 5 9 2 8 0 7 9 8 3 3 0 9 1 8 2 7
3 0 7 9 8 6 1 0 9 3 2 5 0 0 0 0 0 0 8 0 4 5 9 2 3 0 7 9 8 3 7 0 9 1 8 2
6 3 0 7 9 8 5 1 0 9 3 2 0 0 0 0 0 0 2 8 0 4 5 9 3 3 0 7 9 8 2 7 0 9 1 8





1
2
1

0
0
0

3
3
1

0
0
0

5
1
2

0
0
0

0
0
0
0
0
0

0
0
0
0
0
0

0
0
0
0
0
0



=



81
103
127

64
55
69

106
122
131

76
69
69

113
96
141

54
81
53

90
103
96
42
57
48

76
50
60
35
58
25

45
51
71
53
22
30


(13.33)

Lemma 13.1.3, the above product can be efficiently computed by 2D FFT:

>> v = reshape( v, m, n); % Input data in matrix form

>> v_ext = reshape( real( ifft2( fft2(c) .* fft2(v) ) ), m*n, 1)

which should produce an vext identical to the product in (13.33).
It only remains to highlight the construction of the root for matrix C based

on the PSF matrix R above. Clearly one observes that the root matrix RC for C



428 Application III: image restoration and inverse problems

in (13.33) is related to the block permuted form of an extended R:

RC =



8 8 9 0 2 8
1 9 5 0 3 9
9 7 4 0 9 7
0 0 0 0 0 0
7 3 8 0 1 3
2 3 2 0 5 6


=

[
R22 R21

R12 R11

]
,



0 0 0 0 0 0
0 1 3 7 3 8
0 5 6 2 3 2
0 2 8 8 8 9
0 3 9 1 9 5
0 9 7 9 7 4


=

[
R11 R12

R21 R22

]
.

(13.34)

In fact, the idea and formulae shown from this example apply to the general case
where the PSF matrix R such as (13.30) is given to define K of size mn × mn.
The general procedure to compute a BTTB matrix via a BCCB is as follows.

Algorithm 13.1.4. (Computation of a BTTB matrix product).

Assume a PSF root matrix R1 for a BTTB matrix K is given. For v ∈ R
m×n, to

compute Vector(w) = K Vector(v),

(1) If R1 is of size (2m − 1) × (2n − 1), extend it to R2 of size 2m × 2n as in
(13.31):

R1 =
[

K11 K12

K21 K22

]
⇒ R2 =

 0 01×(n−1) 01×n

0(n−1)×1 K11 K12

0n×1 K21 K22

 .

(2) If R1 is of size m × n (the same as an observed image), extend it to a
2m × 2n root matrix R2 by embedding it to the centre of a large matrix
(similar to (13.31)):

R1 =
[

K11 K12

K21 K22

]
⇒ R2 =


0m1×n1 0m1×n1 0m1×n1 0m1×n1

0m1×n1 K11 K12 0m1×n1

0n×1 K21 K22 0m1×n1

0m1×n1 0m1×n1 0m1×n1 0m1×n1

 ,

where m1 = m/2 and n1 = n/2.
(3) Block permute matrix R2 to get the root matrix RC for Cmn×mn:

R2 =
[

R11 R12

R21 R22

]
⇒ RC =

[
R22 R21

R12 R11

]
.

(This step may be completed by the MATLAB r© command fftshift.)
(4) Compute the 2D FFT of RC , R̃C = fft2(RC );
(5) Compute the 2D FFT of the input data v, ṽ = fft2(v);
(6) Compute the inverse 2D FFT of the product, w = ifft2( R̃C . ∗ ṽ).



13.2 Fixed point iteration method 429

The overall algorithm may be experimented by using the Mfile ch13.m. If
the PSF matrix R1 in the above algorithm is symmetric, then w = K Hv = Kv;
otherwise one has to set R1 = RH

1 before using the Algorithm similarly. Also
note that if R1 is solely consisted of values of the kernel, one should set R1 =
h2 R1 in view of (13.20).

So far we have completely described the discretization process. It remains
to discuss the preconditioning and fast solver issues.

Iterative methods for image restoration. As shown, the underlying op-
erator is a summation of a nonlinear differential operator (‘sparse’ when dis-
cretized) and an integral operator (‘dense’ when discretized). Such a problem
poses a significant challenge in computational mathematics due to the need of
using FFT to present the dense matrix (or avoiding storage of this latter matrix).

The existing work on the topic fall into the following three categories as
described separately. There ought be more work appearing in the near future.

13.2 Fixed point iteration method

This was done in a number of papers including [3,101,105,474,477,478,475,
476]. Once the coefficients in N (u) of (13.22) are ‘freezed’ at each outer non-
linear step, various iterative solver techniques have been considered for the in-
ner solution [477,478,101,105,102,100,335]. This is a linearization technique,
commonly used in treating nonlinear PDEs (refer to (6.13) and (12.12)), by
repeatedly solving for the new u:

α∇ ·
( ∇u√

|∇ū|2 + β

)
− K H K u = −K H z, (13.35)

or for short

αLu − K H K u = −K H z (13.36)

where ū is assigned the previous iterate u and is initially set ū = z. More
precisely, we solve a lagged diffusion problem for uk+1 until uk+1 − uk is small

α∇ ·
( ∇uk+1√

|∇uk |2 + β

)
− K H K uk+1 = −K H z. (13.37)

Although the method converges, the convergence (for the nonlinear iterations)
may not be always fast. There exists a large literature on this topic, mainly
due to wide interest in developing fast iterative solvers for the above linearized
equations. As stated, since K is a convolution operator, the challenge is to solve
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the resulting linear system without forming the discretized matrix of K H K
(mimicking the capability of the fast multipole method) [477,478,101,105,102,
100,335]. Below we summarize two contrasting ideas (of operator splitting
type) for preconditioning the linear ‘summation’ operator, before we mention
the potential for a third possibility.

13.2.1 A differential operator-based preconditioner

To make use of the sparsity of operator L (and various fast solvers associated
with L), the first idea is to approximate K H K by some sparse matrix with
compatible sparsity pattern to L.

The technique proposed by [477,478] uses Ā = αL + γ I to precondition
(13.36) in the simple version and the full preconditioner is

M = 1

γ

(
γ I + K̄ H K̄

)−1/2
(αL + γ I )

(
γ I + K̄ H K̄

)−1/2
(13.38)

where (K̄ H K̄ + γ I )−1/2 denotes a BTTB matrix with the root matrix (R̄) jk =
1/

√|R jk |2 + γ with R the root matrix for K .

13.2.2 An integral operator-based preconditioner

A related but different preconditioner was attempted by several researchers
[103,113,101,104]. This is a dense circulant (or BCCB) matrix preconditioner.
The idea of approximating a BTTB by a BCCB matrix follows from the 1D
case (see [439] and Section 4.6) while the idea of of approximation of a sparse
matrix by a BCCB matrix generalizes the 1D case (see [106] and (4.12)).

Denote by c(X ) the circulant approximation of a matrix X , as done in (4.11).
Thus, with Ai j of size m × m, a block matrix

A =


A11 A12 · · · A1n

A21 A22 · · · A2n
...

...
. . .

...
An1 An2 · · · Ann

 (13.39)

will admit the so-called level-one preconditioner

c(A) =


c(A11) c(A12) · · · c(A1n)
c(A21) c(A22) · · · c(A2n)

...
...

. . .
...

c(An1) c(An2) · · · c(Ann)

 . (13.40)
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As each block entry can be diagonalized by the FFT matrix Fm

� = (In ⊗ Fm)c(A)(In ⊗ Fm)−1 =


d11 d12 · · · d1n

d21 d22 · · · d2n
...

...
. . .

...
dn1 dn2 · · · dnn

 . (13.41)

where the diagonal matrix di j = Fmc(Ai j )F−1
m , the level-one preconditioner is

thus denoted by

c(A) = (In ⊗ Fm)−1�(In ⊗ Fm).

We note in passing that, from (4.11), di j = diag(Fm Ai j F−1
m ). Here � is a block

matrix with diagonal blocks which can be solved by permuting all diagonals to
the main diagonal blocks (see Lemma 4.1.1):

P�PT = diag(D1, · · · , Dm), � = PT diag(D1, · · · , Dm)P. (13.42)

More specifically, Px groups all first elements of x’s block vectors and then
second elements etc e.g. for n = 4 and m = 3,

P
[

3 2 4 1 12 5 11 10 7 0 8 6
]T = [

3 1 11 0 2 12 10 8 4 5 7 6
]T

.

Therefore, for a general A, the level-one preconditioner is formally

c(A) = (In ⊗ Fm)−1 PT diag(D1, · · · , Dm)P(In ⊗ Fm). (13.43)

For the main linear system (13.36), the level-one preconditioner takes the
form M1 = αc(L) + c(K )H c(K ) or

M1 = (In ⊗ Fm)−1 PT diag(αE1 + D2
1, · · · , αEm + D2

m)P(In ⊗ Fm),

(13.44)

where E j denotes the diagonal block j for matrix L.
The involvement of dense blocks D j may be removed if we approximate

each D j by its circulant counterpart c(D j ) by (4.11). This is the idea [103] of
the level 2 preconditioner

M2 = (In ⊗ Fm)−1 PT diag(αc(E1) + c(D1)2, · · · , αc(Em) + c(Dm)2)

×P(In ⊗ Fm). (13.45)

As D̂ j = Fnc(D j )F−1
n and Ê j = Fnc(E j )F−1

n are diagonal matrices of size
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n × n, the level 2 preconditioner to (13.36) can be formally written as

M2 = (In ⊗ Fm)−1 PT diag(αc(E1) + c(D1)2, · · · , αc(Em) + c(Dm)2)

× P(In ⊗ Fm)

= (In ⊗ Fm)−1 PT (Im ⊗ Fn)−1

diag(α Ê1) + D̂1)2, · · · , α Êm) + D̂m)2)(Im ⊗ Fn)P(In ⊗ Fm)

= (Fn ⊗ Fm)−1 diag(α Ê1) + D̂1)2, · · · , α Êm) + D̂m)2)(Fn ⊗ Fm).

(13.46)

Here note that (Fn ⊗ Fm) = (Im ⊗ Fn)P(In ⊗ Fm) and also the matrix-vector
v̂ = (Fn ⊗ Fm)v = fft2(Matrix(v)).

13.2.3 The use of DWT for a mixed preconditioner

The effectiveness of the above two integral operator-based preconditioners
hinges on the approximation (4.11). Here it might be difficult to improve on
the approximation of K H K by a BCCB matrix C H C . However the approx-
imation of the sparse matrix L by a dense BCCB matrix c(L) may be done
differently. Our idea below is first to transform L and C H C using a DWT and
then to design a sparse preconditioner in the wavelet space. To proceed, we must
consider the detailed structure of a circulant as well as a BCCB matrix under
a DWT.

Lemma 13.2.5. (DWT for a circulant matrix). Let C be a circulant matrix,
as defined by (4.10), with the root vector c = [c0 c1 . . . cn−1]T and a DWT as
defined by (1.48). Then the one level DWT, C̃, of C is a block 2 × 2 matrix of
four circulant matrices of equal size n/2 × 2:

C̃ = WCW T =
[

D T
S U

]
.

Moreover the roots of these four circulant matrices are uniquely determined by
the DWT of the first two row vectors of C.

Proof. This is by direct construction. For the circulant matrix C as in (4.10), the
most important observation is that C is also circulant in blocks of size 2 × 2!
(In fact, C is a BCCB matrix of any block size 2τ ).

Let the first two rows (block row 1) of C1 = CW T be denoted by

d1 d2 d3 d4 · · · dn/2−1 dn/2 s1 s2 s3 s4 · · · sn/2−1 sn/2

t1 t2 t3 t4 · · · tn/2−1 tn/2 u1 u2 u3 u4 · · · un/2−1 un/2.
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Then one observes that C1 is consisted of two (left and right) block circulant
matrices of block size 2 × 1:

d1 d2 d3 d4 · · · dn/2−1 dn/2 s1 s2 s3 s4 · · · sn/2−1 sn/2

t1 t2 t3 t4 · · · tn/2−1 tn/2 u1 u2 u3 u4 · · · un/2−1 un/2

dn/2 d1 d2 d3 · · · dn/2−2 dn/2−1 sn/2 s1 s2 s3 · · · sn/2−2 sn/2−1

tn/2 t1 t2 t3 · · · tn/2−2 tn/2−1 un/2 u1 u2 u3 · · · un/2−2 un/2−1

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
d2 d3 d4 d5 · · · dn/2 d1 s2 s3 s4 s5 · · · sn/2 s1

t2 t3 t4 t5 · · · tn/2 t1 u2 u3 u4 u5 · · · un/2 u1

.

Clearly C̃ = WC1 = WCW T will be circulant in four blocks. To generate C̃ ,
we again need to transform the first vector of each n × n/2 block of C1

d1 t1 dn/2 tn/2 · · · d2 t2
s1 u1 sn/2 un/2 · · · s2 u2

respectively to the following (for simplicity, we re-use the same notation)

d1 d2 d3 d4 · · · dn/2−1 dn/2 s1 s2 s3 s4 · · · sn/2−1 sn/2

t1 t2 t3 t4 · · · tn/2−1 tn/2 u1 u2 u3 u4 · · · un/2−1 un/2.

This completes the proof.

To apply the DWT to (13.36), we have to consider the case of a BCCB matrix.
The block version of a DWT is W2D = Wn ⊗ Wn = (W ⊗ W )n2×n2 ; similarly
we can generalize to W2D = Wm ⊗ Wn . To use Lemma 13.2.5, we need the
decomposition of the tensor-product [465] (see Section 14.3.1)

W2D = (In ⊗ W )P(In ⊗ W ) = (W ⊗ In)(In ⊗ W ) = (In ⊗ W )(W ⊗ In)

(13.47)

where P is as defined in (13.46).

Lemma 13.2.6. (DWT for a BCCB matrix). Let Cn2×n2 be a BCCB matrix,
as defined by (13.23), with the root matrix c = [c0 c1 . . . cn−1]T and a DWT
as defined by (13.47). Then the one-level DWT, C̃, of C is a block 2 × 2 cir-
culant matrix with 4 circulant blocks of size n/2 × n/2. Moreover the roots
of these circulant matrices are uniquely determined by the DWT of 8n vectors
of C.

Proof. Firstly consider W2D = (In ⊗ W )(W ⊗ In) and the block level transform
first i.e. C1 = (W ⊗ In)C(W ⊗ In)T . From Lemma 13.2.5, C1 is a block 2 × 2
circulant matrix, determined by transforming all first columns of the first two



434 Application III: image restoration and inverse problems

Out DWT - right

(Note: only the highlighted entries are used to generate the final matrix)

Out DWT - left

Inner DWT - right Inner DWT - left

Figure 13.1. Graphical illustration of the proof of Lemma 13.2.6. The top plots
show the outer block level transform C1 = (W ⊗ In)C(W ⊗ In)T while the bottom
plots show the inner block transform C̃ = (In ⊗ W )C1(In ⊗ W )T = W2DCW T

2D .

block rows of C i.e.

c0 cn−1 · · · c2 c1

c1 c0 · · · c3 c2.

Secondly consider the transform within each block i.e. C̃ = (In ⊗ W )C1(In ⊗
W )T . Again using Lemma 13.2.5 we see that for each block, transforming the
first two rows is sufficient. The overall data access and minimal transformations
can be illustrated by Figure 13.1, where only ‘highlighted’ positions are trans-
formed. Overall, 8n vectors are transformed from left and right transformations.
Thus the proof is complete.

For a BCCB matrix, C̃ is a block circulant matrix with four circulant blocks
(BC4CB, i.e. not directly a BCCB matrix unlike the 1D case with Lemma 13.2.5)
but the result of the outer block level transform is BCCB. The former BC4CB
matrix requires a discussion of how to compute a matrix–vector product with it
and the latter fact will be explored to resolve the potential difficulty associated
with using multiple levels.

Firstly, we consider the matrix–vector product. We claim that a BC4CB ma-
trix G (as in the last plot of Figure 13.1) can be permuted to four BCCB matrices.
Define Pn2×n2 = T ⊗ I as the (block) odd-even permutation matrix with T

the FFT permutation matrix from §1.6: T = I ([1 3 . . . n − 1 2 4 . . . n], :).
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Then matrix G1 = PG PT is a 2 × 2 block matrix with BCCB blocks so
y = Gx = PT G1(Px) can be evaluated by four separate 2D FFT operations.
For clarity, consider the following BC4CB matrix

G =



A1 B1 A3 B3 A2 B2

C1 D1 C3 D3 C2 D2

A2 B2 A1 B1 A3 B3

C2 D2 C1 D1 C3 D3

A3 B3 A2 B2 A1 B1

C3 D3 C2 D2 C1 D1


, PGPT =



A1 A3 A2 B1 B3 B2

A2 A1 A3 B2 B1 B3

A3 A2 A1 B3 B2 B1

C1 C3 C2 D1 D3 D2

C2 C1 C3 D2 D1 D3

C3 C2 C1 D3 D2 D1


=

[
A B
C D

]
,

where all matrices A j , B j , C j , D j are circulant and clearly A, B, C, D are
BCCB. Therefore

y = Gx = PT G1 Px = PT

[
Axodd + Bxeven

Cxodd + Dxeven

]
,

[
xodd

xeven

]
= Px,

which is amenable to fft2 operations.
Secondly we attempt to separate the outer and inner block transforms. Similar

to (9.4), our one-step DWT matrix W2D = (In ⊗ W )(W ⊗ In) may be written as

W2D =
[

In/2 ⊗ W
In/2 ⊗ W

] [
Qn ⊗ In

Pn ⊗ In

]
, W =

[
Qn

Pn

]
, (13.48)

where Pn (corresponding to the ‘sums’ in a DWT) and Qn are applied in the
outer block DWT as in Lemma 13.2.6 while the inner block DWT is kept
separate and applied later.

Finally a preconditioner similar to Section 9.3 (or the work of [60] and [108])
may be proposed as follows. Let

T0x0 = b0 (13.49)

denote the equation (αL + M)x0 = b0 approximating (13.36) (with M repre-
senting the usual BCCB term CT C). Then the use of W2D will convert (13.49) to

T̃0 x̃0 = b̃0, T̃0 =
[

A1 B1

C1 T1

]
, (13.50)

where A1, B1, C1 are sparse matrices plus BC4BC matrices by Lemma 13.2.6.
Here the trick is not to form T1 explicitly (involving a BC4CB matrix):

T1 = (In/2 ⊗ W )T̂1(In/2 ⊗ W )T ,

where T̂1 is a sparse matrix plus a BCCB matrix resulting from the out block
DWT. Thus a fine level matrix T0 involving the sparse matrix L0 and a BCCB



436 Application III: image restoration and inverse problems

matrix M0 is directly linked to the coarser level matrix T̂1 involving the sparse
matrix L̃1 and a BCCB matrix M1 – a ready and repetitive setting for using the
wavelet Schur type preconditioner (Section 9.3).

Remark 13.2.7. So far we have mainly discussed the FFT approach for K .
Other related transforms such as the DCT [101] and DST [105] have also been
considered in this context. See [104].

There is still much scope left to search for a robust preconditioner for pre-
conditioning the linear equation (13.36). However, the overall efficiency can be
restricted by the nonlinearity in the main equation (13.22). Below we review
some methods for solving (13.22) by different (or no) linearization.

13.3 Explicit time marching schemes

The idea explored by [408,378] is to turn the nonlinear PDE (13.22) into a
parabolic equation before using an explicit Euler method to march in time to
convergence. The original idea in [408], refined in [378], aims to solve the
following parabolic PDE until a steady state has been reached

ut = |∇u|
[
α∇ ·

( ∇u√
|∇u|2 + β

)
− K ∗K u + K ∗z

]
. (13.51)

The explicit time marching schemes become the following

uk+1 − uk

�t
= |∇uk |

[
α∇ ·

( ∇uk√
|∇uk |2 + β

)
− K ∗K uk + K ∗z

]
. (13.52)

As remarked in [390], for linear problems, this type of ideas represents a kind
of relaxation schemes. The drawback may be that the artificial time step �t
must be small due to stability requirement.

13.4 The Primal-dual method

This is probably the most reliable method for solving (13.22) in many ways. It
was proposed in [110] and discussed also in [112,64,377]. The method solves for
both the primal and dual variables together in order to achieve faster convergence
with the Newton method (and a constrained optimization with the dual variable).
As discussed in [64], the Newton method for equation (13.16) or (13.13) leads
to very slow or no convergence because z is often not a sufficiently close initial
guess for u and the operator is highly nonlinear. However introducing the dual
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variable

ω = ∇u

|∇u| (13.53)

to (13.13) appears to have made the combined system{−α∇ · ω + K ∗K u = K ∗z,
ω|∇u| − ∇u = 0.

in two variables (u, ω) more amenable to Newton iterations as the new system
is nearly ‘linear’ in the two variables (not so linear as a single variable u after
elimination of ω). The idea resembles that of a mixed finite element method
Section 12.3. Note that ω is constrained in each iteration step so the overall
algorithm needs some care in any implementation.

Owing to the definition (13.53) using |∇u| explicitly, the formulation will
not be rigorous for non-differentiable functions u. In this case, the general
derivation of the primal-dual algorithm starts from the alternative norm (13.8)
below. As we aim to arrive at a numerical scheme, we shall consider the discrete
optimization (without using the the Euler–Lagrange equation (13.13)) directly
from (13.9) and with the dual norm (to replace (13.8)) [110]

‖v‖2 = max
‖ω‖2≤1

vT ω, v ∈ R
n, ∀n. (13.54)

Denote the discretized problem of (13.9) by, with h2 due to 2D integrals,

min
u

α

mn∑
k=1

h2‖ 1

h
AT

k u‖ + h2

2
‖K u − z‖2

2

i.e. setting α = α/h (and dividing by h2)

min
u

α

mn∑
k=1

‖AT
k u‖ + 1

2
‖K u − z‖2

2 (13.55)

where AT
k and K are as defined in (13.18).

Now using (13.54) for each k i.e.

‖AT
k u‖ = max

‖xk‖≤1
(AT

k u)T xk (13.56)

with xk ∈ R
2, the above minimization problem becomes

min
u

α

mn∑
k=1

max
‖xk‖≤1

uT Akxk + ‖K u − z‖2
2

2
= min

u
max

‖xk‖≤1
αuT Ax + ‖K u − z‖2

2

2

(13.57)
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where u ∈ R
mn is the usual unknown, x is the new dual variable with

x = (x1, x2, . . . , xmn)T ∈ R
2mn,

xk ∈ R
2 and

A = [A1, A2, . . . , Amn] ∈ R
mn×2mn as

AT
k ∈ R

2×mn.

As the object functional in (13.57) is optimized in a bounded domain, convex
in one variable (u) and concave in the other (x), therefore the operations min
and max can be interchanged [404] to give

max
‖xk‖≤1

min
u

αuT Ax + 1

2
‖K u − z‖2

2. (13.58)

The solution to the inner min problem of (13.58) is given by

αAx + K H (K u − z) = 0. (13.59)

The second equation comes from the solution ω = v/‖v‖2 to (13.54) or specif-
ically the solution of (13.56)

xk = AT
k u

‖AT
k u‖2

, ‖AT
k u‖2xk = AT

k u,

√
‖AT

k u‖2
2 + βxk = AT

k u, (13.60)

where adding a small β is to ensure that xk always has a unique solution. To
put (13.60) to a compact form, we define a new block matrix [110]

E = diag(I2η1, I2η2, · · · , I2ηmn)

where ηk =
√

‖AT
k u‖2

2 + β. Then (13.60) together with (13.59) defines the
primal-dual method of Chan et al. [110] as follows

Ex − AT u = 0,

αAx + K H (K u − z) = 0,

‖xk‖2 ≤ 1,

(13.61)

which is a nonlinear system for (x, u), though ‘less’ nonlinear than (13.22). The
constraint in (13.61) will be treated separately.

To solve the nonlinear system of the first two equations in (13.61), the Newton
method may be used to yield[

E −F AT

αA K H K

] [
�x
�u

]
= −

[
Ex − AT u

αAx + K H (K u − z)

]
, (13.62)

where

F = diag

(
I2 − x1uT A1

η1
, I2 − x2uT A2

η2
, · · · , I2 − xmnuT Amn

ηmn

)
,
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since xk ∈ R
2×1, uT ∈ R

1×mn, Ak ∈ R
mn×2,

∂ηk

∂um+k
= (um+k − uk)/ηk,

∂ηk

∂uk+1
= (uk+1 − uk)/ηk,

∂ηk

∂uk
= (2uk − um+k − uk+1)/ηk,

AT
k =

 ·
(k)︷︸︸︷
−1 1 · 0 ·

· −1 · 1 ·

 .

(13.63)

Viewing (13.62) as a block 2 × 2 matrix, since it is feasible to invert E = A11,
the Schur complement method for (13.62) (see Chapter 7) gives{

S�u = −(αAE−1 AT u + K H (K u − z))
�x = −x + E−1 AT u + E−1 F AT �u,

(13.64)

where the Schur matrix S = A22 − A21 A−1
11 A12 = αAE−1 F AT + K H K re-

sembles the summation operator (13.36) in the case of fixed iterations. There-
fore the preconditioners developed in Section 13.2 are applicable to the iterative
solution of (13.64) and (13.62).

In [110], the symmetrized matrix Ŝ = (S + SH )/2 is used to replace S in
(13.64) and the preconditioned conjugate gradient method (Section 3.4) is used.
Other iterative approaches have not yet been tried. Finally we remark that the
constraint in (13.61) is imposed by the backtracking procedure (at the end of
each Newton step)

x = x + s�x, y = y + s�y, (13.65)

with s = ρ sup{τ | ‖xk + τ�xk‖2 < 1} for some ρ ∈ (0, 1) and assuming ini-
tially ‖xk‖2 < 1.

13.5 Nonlinear multigrids for optimization

There are many other methods one can consider, for example, using the Krylov
subspace methods [88,219] or wavelets methods [367,368]. Here we briefly
discuss the fast solver issues [109] via the nonlinear multigrid approach and, as
this is on-going work, we only give a short introduction. The multilevel subspace
correction framework was considered in [449] and the references therein for
convex optimization problems.
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An alternative to variational PDEs via the Euler–Lagrange equations is to
first discretize the object functional in (13.11) and then carry out discrete op-
timization. Although we have discussed various multilevel methods for oper-
ator equations in Chapter 6, there are very few papers devoted to developing
multilevel methods for optimization problems, specially for non-differentiable
optimization to which the problem (13.11) belongs.

� Differentiable optimization. The main (and perhaps so far the only early)
source of references of a working multigrid algorithm for this problem ap-
pears to be [448], which considered the following differentiable optimization
problem

min
αh

Eh(uh, αh) s.t. Lh(uh, αh) = f h, (13.66)

where h refers to a fine grid for the objective functional E(u, α) and the con-
straint L(u, α) = f with u the solution vector and α the unknown scalar pa-
rameter (actually [448] dealt with multiple constraints and considered α to be a
parameter vector). For an optimization problem, unlike an operator equation,
it is no longer obvious how to define coarse grid problems.

As both E and f are differentiable, the necessary conditions for minimizing
(13.66) are 

Lh(uh, αh) = f h,

Lh
u(uh, αh)λ + Eh

u = 0,

Lh
α(uh, αh)λ + Eh

α = 0,

(13.67)

where there are n + 2 equations for n + 2 unknowns: α, λ ∈ R and uh ∈ R
n .

Here a naive choice of a coarse grid equation for (13.66) could be

min
αH

E H (uH , αH ) s.t. L H (uH , αH ) = f H , (13.68)

which, unfortunately, may not help the solution of (13.66). It turns out that the
correct coarse grid equation for (13.66) is the following

min
αH

E H (uH , αH )− < gH
1 , uH > − < gH

2 , αH > s.t. L H (uH , αH ) = f H ,

(13.69)

where f H , gH
1 , gH

2 are the restricted residual quantities while u H , αH are the
usual restricted solution quantities for the necessary conditions

L H (uH , αH ) = f H ,

L H
u (uH , αH )λH + E H

u = gH
1 ,

L H
α (uH , αH )λH + E H

α = gH
2 .

(13.70)
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Clearly the trick is to connect the coarse grids to fine grids via the intermediate
operator equations (13.67) – the necessary (or first-order) conditions!

� Non-differentiable optimization. This concerns with our problem from
(13.11). We restrict ourselves to the denoising case of (13.11) by taking K = I
in the following discussion. In the 1D case, the discretization of

J (u) = α

∫ b

a
|du

dx
|dx + 1

2

∫ b

a
(u − z)2dx

leads to the functional (with u = [u1, u2, . . . , un]T )

J (u) = α

n−1∑
k=1

h| 1

h
AT

k u‖ + 1

2

n∑
k=1

h(uk − zk)2

= h

[
α

h

n−1∑
k=1

|AT
k u‖ + 1

2
‖u − z‖2

2

]
,

which may be simply written as (on setting α = α/h)

J (u) = α

n−1∑
k=1

|AT
k u| + 1

2
‖u − z‖2

2. (13.71)

In the 2D case, the discretization of (13.11) leads to the functional (with u =
[u1, u2, . . . , umn]T )

J (u) = α

mn∑
k=1

h2| 1

h
AT

k u| + 1

2

mn∑
k=1

h2(uk − zk)2

= h2

[
α

h

mn∑
k=1

|AT
k u| + 1

2
‖u − z‖2

2

]
,

which is similarly written as (on setting α = α/h)

J (u) = α

mn∑
k=1

|AT
k u| + 1

2
‖u − z‖2

2. (13.72)

Here the operator AT
k is as defined in (13.63) with a minor adjustment in 1D:

AT
k =

[ · −1︸︷︷︸
(k)

1 · 0 ·]
.
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One proposal is to convert the above nondifferentiable optimization
minu J (u) to a differentiable optimization by adding a small parameter β > 0

Jε(u) = α

n−1∑
k=1

√
|AT

k u|2 + β + 1

2
‖u − z‖2

2, the 1D case

Jε(u) = α

mn∑
k=1

√
|AT

k u|2 + β + 1

2
‖u − z‖2

2, the 2D case.

(13.73)

This will ensure that a coarse grid construction can be done as in (13.69). It is
also possible to avoid this parameter β in alternative formulation, if the idea
from backtracking is used in the interpolation stage similar to (13.65). Other
AMG-based multilevel approaches may also be developed.

13.6 The level set method and other image problems

The above discussed image restoration problem is only part of the long list of
problems from imaging science or computer vision in general [26]. Below we
shall briefly discuss another problem, image segmentation, from the list and
show how it can be tackled by the increasingly popular and powerful tool of
level set methods in the context of variational PDEs [379,377]. The variational
PDE models provide a unified framework for solving a large class of problems;
see also [118,114,338,115].

� The level set function and interfaces. Let an interested interface � (en-
closing the domain D) be a closed curve in R

2 (or a surface in R
3 and open or

multiple closed curves can also be treated), and formally represented by x2 =
f (x1). In practice, f may not be a simple and closed formula. Here both D and
� are contained in the image domain � for the given and observed image z (as
Section 13.1). Traditionally, to evolve or locate this curve � in a practical con-
text, some complicated parametrization (and adaptive meshing) has to be done.

The idea proposed by [379] is to define a function φ(x), x = (x1, x2) ∈ R
2,

in the space R
3 of one dimension higher so that the zero level curve of φ(x)

defines � precisely. Figure 13.2 shows the simple curve x2
1 + x2

2 = 1 in R
2 is

the interface of x3 = φ(x) = 1 −
√

x2
1 + x2

2 with the plane z = 0 in R
3. Such

a function φ(x) is called the level set function for the interface �. There are
many advantages to evolve φ(x) to track �: the topology of � can be flexible,
merging and breaking are automatic, and the computational grid (not moving
anyway) is regular.
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Figure 13.2. Graphical illustration of the level set function φ(x) and φ(x) = 0 in R
3.

If � = �(t) is represented by the level curve of φ(x, t) = 0, assuming φ

is positive in D− (inside �) and negative in D+ (outside �) as illustrated in
Figure 13.2, then computing the total differentiation Dφ/Dt of φ(x(t), t) = 0
gives

∂φ

∂t
+ ∇xφ · (

dx1(t)

dt
,

dx2(t)

dt
) = ∂φ

∂t
+ V · ∇x = 0, (13.74)

where V = (dx1(t)/dt, dx2(t)/dt) is the velocity of the evolving curves at time
t , V provides the driving force for the evolution equation (or the Hamilton–
Jacobi equation [379]) and it will couple with other equations for a given prob-
lem [26,377].

� The Heaviside function and the Delta function. The equation (13.74)
alone is not very exciting. The power of a level set method lies in the use
of φ(x) to reformulate an underlying problem. This is where the Heaviside
function H (x) and and the Delta function δ(x) and their regularized variants
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(note Hε(x) = 1
2 (1 − (x3/2ε3) + (3x/2ε)) for |x | ≤ ε is used in [26])

H (x) =
{

1, x ≥ 0,

0, x < 0,
Hε(x) =


1, x > ε,
1
2 (1 + x

ε
+ sin(πx/ε)

π
), |x | ≤ ε,

0, x < −ε,

δ(x) = H ′(x) =
{∞, x = 0,

0, x �= 0,
δε(x) = H ′

ε(x) =
{ 1+cos(πx/ε)

2ε
, |x | ≤ ε,

0, |x | > ε,

(13.75)

are useful, where one notes that δ′
ε(x) ≈ 0. The purpose of image segmentation

is to locate � or more precisely to classify an observed image z into meaningful
segments which have sharp variations in the image intensity across the bound-
aries � of such segments (image objects). For a binary image (of essentially
two classes), the level set method will attempt to identify the desirable level set
function φ such that φ(x) = 0 locates the boundaries of the image. Mathemat-
ically speaking, with φ found, the underlying image function is approximated
by two piecewise constants u1, u2

u = u(x) = u1 H (φ) + u2(1 − H (φ)), (13.76)

where u = u1 inside� i.e.φ > 0 and H (φ) = 1, and u = u2 outside� i.e.φ < 0
and 1 − H (φ) = 1. In general, one can consider a solution with p constants
u1, u2, . . . , u p with more level set functions; if n level set functions are used,
up to p = 2n constants can be found and, as each φ function may represent
more than 1 constant, n = 2 (and p = 4) is theoretically sufficient to cover all
constants and solution regions [377,114] using the four colour theorem in R

2.
It is a necessity to introduce the size measures of �(t), D+(t) respectively

as, noting D+ = {x | φ > 0}, D− = {x | φ < 0} and D+ ⋃
D− ⋃

� = �,

|�(t)| = H d−1(�) =
∫

�

|∇ H (φ(x))|dx

=
∫

D+
|∇ H (φ(x))|dx =

∫
�

δ(φ)|∇φ(x)|dx,
(13.77)

|D+(t)| = L(D+) =
∫

�

H (φ(x))dx (13.78)

in addition to the normal vector and the curvature as in (13.14)

n = ∇φ

|∇φ| , k = ∇ ·
( ∇φ

|∇φ|
)

= ∇ · n.

Here H d−1(�) denotes the more general Hausdorff measure for a (d − 1)-
manifold � in the R

d space [26]. The above formulae assume that �(t) and φ

remain Lipschitz boundaries and function respectively. Refer to [377,114].
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� Segmentation by active contours. The image segmentation problem was
earlier studied in [363] in the mathematical framework of a variational approach
based on minimizing an energy functional. Although the theory was attractive,
the resulting algorithm was complicated to implement (before the days of level
set methods). Using the level set idea, Chan and Vese [117] proposed a related
but different variational method that is easier to implement and much refinement
and generalization have been done ever since (see [377,114] and the references
therein).

For the piecewise approximation u in (13.76) to the given image z, the
Chan–Vese model minimizes the following functional

F(u, φ) = µ

∫
�

δ(φ)|∇φ|dx + ν

∫
�

H (φ)dx︸ ︷︷ ︸
regularity requirement

+ λ

∫
�

|u − z|2dx︸ ︷︷ ︸
data fidelity

,

i.e. F(u1, u2, φ) = µ

∫
�

δ(φ)|∇φ|dx + ν

∫
�

H (φ)dx

+ λ1

∫
D+

|z − u1|2dx + λ2

∫
D−

|z − u2|2dx

= µ

∫
�

δ(φ)|∇φ|dx + ν

∫
�

H (φ)dx

+ λ1

∫
�

|z − u1|2 H (φ)dx + λ2

∫
�

|z − u2|2(1 − H (φ))dx,

(13.79)
where µ, ν, λ1, λ2 are four nonnegative (Lagrangian) parameters. To derive the
Euler–Lagrange equations for (13.79), we first approximate (13.79) using the
regularized functions

F(u1, u2, φ) = µ

∫
�

δε(φ)|∇φ|dx + ν

∫
�

Hε(φ)dx

+λ1

∫
�

|z − u1|2 Hε(φ)dx + λ2

∫
�

|z − u2|2(1 − Hε(φ))dx.

(13.80)

Thus the first-order conditions and Euler–Lagrange equations for (13.79)
are 

u1 =
∫
�

z(x)H (φ)dx∫
�

H (φ)dx
, u2 =

∫
�

z(x)(1 − H (φ))dx∫
�

(1 − H (φ))dx
,

δε(φ)

[
µ∇ · ∇φ

|∇φ| − ν − λ1|z − u1|2 + λ2|z − u2|2
]

= 0

(13.81)
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where we have applied δ′
ε(φ) ≈ 0. Clearly from (13.81), u1 = mean(z) in D+

and u2 = mean(z) in D−. The solution of (13.81) is as challenging as (13.22)
for the restoration model. We remark that the usual name for the method, ‘active
contours without edges’, does not imply that the method cannot detect edges; in
fact, the method can detect sharp edges and discontinuities so the name is merely
to differentiate itself from classical methods where explicit edge detectors based
on gradients are used.

� Fast solver issues. There appears to exist no work on the fast solution of
(13.81) unlike (13.22), partly because the model was quite recent or more
probably because the default solver by time-marching schemes (Section 13.3),
in line with the idea of level set methods for tracking evolution curves, is widely
used. Therefore the widely accepted solution strategy is to let φ(x) = φ(x, t)
and solve the following (instead of (13.81))

∂φ

∂t
= δε(φ)

[
µ∇ · ∇φ

|∇φ| − ν − λ1|z − u1|2 + λ2|z − u2|2
]

, (13.82)

coupled with the updates of u1 = mean(z) in D+ and u2 = mean(z) in
D− after each step of a new φ in a time-marching numerical scheme.
In fact, based on the work of [379], some researchers have applied a re-
scaling to (13.82), by replacing δε(φ) by |∇φ|, and hence proposed to solve
[377,26]

∂φ

∂t
= |∇φ|

[
µ∇ · ∇φ

|∇φ| − ν − λ1|z − u1|2 + λ2|z − u2|2
]

. (13.83)

13.7 Numerical experiments

To show a flavour of the type of problems considered in this chapter, we
only give one simple denoising example using the CGM [110] method. Many
examples, illustrations and comparisons can be found in [11,110,3,97]. The
fast solvers issues are not yet fully addressed, as research work is on-going.
In Figure 13.3, the left plot shows a test image with noise in it and the right
plot shows the restored image using the primal-dual method after 50 Newton
iterations (with β = 10−10 and α = 50). Clearly the processing has made the
image much more identifiable by people who know the Mathematics building
in Liverpool.
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Orig z to use α=20, β=10−10
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Figure 13.3. Image restoration using the primal-dual method [110].

13.8 Guide to software and the supplied Mfiles

For many topics in image restoration, the suite of Mfiles developed in association
with [476,401] is very useful for study and development

http : //www.math.montana.edu/∼vogel/Software/deconv/

and another software that may be used to run examples is the imagetool package
(which is written in C with a MATLAB interface):

http : //gata.matapl.uv.es/∼mulet/imagetool/

The following simple Mfiles are supplied for this chapter for readers.

[1] BCCB.m – Generate a BCCB matrix C from a root matrix R;
[2] BTTB.m – Generate a BTTB matrix T from a root matrix R for either a

symmetric or unsymmetric T ;
[3] ch13.m – Compute w = Kv using three methods: BTTB, BCCB and

FFT2.
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It should be remarked that, to load in an image file.jpg onto MATLAB and
store it in a matrix A, do the following

>> A = imread('file','jpg');

>> A = double(A(:,:,1)); % to convert to double, ready for

processing A ...

>> imagesc(A); % to display an image stored in A.

>> colormap(gray) % to set to clear B/W image
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Application IV: voltage stability in electrical
power systems

As an example of what is often called a complex system, the power grid
is made up of many components whose complex interactions are not
effectively computable. Accordingly, some scientists have found it more
useful to study the power grid’s macroscopic behaviour than to dissect
individual events.

Sara Robinson. The power grid as complex system. SIAM News,
Vol. 36 (2003)

The electrical power network is a real life necessity all over the world; how-
ever, delivering the power supply stably while allowing various demand pattern
changes and adjustments is an enormous challenge. Mathematically speaking,
the beauty of such networks lies in their providing a challenging set of non-
linear differential-algebraic equations (DAEs) in the transient case and a set of
nonlinear algebraic equations in the equilibrium case [438,89,292].

This chapter introduces the equilibrium equations, discusses some recent fast
nonlinear methods for computing the fold bifurcation parameter and finally
highlights the open challenge arisen from computing the Hopf bifurcation
parameter, where one must solve a new system of size O(n2) for an original
problem of size n. We shall consider the following.

Section 14.1 The model equations
Section 14.2 Fold bifurcation and arc-length continuation
Section 14.3 Hopf bifurcation and solutions
Section 14.4 Preconditioning issues
Section 14.5 Discussion of software and the supplied Mfiles

449
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14.1 The model equations

The power flow problem involves the calculation of voltages at all nodes of
an alternating current network when subject to a specified loading condition
and the power and voltage constraints that are applied to the system. The es-
sential physical laws are the KCL and KVL (Kirchhoff current and voltage
laws) coupled with power balance (note that the complex power S = P + i Q
is linked to the voltage V and current I via S = V I ∗, where ∗ denotes a com-
plex conjugate). The main equations can be found in applied mathematics books
such as [439,28] as well as in most power system analysis books, for example
[224,239,325].

Here we give a brief description to assist readers. Assume that we are
dealing with an electrical power system of m + 1 nodes (called buses): j =
1, 2, . . . , m, m + 1 with the last one, m + 1, used as the reference bus. In nodal
analysis, the novelty lies in converting (somewhat complicated) system con-
trol quantities into equivalent quantities in terms of admittance (the recipro-
cals of impedance) and equivalent circuits. At bus j , write into polar form
Vj = v j exp(iδ j ) with v j and δ j denoting the voltage magnitude and phase an-
gle. Similarly between any two connecting buses j and k, write the admittance
as Y jk = y jk exp(iθ jk).

Then at bus j , letting the combined active and reactive power (due to other
buses) equal to the net injected active and reactive power yields the power flow
equations as follows

Sj = Vj I ∗
j , (14.1)

that is,

Pj + i Q j = Vj

m+1∑
k=1

(Y jk Vk)∗

= v j

m+1∑
k=1

y jkvk exp(δ j − δk − θ jk).

(14.2)

Therefore, we can write the nonlinear equations for Q j , v j , δ j as follows (Pj

is usually known as discussed below):
Pj = v j

m+1∑
k=1

y jkvk cos(δ j − δk − θ jk)

Q j = v j

m+1∑
k=1

y jkvk sin(δ j − δk − θ jk).

(14.3)
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At a network equilibrium, the net injected power Sj = Pj + i Q j is equal to the
difference of the generation power PG j + i QG j and the (user consumed) load
power PL j + i QL j .

In iterating the power equations or in a power disturbance, the two powers (Sj

and the difference) are different and hence we have the term power mismatch,
referring to (for bus j)

�Pj = PG j − PL j − Pj = PG j − PL j − v j

m+1∑
k=1

y jkvk cos(δ j − δk − θ jk)

�Q j = QG j − QL j − Q j = QG j − QL j − v j

m+1∑
k=1

y jkvk sin(δ j − δk − θ jk).

(14.4)

In normal circumstances, the power equations are then simply �Pj =
�Q j = 0 that are sometimes called the mismatch equations (a confusing
usage!).

The precise number of equations to be solved depends upon the bus type:

0 � the slack (reference) bus j = m + 1 with v j = 1 and δ j = 0 and no equa-
tion is needed;

1 � a PQ (load) bus at j = 1, . . . , m1 where two power equations for v j and
δ j are needed;

2 � a PV (voltage control) bus at j = m1 + 1, . . . , m where v j is given and
only one power equation is needed for δ j .

Here m1 is the total number of PQ buses (which are assumed to be the first m1

buses out of the network). Then the power equations for the network can be
written as follows

�P1
...

�Pm

�Q1
...

�Qm1


=



PG1 − PL1 − P1
...

PGm − PLm − Pm

QG1 − QL1 − Q1
...

QGm1
− QLm1

− Qm1


= 0. (14.5)

Let n = m + m1 be the total number of unknowns and let x ∈ R
n denote the

system state variables i.e.

x = [x1 · · · xn]� = [δ1 δ2 . . . δm1 . . . δm v1 v2 · · · vm1 ]�.
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Define f : R
n → R

n as follows

f(x) =



f1(x)
...

fm(x)
fm+1(x)

...
fn(x)


=



�P1(x)
...

�Pm(x)
�Q1(x)

...
�Qm1 (x)


. (14.6)

In the above setting of nonlinear equations, the load can be a varying parameter.
When the network is operating at a stationary equilibrium, we use Newton’s
method to solve the power flow problem to determine the voltages of the entire
network [454]. Assume the current state vector is x0 associated with the present
load [PL10 PL20 . . . PLm0 PLm+1,0 ].

Voltage collapse occurs in power systems as a result of a sequence of events
that accompany a loss of stability where a change in system conditions causes
a progressive and uncontrollable drop in voltage in significant parts of a power
system [195,89]. The main factor causing this collapse has been shown to be the
depletion of reactive load power on the power system. Mathematically, voltage
collapse is associated with fold bifurcations resulting from a loss of stability in
the parameterized nonlinear equations that describes the static power system
[90]. Over the last few years many articles and papers have been written on the
subject [89].

To describe the load increase in terms of a varying parameter λ, define the
new load as {

PL j = PL j0 + λα j

QL j = QL j0 + λβ j
(14.7)

where PL j and QL j are the new real and reactive loads increased after the initial
state at λ0 = 0; and α j and β j describe the load increase pattern at each bus j for
the real and reactive loads respectively. Then we may write the parameterized
power flow equations at bus j as follows:{

�P j = PG j − (PL j0 + λα j ) − Pj = 0
�Q j = QG j − (QL j0 + λβ j ) − Q j = 0

(14.8)

where Pj and Q j are as defined in equations (14.3). Combining equation (14.8)
with (14.4) we obtain {

�P j = �Pj − λα j = 0
�Q j = �Q j − λβ j = 0.

(14.9)
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Now we define f(., .) : R
n × R → R

n as follows

f(x, λ) =



�P1(x, λ)
...

�Pm(x, λ)
�Q1(x, λ)

...
�Qm1 (x, λ)


=



�P1(x) − λα1
...

�Pm(x) − λαm

�Q1(x) − λβ1
...

�Qm1 (x) − λβm1


= 0 (14.10)

and combining with (14.6) we obtain the our main system as a special case of
(14.14)

f(x, λ) = f(x) − λb = 0, (14.11)

where we only allow fixed power changes to distribute the total system load
change represented by λ. Here the constant vector b ∈ R

n denotes the system
load pattern i.e. b = [α1 . . . αm β1 . . . βm1 ]� and is such that

∑n
k=1 bk = 1. Here

we also consider the special case

b =
s∑

k=1

wlk elk with wlk = 1/s (14.12)

where elk is the lk th column of In×n with m + 1 ≤ lk ≤ n i.e. we only con-
sider variations of reactive load for a single bus or a selection of any s load
buses.

Finally, to get familiarized with the unified notation, we expand the Jacobian
equation in terms of the power quantities

∂�P1
∂δ1

. . . ∂�P1
∂δm

∂�P1
∂v1

. . . ∂�P1
∂vm1

...
...

...
...

∂�Pm
∂δ1

. . . ∂�Pm
∂δm

∂�Pm
∂v1

. . . ∂�Pm
∂vm1

∂�Q1
∂δ1

. . . ∂�Q1
∂δm

∂�Q1
∂v1

. . . ∂�Q1
∂vm1

...
...

...
...

∂�Qm1
∂δ1

. . .
∂�Qm1

∂δm

∂�Qm1
∂v1

. . .
∂�Qm1
∂vm1





�δ1(x)
...

�δm(x)
�v1(x)

...
�vm1 (x)


= −



�P1(x)
...

�Pm(x)
�Q1(x)

...
�Qm1 (x)


.

(14.13)

We wish to remark that the real life application can be more difficult than our
normal continuity assumption on f [139].

To show the performance of various methods, we use the following IEEE
nine-bus system which is in IEEE Common Data Format; see [295]. This system
is shown in Figure 14.1 and has nine buses: m1 = 6 load buses (Type 1: bus
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1
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Figure 14.1. The standard IEEE nine-bus example.

1, 2, . . . , 6), m = 8 − m1 = 2 generators (Type 2: bus 7, 8) and 1 reference
generator bus (Type 2: bus 9).

14.2 Fold bifurcation and arc-length continuation

The model introduced above fits into a large class of nonlinear systems of
equations, whose solution is addressed here.

In the mathematical literature, the term ‘fold bifurcation’ is often called the
turning point because the solution turns at a fold point [183,425,434]. Adopting
the usual notation, denote a nonlinear system of equations by

f(x, λ) = 0 (14.14)

where x ∈ R
n is the state vector, λ ∈ R is the bifurcation parameter and f :

R
n × R → R

n with f(x) = [ f1(x) . . . fn(x)]�. Assume that the current state
variable is x = x0 corresponding to the parameter λ0.
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The convergence problem with direct bifurcation methods is well known
(due to the Jacobian matrix being singular) and one usually uses these methods
only for accurately locating the fold point (x∗, λ∗) given a good estimate. Ideally,
we want a method that has no difficulties near or passing round a fold point.
With it we can numerically trace the solution path by generating a sequence of
points satisfying a chosen tolerance criterion. This is reasonable since there is
nothing wrong geometrically with the curve but the parameter λ is not the right
parameter to use.

One such method that overcomes the convergence problem completely is the
continuation method as extensively discussed in the literature [6,183,425,434].
These kinds of methods together with suitable monitoring steps for locating the
fold bifurcation (e.g. computing the minimum singular value) are very reliable
in most cases. In this section we briefly discuss the popular pseudo-arc length
continuation method which is due to Keller [315].

Let s denote the parameter describing the solution path of (14.11). Suppose
we have a solution (x0, λ0) of (14.11), then the Keller’s method consists of
solving the following equations for (x, λ) = (x1, λ1) close to (x0, λ0)

G(Y, s) =
[

f(x, λ)
x̂�

0 (x − x0) + λ̂0(λ − λ0) − �s

]
= 0 (14.15)

where Y = (x�, λ)� ∈ R
n+1 and G : R

n+2 → R
n+1 and (x̂0, λ̂0) is the normal-

ized tangent vector at (x0, λ0).
This system is solvable from the (Schur complement like) ABCD lemma

[315,434] and can be solved by using a predictor–corrector procedure as follows.

� Predictor (Euler’s method)[
x(1)

λ(1)

]
=

[
x0

λ0

]
+ �s

[
x̂0

λ̂0

]
� Corrector (Newton’s method)

for � ≥ 1 iterate[
(fx)(�) (fλ)(�)

x̂�
0 λ̂0

] [
�x(�)

�λ(�)

]
= −

[
f(x(�), λ(�))
x̂�

0 (x(�) − x0) + λ̂0(λ(�) − λ0) − �s

]
(14.16)

with updates [
x(�+1)

λ(�+1)

]
=

[
x(�)

λ(�)

]
+

[
�x(�)

�λ(�)

]
. (14.17)

On convergence of the corrector step, we obtain (x1, λ1). Then starting at
(x1, λ1) to find (x, λ) = (x2, λ2), the next tangent vector is computed from
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(note f1
x = fx(x1, λ1) and f1

λ = fλ(x1, λ1))[
f1
x f1

λ

x̂�
0 λ̂0

] [
x̂1

λ̂1

]
=

[
0
1

]
. (14.18)

It is interesting to observe that the predictor step is simply the initial Newton
step because (x0, λ0) is a point on the solution curve.

However, there are at least two reasons why a continuation method is not the
answer to the practical power control problem:

(1) a continuation method (either arc-length or pseudo-arc length-based) is usu-
ally expensive because many path-following steps (including monitoring
steps) must be carried out to reach a bifurcation point λ∗; and

(2) the exact bifurcation point x∗ is not always needed and only the parameter
location λ∗ is practically required in power system analysis.

Test functions, as smooth functions τ : R
n+1 → R defined along the solution

path of f(x, λ) = 0, are necessary tools for detecting bifurcation points during
the process of continuation [425]. A test function satisfies τ (x∗, λ∗) = 0 when
(x, λ) = (x∗, λ∗) is a bifurcation point.

The obviously qualified test function τ (x, λ) = det(J(x, λ)) suffers from
scaling problems [131,233,235,62]. To alleviate these problems, the border-
ing method sets up an (n + 1)-dimensional bordered system to compute the test
function τ [

J(x, λ) d
g� 0

] (
w
τ

)
= M

(
w
τ

)
=

(
0
1

)
, (14.19)

where d, g ∈ R
n are chosen such that the matrix M is nonsingular for all regular

solutions of f(x, λ) = 0. Then by Cramer’s rule, such a τ is clearly a scaled
Jacobian (satisfying τ (x∗, λ∗) = 0)

τ (x, λ) = det(J)

det(M)
. (14.20)

A related and mathematically equivalent test function is the tangent test
function due to Abbott–Seydel [2,1,424]

τ = e�
k B−1Jek . (14.21)

Here, B is defined to be the matrix J = fx with column k replaced with b = fλ,
i.e.

B = J(In − eke�
k ) + be�

k , (14.22)
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Table 14.1. Comparison of the performance index (using the Abbott–Seydel
test function τ ) with the continuation power flow solution (‘exact index’).

‘CPF’ stands for continuation power flow and ‘C steps’ for ‘CPF steps’. Note
that only two CPF steps are needed to obtain the predicted index using τ .

Predicted index
Varied bus Exact index CPF C steps using τ

4 5.257974 5.2539 55 5.3251
5 2.454823 2.4305 25 2.4531
6 5.814020 5.7499 58 5.8133
7 3.201959 3.1859 34 3.1984
8 5.245256 5.2247 54 5.2968
9 2.342621 2.3287 25 2.3514

where In is the n × n identity matrix, and ek is the k-th unit vector. In [142],
the Abbott–Seydel test function (14.21) was reformulated into

τk(x, λ) = 1

e�
k (dx/dλ)

. (14.23)

Furthermore, a formal link was made to the (n + 1) augmented system in (14.19)
and also to the TVI method [90,175] that has been in use by the power engi-
neering community for many years. Refer to [142,292].

As remarked, a mathematical as well as engineering challenge is to be able to
predict λ∗ without having to compute many nonlinear stepping steps. We now
consider how to adapt the test function τ (λ) in (14.23) to yield an approximate
performance index, namely, an approximation to parameter λ∗.

The essence of this work is to analyse the special analytical behaviour of
functions det(J ), det(B) and hence τk . It turns out that this is possible for power
systems (14.11) and a reliable approximation to λ∗ can be computed from the
Newton-like formula at the current solution point (x0, λ0)

λ∗ = λ0 − 1

2

τ (λ0)

dτ/dλ(λ0)
, (14.24)

where a finite difference formula may be used to compute

dτ

dλ
= τ (λ + δλ) − τ (λ)

δλ
, (14.25)

for suitable δλ > 0. We remark that the reliability of (14.24) is only established
well after it has been used for general test functions and found unreliable for
some test functions [145,424,427].
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We now present some numerical results to illustrate the effectiveness of the
the performance index (i.e. the predicted fold parameter λ∗). The IEEE nine-
bus system (Figure 14.1) consisting of three generators, six load buses and nine
lines is used to illustrate the application of the performance index. Equation
(14.23) is implemented by computing two successive Newton solutions at λ =
λ0 and λ = λ0 + δλ for a suitably small δλ. dτ/dλ is then then found via the
finite difference described in (14.25). A performance index is then evaluated
using (14.24). For simplicity, we set λ0 = 0. Table 14.1 shows, for single bus
variations, the appropriate fold bifurcation parameter λ∗ evaluated using the
tangent test function method and the pseudo-arc-length continuation method
with a fixed step length of 0.1. These results are compared with the exact λ∗.
Observe that the test function (14.23) provides a very good prediction for λ∗ at
a cost of two Newton steps.

In summary, formula (14.24) defines a fast nonlinear method, based on the
Abbott–Seydel test function (14.21), for location of the bifurcation parameter
λ∗. This method only requires two successive power solutions. We shall discuss
how to speed up the linear system solvers within each nonlinear power solution
for large networks.

14.3 Hopf bifurcation and solutions

The dynamic behaviour of an electrical power system may be modelled by the
time-dependent system of ordinary differential equations

dx
dt

= f(x, λ) (14.26)

where x ∈ R
n is the vector of the usual state variables (i.e. voltage magni-

tude and phase angle), λ ∈ R is the bifurcation parameter, and f : R
n × R →

R
n is a sufficiently smooth function. A stability analysis of system (14.26)

is achieved by examining the steady state solutions of the nonlinear equa-
tions

f(x, λ) = 0. (14.27)

Given an initial solution (x0, λ0), the implicit function theorem [315] guarantees
that (14.27) can be solved for each λ ∈ B(r, λ0) for some r > 0, where B denotes
an interval centred at λ0 with radius r .

The stability of a stationary solution of (14.27) is indicated by the eigenvalues
of the Jacobian matrix J = fx(x, λ) evaluated at the stationary solution. All
eigenvalues need to lie in the left half complex plane; that is, have negative



14.3 Hopf bifurcation and solutions 459

real part. When one or more eigenvalues crosses over from the left half plane
to the right, upon varying the parameter λ, the real part of these eigenvalues
becomes positive and the associated stationary solution loses stability. The
onset of instability, called a bifurcation point, corresponds to the critical value
of λ for which the eigenvalues lie precisely on the imaginary axis. We already
know that when one real eigenvalue crosses over from the left half plane to
the right, then at the critical point we have a fold bifurcation point which is
characterized by J being singular. Such bifurcations are easy to detect during a
numerical continuation using test function methods of [425,235,142,140,141]
which check sign changes for detecting a critical point.

When a pair of complex conjugate eigenvalues cross over from the left half
complex plane to the right, the critical point is called a Hopf bifurcation point.
These bifurcations are much more difficult to detect since J is nonsingular at
the Hopf point and constructing test functions that change sign relies in general
on computing the appropriate dominant eigenvalue which does not give rise to
a robust method. We will discuss this in further detail later but first we give a
formal definition for the Hopf bifurcation.

Definition 14.3.1. A solution point (x0, λ0) of equation (14.27) is called a Hopf
point if the Jacobian J = fx(x0, λ0) has a conjugate pair of pure imaginary

eigenvalues µ(λ0) = ±iβ0, β0 > 0, with
dRe(µ0)

dλ
�= 0.

At a Hopf bifurcation point, either stable limit cycles are created from the
unstable stationary solutions called a supercritical Hopf bifurcation, or unstable
limit cycles are created from the stable stationary solutions which is called a
subcritical Hopf bifurcation.

In our context, we are interested in constructing appropriate test functions for
the detection of such points, in particular, our problem of interest is in computing
a security index for the onset of the subcritical Hopf bifurcation. Before that
we review some of the classical methods used to detect and compute Hopf
bifurcations in general.

Direct methods for computing Hopf bifurcations. Recall that to com-
pute a fold bifurcation of f(x, λ) = 0, we set up the extended system of the
form  f(x, λ)

fx(x, λ)φ
φ�φ − 1

 = 0,

where φ is the null eigenvector (see for example [425,235]). We can set up sim-
ilar systems to directly compute a Hopf bifurcation. These have been discussed
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in [235,407,251] and take the form

G(y) =


f(x, λ)

fx(x, λ)u + βv

fx(x, λ)v − βu
N1(u, v)
N2(u, v)

 = 0, (14.28)

where G : R
3n+2 → R

3n+2 and y = (x�, λ, u�, v�, β)� are the unknowns.
Here N1(u, v) and N2(u, v) are two normalizing equations required to ensure
that we obtain a system of 3n + 2 equations with 3n + 2 unknowns.

System (14.28) can be obtained by considering the eigenvalue problem

Jφ = µφ (14.29)

where J = fx(x, λ). Assuming the eigenvalue µ = α + iβ with corresponding
eigenvector φ = u + iv and so equation (14.29) becomes

J (u + iv) = (α + iβ)(u + iv).

Separating the real and imaginary parts and noting that at a Hopf bifurcation
α = 0, we can write {

Ju + βv = 0

Jv − βu = 0.
(14.30)

We consider two normalizations. The first due to Griewank and Reddien in
[251] is given by {

N1 = c�u

N2 = c�v − 1
(14.31)

for some suitable vector c ∈ R
n . The choice of vector c needs only to sat-

isfy c�u = 0 and c�v = 1 at a Hopf point (xH , λH ). The system (14.28) thus
becomes

G(y) =


f(x, λ)

fx(x, λ)u + βv

fx(x, λ)v − βu
c�u

c�v − 1

 = 0. (14.32)

It was shown in [251] that the Jacobian G y of (14.32) is nonsingular at a
Hopf point. We remark that this choice of normalization allows the solution
y0 = (x�

0 , λ0, u�
0 , 0�, 0)� which corresponds to a fold point. Therefore it is
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possible that one computes a fold point rather than a Hopf point if the solution
path of f(x, λ) = 0 has both points close to each other, as noted in [251,407,434].

The second normalization was introduced by Roose and Hlavacek [407]
given by {

N1 = c�u

N2 = u�u − 1
(14.33)

and so (14.28) becomes

G(y) =


f(x, λ)

fx(x, λ)u + βv

fx(x, λ)v − βu
c�u

u�u − 1

 = 0. (14.34)

Again, with this normalization, it can be shown that G y is nonsingular [407].
More importantly, the choice of normalization ensures that a solution of system
(14.32) cannot be a fold point provided that the vector c is not orthogonal to
the solution u corresponding to iβ.

Remark 14.3.2. The second and third equations of system (14.28) can be
written in the form

f2
x(x, λ)u + β2u.

This simplifies equation (14.28) to a reduced 2n + 2 system. The same reduction
holds for equation (14.34) on applying the above relation [407]:

G(y) =


f(x, λ)

(f2
x(x, λ) + β2 In)u

c�u
u�u − 1

 = 0, (14.35)

where In denotes the n × n identity matrix and y = (x�, λ, u�, β)�. Notice
here that the matrix fx(x, λ)2 + β2 In will have a rank defect of 2.

System (14.34) or (14.35) can be solved efficiently to compute a Hopf bifur-
cation using the Newton method provided that the initial solution is relatively
close to the Hopf bifurcation. However, this is not usually the case since in
general we are interested in problems where the Hopf point may be some dis-
tance away. Therefore we will use a continuation method [315,425,234] first
on f(x, λ) = 0 to detect the approximate location of the Hopf point. We review
these detection methods next.
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Test function methods for detecting Hopf bifurcations. We assume that
at the initial λ the steady-state solutions of f(x, λ) = 0 are stable; namely that, all
eigenvalues of the system Jacobian J = fx(x, λ) have negative real part. Most
of the methods available use a continuation process to compute the steady-
state solutions for varying λ. At each solution point (x, λ) we wish to find
whether the real part of a complex pair of eigenvalues cross the imaginary axis.
The simplest approach would be to estimate all the eigenvalues to establish
a change of stability. If the dimension of the Jacobian J = fx is small then
this would be feasible. However, for larger dimensions of the Jacobian matrix
this certainly would not be practical. Another approach was to compute some
dominant eigenvalues (ones with smallest absolute real part) where the ‘some’
depends on the nonlinearity of the problem. Most of the early research was on
accelerating the computation of these eigenvalues especially for large systems
[425,237,369,213]. For example, in [213], the authors developed a method to
estimate the two dominant eigenvalues by performing the Arnoldi algorithm on
a modified Cayley transform of these eigenvalues to accelerate convergence.
Although these techniques are efficient when applicable, they are generally not
useful for many problems, especially when the Hopf bifurcation may be some
distance away. This is so since in general the eigenvalues have a nonlinear
behaviour which means that determining which ones are dominant is difficult.
Therefore we turn our attention to constructing test functions for the detection
of Hopf bifurcations.

Recall that a test function has the property that it has a zero value at the
required bifurcation point [425,142]. Such test functions depend on the deter-
minant of the Jacobian J and are simple to construct for detecting fold points
during a continuation process since a change of sign signals that a fold has been
passed. However, constructing test functions for detecting Hopf bifurcations is
not so simple since the Jacobian matrix is nonsingular at a Hopf point. Never-
theless, test functions do exist to detect Hopf bifurcations; as we show next, the
trick is to construct a new and more desirable Jacobian matrix.

Before we present a more robust method, let us consider a simple test function
based on the Hopf definition. Suppose that the Jacobian matrix J has a conjugate
pair of eigenvalues and so we can write the eigenvalue problem:

Jφ = µφ (14.36)

where µ = α + iβ is an eigenvalue of J with corresponding eigenvector φ =
u + iv. As we stated in Section 14.3, at a Hopf point, we are interested in α = 0
and so equation (14.36) can be written as:

(J − iβ In)φ = 0. (14.37)
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Thus at a Hopf point we have det(J − iβ In) = 0. This suggests that during a
continuation process of f(x, λ) = 0 a change of sign will occur to the determi-
nant det(J − iβ In) if a Hopf point is passed. Therefore appropriate Hopf test
functions can be defined similar to those defined for detecting folds [235,425].
For example, the test function (or its scaled version)

τH = det(J − iβ In) (14.38)

can be monitored during a continuation process to detect a Hopf point. Notice
here that in general τH ∈ C and that the computations involve complex arith-
metic. Moreover, in practical applications, the test function described above
(and others similar [356,357]) requires identifying one of the eigenvalues that
will eventually cross the imaginary axis (which can be difficult), known as the
critical eigenvalue. Many researchers have assumed that the dominant eigen-
value is the critical one [357,7] but this may not always be the case espe-
cially when the Hopf point is some distance away from the current solution
point.

To overcome these difficulties we require a method for detecting Hopf
bifurcations that does not depend on any direct computation of eigenvalues of
J . Essentially this method constructs a new (and real) Jacobian matrix, based on
this available J , that exhibits a single zero eigenvalue whenever the underlying
J has a pair of pure imaginary eigenvalues. This gives rise to an elegant way of
detecting a Hopf bifurcation by checking the singularity of the new Jacobian
matrix just as in the fold case.

Hopf Test functions using bialternate products. We review a method
which is due to Stephanos [435] in 1900 and later Fuller [212] in 1968, and
more recently has become the approach to Hopf points [235,62,254,236]. The
method is known as the bialternate matrix product or biproduct. First we go
through some preliminaries (see [235,329,45]) and present a method (tensor
sum) as a first version of biproduct.

14.3.1 The tensor product of matrices

Definition 14.3.3. (Tensor product). Let A and B be n × n matrices with
elements (ai j ) and (bkl) respectively, 1 ≤ i, j, k, l ≤ n. Then the tensor product
of A and B, denoted A ⊗ B, is an n2 × n2 matrix with elements defined by

(A ⊗ B)rs = ai j bkl (14.39)

where

r ≡ (i − 1)n + k, s ≡ ( j − 1)n + l.
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Consider the case where A and B are 2 × 2 matrices, then

A ⊗ B =
(

a11 B a12 B
a21 B a22 B

)
=


a11b11 a11b12 a12b11 a12b12

a11b21 a11b22 a12b21 a12b22

a21b11 a21b12 a22b11 a22b12

a21b21 a21b22 a22b21 a22b22

 .

Note that this tensor product notation is extensively used in (1.41), (13.47) and
in studying the FFT framework [465]. The properties of tensor products which
follow from the definition are as follows. Let A, B, C, D be n × n matrices.
Then:

1. if α, β ∈ Cn, αA ⊗ β B = αβ(A ⊗ B);
2. A ⊗ (B + C) = A ⊗ B + A ⊗ C ;
3. (A + B) ⊗ C = A ⊗ C + B ⊗ C ;
4. (A ⊗ B)(C ⊗ D) = (AC) ⊗ (B D);
5. A ⊗ B = (A ⊗ In)(In ⊗ B);
6. det(A ⊗ B) = (detA)n (detB)n;
7. In ⊗ In = In2 ;
8. if A and B are nonsingular, then (A ⊗ B)−1 = A−1 ⊗ B−1;
9. if A and B are triangular, so is A ⊗ B. In particular, if A and B are diagonal,

so is A ⊗ B.

The following important result concerns the eigenvalues and eigenvectors:

Theorem 14.3.4. If νi and µ j are the eigenvalues of the matrices A and B
respectively, the eigenvalues of the matrix A ⊗ B are νiµ j for all 1 ≤ i, j ≤ n.
The associated eigenvectors have the form

ωi j =
(

φ
[1]
i ψ j φ

[2]
i ψ j · · · φ

[n]
i ψ j

)T
(14.40)

where φi and ψ j are the eigenvectors of A and B respectively.

Proof. As an illustration of the result, we prove the theorem for the case
of n = 2 along the lines of [45]. Let A and B have distinct eigenvalues νi

and µ j where 1 ≤ i, j ≤ 2 with corresponding eigenvectors φi = (φ[1]
i , φ

[2]
i )�

and ψ j = (ψ [1]
j , ψ

[2]
j )� respectively. Consider the case i = j = 1, then we can

write

Aφ1 = ν1φ1, Bψ1 = µ1ψ1.
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Expand both systems

a11φ
[1]
1 + a12φ

[2]
1 = ν1φ

[1]
1 (14.41)

a21φ
[1]
1 + a22φ

[2]
1 = ν1φ

[2]
1 (14.42)

b11ψ
[1]
1 + b12ψ

[2]
1 = µ1ψ

[1]
1 (14.43)

b21ψ
[1]
1 + b22ψ

[2]
1 = µ1ψ

[2]
1 . (14.44)

Multiply both equations (14.41) and (14.42) by equation (14.43)

a11b11φ
[1]
1 ψ

[1]
1 + a11b12φ

[1]
1 ψ

[2]
1 + a12b11φ

[2]
1 ψ

[1]
1 + a12b12φ

[2]
1 ψ

[2]
1

= ν1µ1φ
[1]
1 ψ

[1]
1

a21b11φ
[1]
1 ψ

[1]
1 + a21b12φ

[1]
1 ψ

[2]
1 + a22b11φ

[2]
1 ψ

[1]
1 + a22b12φ

[2]
1 ψ

[2]
1

= ν1µ1φ
[2]
1 ψ

[1]
1

and, similarly, multiply equations (14.43) and (14.44) by equation (14.42)

a21b11φ
[1]
1 ψ

[1]
1 + a21b12φ

[1]
1 ψ

[2]
1 + a22b11φ

[2]
1 ψ

[1]
1 + a22b12φ

[2]
1 ψ

[2]
1

= ν1µ1φ
[1]
1 ψ

[2]
1

a21b21φ
[1]
1 ψ

[1]
1 + a21b22φ

[1]
1 ψ

[2]
1 + a22b21φ

[2]
1 ψ

[1]
1 + a22b22φ

[2]
1 ψ

[2]
1

= ν1µ1φ
[2]
1 ψ

[2]
1 .

Finally, gather and re-arrange these equations

a11b11φ
[1]
1 ψ

[1]
1 + a11b12φ

[1]
1 ψ

[2]
1 + a12b11φ

[2]
1 ψ

[1]
1 + a12b12φ

[2]
1 ψ

[2]
1

= ν1µ1φ
[1]
1 ψ

[1]
1

a11b21φ
[1]
1 ψ

[1]
1 + a11b22φ

[1]
1 ψ

[2]
1 + a12b21φ

[2]
1 ψ

[1]
1 + a12b22φ

[2]
1 ψ

[2]
1

= ν1µ1φ
[1]
1 ψ

[2]
1

a21b11φ
[1]
1 ψ

[1]
1 + a21b12φ

[1]
1 ψ

[2]
1 + a22b11φ

[2]
1 ψ

[1]
1 + a22b12φ

[2]
1 ψ

[2]
1

= ν1µ1φ
[1]
1 ψ

[2]
1

a21b21φ
[1]
1 ψ

[1]
1 + a21b22φ

[1]
1 ψ

[2]
1 + a22b21φ

[2]
1 ψ

[1]
1 + a22b22φ

[2]
1 ψ

[2]
1

= ν1µ1φ
[1]
1 ψ

[2]
1 .

Writing these equations in matrix form
a11b11 a11b12 a12b11 a12b12

a11b21 a11b22 a12b21 a12b22

a21b11 a21b12 a22b11 a22b12

a21b22 a21b22 a22b21 a22b22




φ
[1]
1 ψ

[1]
1

φ
[1]
1 ψ

[2]
1

φ
[2]
1 ψ

[1]
1

φ
[2]
1 ψ

[2]
1

 = ν1µ1


φ

[1]
1 ψ

[1]
1

φ
[1]
1 ψ

[2]
1

φ
[2]
1 ψ

[1]
1

φ
[2]
1 ψ

[2]
1

 ,

(14.45)
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and in more compact form, we obtain that

(A ⊗ B)(φ1 ⊗ ψ1) = ν1µ1(φ1 ⊗ ψ1). (14.46)

It follows that ν1µ1 is an eigenvalue of A ⊗ B with the associated eigenvector
φ1 ⊗ ψ1. In a similar way, we see that the remaining eigenvalues of A ⊗ B
are ν1µ2, ν2µ1 and ν2µ2 with associated eigenvectors φ1 ⊗ ψ2, φ2 ⊗ ψ1 and
φ4 ⊗ ψ4.

The next result concerns the sum of tensor products1

Theorem 14.3.5. Let A and B be n × n matrices defined as before with
eigenvalues νi and µ j respectively, 1 ≤ i, j ≤ n. Then the eigenvalues of the
matrix

G = A ⊗ B + B ⊗ A (14.47)

are given by the n2 pairwise sums νiµ j + ν jµi with the associated eigenvectors
φi ⊗ ψ j for 1 ≤ i, j ≤ n.

More general discussion and results can be found in Stephanos [435], Fuller
[212], Govaerts [235] and [329]. The above theorem has a very important
consequence:

Corollary 14.3.6. The eigenvalues of the matrix

D = A ⊗ In + In ⊗ A (14.48)

are the n2 values νi + ν j with associated eigenvectors φi ⊗ φ j where 1 ≤
i, j ≤ n.

Here matrix D in (14.48) is known as the tensor sum of the matrix A with
itself. Corollary 14.3.6 shows that if any pair of eigenvalues of A sum to zero
then its tensor sum is singular i.e. det(D) = 0. Additionally, since each pair of
distinct eigenvalue sums occurs twice and a stable system has all eigenvalues
with negative real parts, the tensor sum will have a rank-2 deficiency providing
of course that the matrix A is nonsingular.

This result lays the foundation for our first method of detecting a Hopf
bifurcation. Consider the system Jacobian of J = fx of equation (14.26). Recall
that a Hopf bifurcation occurs when a pair of complex conjugate eigenvalues
are purely imaginary. For the tensor sum of J defined by

D = J ⊗ In + In ⊗ J,

1 For two general matrices A, B, their eigenvalues λ(A), λ(B) may not be related to λ(A + B). For
precise conditions and more special cases, refer to the work of Prof. T. Tao, UCLA, USA.
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we have det(D) = 0 with rank-2 deficiency at a Hopf bifurcation. This points
a way of Hopf detection. Although with this method it is possible to detect
a Hopf point during a continuation process, it would not be convenient or
straightforward to use because the determinant of the tensor sum D does not
change sign after a Hopf point is passed. Therefore, the application of the tensor
sum in its current form is considered impractical. In the next section we describe
a method to overcome these problems. But first we give a numerical example
which illustrates the properties of the tensor sum.

Example 14.3.7. Consider a matrix that mimics matrix J at a Hopf point

A =
−7 9 2

0 −3i 4
0 0 3i

 .

Clearly A has eigenvalues {−7, −3i, 3i} and is nonsingular. The tensor sum of
A is given by

D = A ⊗ In + In ⊗ A

=



−14 9 2 9 0 0 2 0 0
0 −7 − 3i 4 0 9 0 0 2 0
0 0 −7 + 3i 0 0 9 0 0 2
0 0 0 −7 − 3i 9 2 4 0 0
0 0 0 0 −6i 4 0 4 0
0 0 0 0 0 0 0 0 4
0 0 0 0 0 0 −7 + 3i 9 2
0 0 0 0 0 0 0 0 4
0 0 0 0 0 0 0 0 6i


and D has eigenvalues {−14, −7 − 3i, −7 + 3i, −7 − 3i, −6i, 0, −7 +
3i, 0, 6i} as predicted by Corollary 14.3.6. Here D is singular and has rank-
2 deficiency. Notice that all the eigenvalues of D are pairwise sums of the
eigenvalues of A and also that D is triangular so the structure of A is
preserved.

14.3.2 The biproduct of matrices

One of the features of the matrix G = A ⊗ B + B ⊗ A as we showed in the
previous section is that each distinct eigenvalue occurs twice. We also remarked
on how this creates a problem when trying to detect a singularity for the matrix
D = J ⊗ In + In ⊗ J . What is needed is a new matrix that has only a single
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zero eigenvalue (instead of a double) when J has a pair of pure imaginary
eigenvalues.

The method we now describe defines a new matrix that meets the above
requirement and in addition it is more efficient to form than G since the matrix
size is smaller [235,254]. Like D (see Corollary 14.3.6) the eigenvalues of the
new matrix are possible sums of eigenvalues of J but unlike D each eigenvalue
of J only contributes once. Although the new biproduct matrix can be viewed
as derived (restricted or refined) from the tensor sum matrix G via eigenspace
decomposition [235], we present the more computationally efficient formula
defined originally by Stephanos [435]:

Definition 14.3.8. Let A and B be n × n matrices with elements (ai j ) and

(bi j ) respectively, 1 ≤ i, j ≤ n. Set m = n(n − 1)

2
. Then the biproduct of A

and B denoted A 
 B, is an m × m matrix whose rows are labelled (p, q) for
(p = 2, 3, . . . , n; q = 1, 2, . . . , p − 1) and whose columns are labelled (r, s)
for (r = 2, 3, . . . , n; s = 1, 2, . . . , r − 1) and with elements given by

(A 
 B)α,β = (A 
 B)(p,q)(r,s) = 1

2

(∣∣∣∣ bqs bqr

aps apr

∣∣∣∣ +
∣∣∣∣ aqs aqr

bps bpr

∣∣∣∣) . (14.49)

Here the integer pairs (p, q) and (r, s), corresponding to the (α, β) entry and
representing positions of a strictly lower triangular matrix, are ordered lexico-
graphically, as illustrated by the Mfile hopf.m. That is,

(p, q) = (2, 1) corresponds to α = 1
(p, q) = (3, 1) corresponds to α = 2
(p, q) = (3, 2) corresponds to α = 3

(p, q) with p > q ≥ 2 in general corresponds to α = (p−2)(p−1)
2 + q.

To work out (p, q), given α, we first find the largest integer that is less than or
equal to the positive root of f (p) = (p − 2)(p − 1)/2 − α as done in hopf.m.
One can also visualize how A 
 B captures the interaction of entries of A, B
from the following diagram for entry (A 
 B)(p,q)(r,s) — row p of A with row
q of B, and row q of A with row p of B in their r, s columns:

A =



...
...

· · · aqs · · · aqr · · ·
...

. . .
...

· · · aps · · · apr · · ·
...

...


, B =



...
...

· · · bqs · · · bqr · · ·
...

. . .
...

· · · bps · · · bpr · · ·
...

...


,
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where the underlined entries and the others interact separately from (14.49).
Biproduct matrices (sharing the similar properties to the tensor products) have
the additional commutative property: let A, B and C be n × n matrices, then

1. A 
 B = B 
 A;
2. if α, β ∈ Cn, αA 
 β B = αβ(A 
 B);
3. A 
 (B + C) = A 
 B + A 
 C ;
4. (A 
 B)� = A� B�;
5. if A and B are nonsingular, then (A 
 B)−1 = A−1 
 B−1;
6. if A and B are triangular then so is A 
 B, in particular, if A and B are

diagonal then so A 
 B.

Therefore the special matrix corresponding to the tensor sum D takes the simpler
form 2A 
 In and is known as the biproduct of A. From (14.49) we can write

(2A 
 In)(p,q)(r,s) =
∣∣∣∣ apr aps

δqr δqs

∣∣∣∣ +
∣∣∣∣ δpr δps

aqr aqs

∣∣∣∣ (14.50)

where

δi j =
{

1, i = j
0, i �= j

which can be explicitly written as

(2A 
 In)(p,q)(r,s) =



−aps, if r = q,

apr , if r �= p and s = q,

app + aqq , if r = p and s = q,

aqs, if r = p and s �= q,

−aqr , if s = p,

0, otherwise.

(14.51)

Notice that the entries of this matrix, coming directly from the matrix A are
relatively easy to compute. As an example the biproduct of a general 4 × 4
matrix A has dimension 6 × 6 and is given by

(2A 
 I3)

=



a11 + a22 a23 −a13 a24 −a14 0
a32 a11 + a33 a12 a34 0 −a14

−a31 a21 a22 + a33 0 a34 −a24

a42 a43 0 a11 + a44 a12 a13

−a41 0 a43 a21 a22 + a44 a23

0 −a41 −a42 a31 a32 a33 + a44


.
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As remarked, further details on (14.47) and (14.49) can be found in [235]. The
main result on eigenvalues of biproducts is the following [435]:

Theorem 14.3.9. Let A be an n × n matrix with eigenvalues {νi }1≤i≤n. Then
the matrix A 
 In + In 
 A = 2A 
 In has eigenvalues {νi + ν j }1≤ j<i≤n.

The supplied Mfile bprod.m may be tried to illustrate this main result.

Example 14.3.10. We compute the biproduct of A given in Example 14.3.7
(n = 3):

2A 
 I3 =
−7 − 3i 4 −2

0 −7 + 3i 9
0 0 0

 .

Here the eigenvalues of 2A 
 I3 are {−7 − 3i, −3i, 0}. As predicted by The-
orem 14.3.9 there are no eigenvalue duplicates in terms of contributions from
eigenvalues of A i.e. each pairwise sum of distinct eigenvalues of A occurs
only once. The matrix 2A 
 I3 is singular but this time with the desirable rank-
1 deficiency. Notice again that the biproduct of A has preserved the sparsity
structure of A.

14.3.3 Hopf test functions

We now return to the dynamic problem (14.26) and consider how to make use of
the above results. The m × m biproduct matrix of the system Jacobian J = fx

of (14.26) is 2J 
 In . Then at a Hopf bifurcation we will have det(2J 
 In) = 0
with rank(2J 
 In) = m − 1 because Theorem 14.3.9 predicts that (2J 
 In)
will have a single zero eigenvalue i.e. iβ − iβ = 0. Thus det(2J 
 In) will
change sign when a Hopf point is passed during a continuation process of
equation (14.27). Therefore we can define the test function

τH = det(2J 
 In) (14.52)

which can be monitored during a continuation process to detect a Hopf bifurca-
tion. As is known, without numerical scaling, a determinant is not the right quan-
tity to measure singularity. Thus, to alleviate from scaling problems that this
test function can suffer from, we now propose a test function using a bordering
method, namely the framework set for fold point detection [235,142,62,315].
This consists of setting up in this case the (m + 1)-dimensional system.(

2J 
 In d
g� 0

) (
w
τ

)
=

(
0
1

)
(14.53)
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where d, g ∈ R
n are chosen such that the matrix

M =
(

2J 
 In d
g� 0

)
(14.54)

is non-singular for all regular solutions of f(x, λ) = 0.
The simplest choice for vectors d and g are the unit vectors el and ek re-

spectively such that matrix M is nonsingular. The bordered system (14.53) thus
becomes (

2J 
 In el

e�
k 0

) (
w
τ

)
=

(
0
1

)
. (14.55)

This linear system has the dimension of O(n2) = (n − 1)n/2 + 1 = m + 1, the
solution of which represent a major computational challenge!

By Cramer’s rule the last equation is reduced to the Seydel test function
[425,426] for the fold case:

τH = det(2J 
 In)

det(M)
= det(2J 
 In)

det(2J 
 In)lk
, (14.56)

where (2J 
 In)lk is the matrix (2J 
 In) with row l replaced by el and column
k replaced by ek . As we only found a suitable scaling, at a Hopf point (xH , λH ),
we clearly have τH = 0. This test function can be utilized to effectively detect
a Hopf bifurcation point.

However this test function can also be used to efficiently compute a Hopf
bifurcation point (xH , λH ) of equation (14.26) by setting up the (m + 1)-
dimensional augmented system of equations(

f(x, λ)
τH (x, λ)

)
= 0. (14.57)

This will be a direct solution method (as usual requiring the initial point be
close to the Hopf point for convergence) just as in the fold case [425].

Remark 14.3.11. As noted, the new biproduct matrix 2J 
 In poses a com-
putational challenge for us. This is because dimension has been increased
from n to m = (n(n − 1))/2. If J is large, sparse matrix techniques must be
used. Fortunately if J is sparse, 2J 
 In is equally sparse as was illustrated in
Example 14.3.10. In [254], it was observed that 2J 
 In can be band structured
and sparse and this observation can be exploited when implementing a Hopf
continuation process. Another possible method is exploiting the structural pre-
serving properties of 2J 
 In . For example if the matrix A could be reduced to
tridiagonal then 2J 
 In would be block tridiagonal which can be exploited to
speed computations. Clearly there is a need to develop fast solvers. All these
issues are open for further research.
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Hopf bifurcation index. We have presented a comprehensive review of the
methods suitable for detecting Hopf bifurcation. The next question for us is
whether we can define an index that will give some kind of measure as to
how close we are to a Hopf bifurcation: in particular, a subcritical one that
occurs before a fold bifurcation since this signals the onset of instability. This
is important for applications to voltage stability in power systems, and can
help avoid a voltage collapse. The answer to that is yes, since the distance in
the parameter space from the current stationary solution to the first detected
(subcritical) Hopf bifurcation will give a measure to instability. This is similar
to the situation of designing indices for measuring distances to fold bifurcations
in power system applications; see for example [182].

Therefore the distance to a Hopf bifurcation for a positive or negative direc-
tion in the parameter space (Hopf index) can be defined by

ιλ = λH − λ0 (14.58)

where λ0 is the current (stable) stationary point and λH is the first occurrence of
a Hopf bifurcation. Often such a bifurcation occurs before a fold bifurcation (if
the latter exists!). Overall, a suitable algorithm for computing the Hopf stability
index ιλ can be summarized as follows:

Algorithm 14.3.12. (Hopf stability index).

(1) Solve f(x, λ) = 0 by the Newton method to obtain an initial solution (x0, λ0);
(2) Compute the test function (14.56)

τH (x0, λ0) = det(2J 
 In)

det(M)
= det(2J 
 In)

det(2J 
 In)lk
.

For j ≥ 1
(3) Compute a solution (x j , λ j ) of f(x, λ) = 0 using pseudo-arclength contin-

uation;
(4) Compute the test function (14.56)

τH (x j , λ j ) = det(2J 
 In)

det(M)
= det(2J 
 In)

det(2J 
 In)lk
,

(5) if τHj τHj−1 < 0 set λH = λ j then the Hopf point is found and exit to Step
(6);
otherwise return to Step (3) with next j;

(6) Compute the Hopf stability index (14.58)

ιλ = λH − λ0.
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Remark 14.3.13. This proposal of a test function is only the very first step
towards a fast solution to locate the Hopf point λH . There are two further open
challenges:

(i) how to solve the large linear system (14.55) of size O(n2) = (n − 1)n/2 +
1 = m + 1 by exploring its sparsity pattern in order to find τH ; and

(ii) how to examine the analytical behaviour of τH with respect to λ so that
an index method can be proposed to substitute the expensive continuation
method.

Some simple cases and preliminary studies were in [254,235] but a general
fast method is not yet available. In [293], we considered applying the Hopf
index algorithm for studying some model power systems (without addressing
the fast solver issues). Refer also to [146,181].

14.4 Preconditioning issues

The numerical solution of nonlinear systems provides a rich source of matrices
for developing fast solvers. In an electrical power system as with most other
cases of engineering importance, such a nonlinear system arises from mod-
elling a physical process at state equilibrium and this implies that the system
Jacobian matrix (in the sense of linear stability) must have all of its eigenvalues
on the left half of the complex plane, i.e. the real parts of such eigenvalues
are negative. The only exception is when the a subcritical Hopf bifurcation
(eigenvalues touching the imaginary axis) is passed and some pairs of eigen-
values may pass to the right half place before returning back to the left. There-
fore, matrices arising from a Jacobian context are almost always indefinite and
hence are difficult to work with an iterative solver. Suitable preconditioning is
essential.

For the linear systems involved in the fold bifurcation study Section 14.2,
we have found [294] the SPAI approach combined with a deflation method is
adequate in speeding up the GMRES method. For solving the Hopf systems
Section 14.3, work is still in progress.

14.5 Discussion of software and the supplied Mfiles

There are two main sources of useful software that should be mentioned. Firstly,
for numerical data and power system related software, we refer to

http://www.power.uwaterloo.ca
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Secondly, for general pseudo-arc length continuation for nonlinear bifurca-
tion systems, we refer to the well-known AUTO software due to E. Doedel:

ftp://ftp.cs.concordia.ca/pub/doedel/auto/auto.ps.gz

The MATLAB r© command for computing A ⊗ B is C = kron(A,B). We
have supplied two Mfiles.

[1] hopf.m – To illustrate the definition of the biproduct matrix A 
 B.
[2] bprod.m – To compute and examine the biproduct matrix A 
 B.
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Parallel computing by examples

Parallelism has sometimes been viewed as a rare and exotic subarea of
computing, interesting but of little relevance to the average programmer.
A study of trends in applications, computer architecture, and networking
shows that this view is no longer tenable. Parallelism is becoming ubiq-
uitous, and parallel computing is becoming central to the programming
enterprise.

Ian Foster. Designing and Building Parallel Programs.
Addison-Wesley (1995)

I rather kill myself than debug a MPI program.
Anonymous

Parallel computing represents a major research direction for the future and offers
the best and often the only solution to large-scale computational problems in
today’s technology. A book on fast solvers is incomplete without a discussion
of this important topic. However, any incomplete description of the subject is of
no use and there are already too many books available. Nevertheless, the author
believes that too much emphasis has been put from a computer scientist’s view
(on parallelization) so that a beginner may feel either confused with various
warnings and jargons of new phrases or intimated by the complexity of some
published programs (algorithms) of well-known methods. Hence we choose to
give complete details for a few selected examples that fall into the category of
‘embarrassingly parallelizable’ methods.

Therefore the purpose of this chapter is to convey two simple messages.

(i) Parallel computing is relatively simple to implement, so all readers should
gain certain experience by implementing some algorithms.

(ii) Many parallel inefficiencies may well be due to the nonexistence of reliable
and parallel algorithms. Serious imbalance between sequential time and

475
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communication time should be addressed by future research and further
hardware improvement.

Thus we emphasize on expositions and easy algorithms. The reader is en-
couraged to implement their own parallel algorithms and understand possible
research gaps in algorithm development. We attempt to use concrete and mean-
ingful examples to achieve this purpose. For each example, motivating (i) is our
main purpose and hence the programs given may not be yet optimal even if (ii)
is not an issue. The following outline is planned.

Section 15.1 A brief introduction to parallel computing and MPI
Section 15.2 Some commonly used MPI routines
Section 15.3 Example 1 of a parallel series summation
Section 15.4 Example 2 of a parallel power method
Section 15.5 Example 3 of a parallel direct method
Section 15.6 Discussion of software and the supplied MPI programs

As with other chapters, all illustrating computer codes (in MPI1 Fortran) are
available from this book’s web page (see Preface on page XV). For general
references on MPI, see [20,362,252].

15.1 A brief introduction to parallel computing and MPI

There are two main reasons for using a parallel computer.

(1) A sequential program may need too much memory: the memory (storage)
issue.

(2) A sequential program may take too long to run: the timing (cpu) issue.

The two issues are related with the first one easier to settle (often automatically
achieved) and the second one harder to resolve optimally. It must be remarked
that a sequential program is not always parallelizable; if one uses brute force
to parallelize a code, the underlying mathematics may not be correct.

Assuming parallelization is feasible, it remains to address how to distribute
the computing tasks among processors to achieve a minimal time for the overall
execution. The main factors to consider are the following.

(i) Communication cost. As each individual communication requires a fixed
amount of startup time (or the latency) as well as the normal time expected
for transferring a required length of data (depending on the communication

1 MPI stands for ‘Message Passing Interface’. See the official home page: http://www.mpi
.org/. There exist other message passing libraries; see [433,184].
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speed or the bandwidth), the general advice is that one should aim to send
a ‘small number’ of large data sets rather than a ‘large number’ of small
data sets.

(ii) Load balancing. This is the technical aspect but also the easy concept
for readers to accept – we need to keep all processors equally busy or to
distribute the processor subtasks fairly.

Before we show some simple examples to illustrate the working of MPI pro-
grams, we assume that MPI packages have been properly set up on your system,
whether it is a shared memory mode (where communication is fast and all pro-
cessors share a usually large memory) or a distributed memory model (where
each processor has its own memory and data). For instance, on a Unix (or
Linux) operating system, the typical way to compile a MPI Fortran 77 program
myfile.f is

Unix> f77 myfile.f -o myfile -lmpi

and to launch the compiled program myfile using four processors

Unix> mpirun -np 4 myfile

If some additional library is needed, such as NAG2 or IMSL3, one would compile
using f77 myfile.f -o myfile -lnag -lmpi or if IMSL is desired
f77 myfile.f -o myfile -limsl -lmpi

A MPI program implements the so-called SPMD (single program multiple
data) model. If p processors are used, all processors execute the same piece of
code but the processors are distinguished only by their own

identity number (or called the rank) – an integer ID between 0 and p − 1,

which is used to command a particular processor to operate own data and
operations. On a network of (physically) different computers, the alternative
identifier may be

the processor name (or called the host name) – a character string that denotes
its true name (e.g. uxb.liv.ac.uk or cam007)

which may not be unique if a computer has more than one processor. One reason
for the popularity of MPI programming, as one finds out below, is the minimal
amount work that one requires to do to set up the syntax – apart from one line
for the library header, one only needs four MPI calls

2 See http://www.nag.co.uk 3See http://www.imsl.org
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MPI_INIT --- The initialization routine

MPI_COMM_RANK --- Obtain the assigned identity number: j

MPI_COMM_SIZE --- Find out the total number of processors: p

MPI_FINALIZE --- Signal the end of a MPI program

to obtain a MPI code! Here 0 ≤ j ≤ p − 1 for the identity number j . Also the
MPI commands offer the transparency between Fortran and C versions.

15.2 Some commonly used MPI routines

The MPI programming library offers a large selection of parallel routines for
possible needs of an experienced user. The selection may be too large for a
beginner. Here we summarize and highlight a few commonly used ones only,
hoping a reader can read about other advanced or adventurous routines after
familiarizing these easy ones. As with all IT technology, the rule of thumb is
that the answer is (or will be) out there if you dare to ask the question: May I do
this task this way? We now provide tabular forms of some selected routines for
easy reference, with further illustrations to be found in the concrete examples
below. We shall use this generic notation for easy typesetting.

ie Scalar integer type for displaying possible error indicator
er Another scalar integer type for displaying error codes
cm The internal communicator MPI COMM WORLD
st The internal status object, declared initially as

st(MPI STATUS SIZE)
vs The data as a sending quantity Note the tuple (vs, ls, types)
ls The data length of a sending quantity
types The data type declaration for a sending quantity
vr The data as a receiving quantity Note the tuple (vr, lr, typer)
lr The data length of a receiving quantity
typer The data type declaration for a receiving quantity
PID The active processor identity number (0 ≤ PID ≤ p − 1)
Tag The data tag (an assigned integer 0 ≤ Tag ≤ 232 − 1)
Req An integer quantity used as the alias name for an execution step

sas The sized-p starting address vector for the sending quantity vs
sar The sized-p starting address vector for the receiving quantity vr

(Here sas and sar refer to address increments so the first entry
contains 0.)
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vls The variable lengths vector for all sending quantities in vs
vlr The variable lengths vector for all receiving quantities in vr
OPS Alias for one of these commonly-used operations of scalars or

arrays e.g. MPI SUM, MPI PROD, MPI MAX, MPI MIN,
MPI MAXLOC, MPI MINLOC) or a user-defined function
via MPI OP CREATE.

Here vr and vs cannot refer to the same quantity in most cases. For types or
typer, the usual Fortran data types are supported and, as a parameter, these are
used as

Integer MPI INTEGER
Real MPI REAL
Double precision MPI DOUBLE PRECISION (or MPI REAL8)
Sized 2 integers MPI 2INTEGER (for MPI MAXLOC or

MPI MINLOC)
Sized 2 reals MPI 2REAL (for MPI MAXLOC or MPI MINLOC)
Sized 2 double MPI 2DOUBLE PRECISION (for MPI MAXLOC or

precisions MPI MINLOC)

� (1) The minimal set of starting up and ending routines.
MPI INIT(ie) The initialization routine
MPI COMM RANK(cm,j,ie) Obtain the assigned identity number: j
MPI COMM SIZE(cm,p,ie) Find out the total number of processors: p
MPI FINALIZE(ie) Signal the end of a MPI program
MPI GET PROCESSOR Get the host processor name, (a character

NAME(name,er,ie) string)
MPI ABORT(cm,er,ie) Abort a MPI program from inside
MPI ANY SOURCE Wild card for not specifying which PID is

used.
MPI ANY TAG Wild card for not checking which tag is

specified
MPI PROC NULL The use of a null processor PID to disable

a step.

� (2) The set of point communication routines.
MPI SEND(vs,ls,types, PID,Tag, cm,st,ie)

Send the data (vs,ls,types) with Tag from the current processor to PID.
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MPI RECV(vr,lr,typer, PID,Tag, cm,st,ie)
Receive the data (vr,lr,typer) with Tag on the current processor from PID.

MPI SENDRECV(vs,ls,types, PID1,Tag1, vr,lr,typer, PID2,Tag2, cm,st,ie)
Send the data (vs,ls,types) with Tag1 to PID1

and Receive the data (vr,lr,typer) with Tag1 from PID2.
MPI ISEND(vs,ls,types, PID,Tag, cm,Req,ie)

Send the data (vs,ls,types) with Tag from the current processor to PID.
MPI IRECV(vr,lr,typer, PID,Tag, cm,Req,ie)

Receive the data (vr,lr,typer) with Tag from processor PID.

MPI WAIT(Req, st,ie)
Waiting point for completing (the recent Req) either ISEND or IRECV.

� (3) The set of collective communication routines.
MPI BCAST(vs,ls,types, PID, cm,ie)

Broadcast the data (vs,ls,types) from processor PID to all others.
MPI IBCAST(vs,ls,types, PID, cm,Req,ie)

Broadcast the data (vs,ls,types) from processor PID to all others
(need to use MPI WAIT(Req, er,ie) to complete).

MPI BARRIER(cm,ie)
Waiting point for all processors to reach for synchronization.

MPI GATHER(vs,ls,types, vr,lr,typer, PID, cm,ie)
Receive the sent data (vs,ls,types) from each processor by PID

and pack them to the received data (vr,lr,typer) in rank order.
MPI SCATTER(vs,ls,types, vr,lr,typer, PID, cm,ie)

All processors to receive data (vr,lr,typer) from the sent
data (vs,ls,types) by PID in rank order

MPI GATHERV(vs,ls,types, vr,vlr,sar,typer, PID, cm,ie)
Receive the sent data (vs,ls,types) from each processor j by PID

and pack it at the starting address sar(j + 1) in (vr,vlr(j),typer).
MPI SCATTERV(vs,vls,sas,types, vr,lr,typer, PID, cm,ie)

All processors to receive data (vr,lr,typer) from the sent data
(vs,vls(j),types) by PID starting at sas(j + 1) for processor j .

MPI ALLGATHER(vs,ls,types, vr,lr,typer, cm,ie)
All to receive the data (vs,ls,types) from other processors and

pack them to the received data (vr,lr,typer) in rank order.
MPI ALLSCATTER(vs,ls,types, vr,lr,typer, cm,ie)

All processors to receive data (vr,lr,typer) from the sent
data (vs,ls,types) by others in rank order
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MPI ALLGATHERV(vs,ls,types, vr,vlr,sar,typer, cm,ie)
All to receive the sent data (vs,ls,types) from other processors

and pack it using the starting vector sar(j) in (vr,vlr(j),typer).
(clearly, there is no need for MPI ALLSCATTERV to exist).

� (4) The set of collective operation routines.
MPI REDUCE(vs,vr,ls,types, OPS, PID, cm,ie)

Processor PID to receive the data in vr from some OPS operation
with all data (vs,ls,types).
(when OPS = MPI MAXLOC or MPI MINLOC, ls = 2).

MPI ALLREDUCE(vs,vr,ls,types, OPS, cm,ie)
All processors to receive the data in vr from some OPS operation

with all data (vs,ls,types).
(again when OPS = MPI MAXLOC or MPI MINLOC, ls = 2).

� (5) The timing routines.
T1 = MPI WTIME() Takes the wall clock time so the consumed CPU

will be T = MPI WTIME() − T1.
ETIME(T1) Takes the Unix system clock time so the consumed

CPU will be T = T2 − T1 if ETIME(T2) is
called later. (On other systems,use the normal
measure for CPU, e.g. one uses DC L OC K @
(T 1) with the Salford4 compiler on Windows5

systems.)

15.3 Example 1 of a parallel series summation

We now show the first example of a sample MPI program in Fortran 77; the
program listing is available from this book’s web page (see Preface).

Our first example attempts to compute the series

S =
N∑

k=1

(−1)k+1 sin k

k
(15.1)

for some large N using p processors. The alternating series is known to con-
verge since the general term goes to zero (though slowly) as k → ∞. Here we

4 See http://www.salford.co.uk for their product details.
5 See http://www.microsoft.com/.
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allow the number of terms N and the number of processors p to be arbitrary
integers.

� Preparation for parallel computing. Firstly, we assign the subtask for each
processor. The number of terms to be summed on processor j (for 0 ≤ j ≤
p − 1) will be

Np =
[

N

p

]
(15.2)

where [·] denotes the integer part of a quantity and Np should be adjusted for
one processor (say the last one) so that an arbitrary N can be accommodated.
The overall assignment may be illustrated by

Np terms for 0 Np terms for 1 · · · Np terms for p − 1 .

Secondly, we clarify the formula used on processor j = 0, 1, . . . , p − 1:

Sj =
k2∑

k=k1

(−1)k+1 sin k

k
, k1 = j Np + 1, k2 = ( j + 1)Np. (15.3)

If Np p �= N , to accommodate an arbitrary N , we have to set k2 = N on the
last processor (so possibly processor (p − 1) does slightly more work).

Finally, we highlight the quantities that must be communicated and also the
corresponding MPI commands that may be used.

(1) Let N be input on processor 0 and be broadcast to others. We need
MPI_BCAST. (Alternatively all processors can read N from a pre-defined
file).
Option 1

(2) The individual partial sums Sj will have to be collected together to form
the final sum for the series S. We can use MPI_REDUCE with the task
option of MPI_SUM. The individual CPU timing t j can be collected to-
gether using MPI_REDUCE with the task option of MPI_MAXLOC or
MPI_MAX.
Option 2

(3) We can alternatively avoid the collective command MPI_REDUCE by us-
ing the more one-to-one communication commands to collect informa-
tion on Sj and t j . These will be MPI_ISEND, MPI_SEND, MPI_IRECV,
MPI_RECV.
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� The sample program and the test results. A sample program (available as
cup1.f ) using these MPI routine calls has been written to illustrate the above
strategy:

call MPI_INIT ! The minimal call

call MPI_COMM_RANK ! The minimal call

call MPI_COMM_SIZE ! The minimal call

CALL MPI_GET_PROCESSOR_NAME ! The optional use for processor

name

call MPI_bcast ! Broadcast N

call MPI_barrier ! Set a waiting point for bcast

CALL MPI_REDUCE != Collect the final results

call MPI_IRECV ! Test alternative communications

call MPI_RECV !

call MPI_ISEND !

call MPI_SEND !

call MPI_WAIT != Used by IRECV/ISEND

CALL MPI_FINALIZE ! The minimal call

as shown in Tables 15.1 and 15.2.
Running the program for N = 8000000 terms, the answer we get is

S = 0.500000050141.

On a network of Unix clusters, we have observed the following CPU timings

Processors p CPU timing Tp (seconds) Ratio with p = 1 case T1/Tp

1 10.7 1.0
4 3.2 3.3
8 1.6 6.7

16 1.1 9.7

Clearly the optimal value p for the ‘ratio’ is not yet achieved (even though there
is only 1 broadcasting step).

Note that the web version of cup1.f has more comments, some of which are
left out in Tables 15.1 and 15.2 to typeset more easily.

15.4 Example 2 of a parallel power method

Given a matrix A ∈ R
n×n that has a largest single eigenvalue λa(A), the power

method can be used to find λ1 effectively. Recall that a power method may be
described by the following algorithm
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Table 15.1. Part 1 of the sample program cup1.f available from the book
web page.

PROGRAM CUP1 !-------! MPI SAMPLE PROGRAM 1

IMPLICIT NONE ! (Section 16.1.2)

include 'mpif.h' ! This is necessary

INTEGER MY_ID, ierr, MASTER, NPROC,NLAST,NDIV,

+ I,INFO,SN, N, K2,K1,K,REQUEST

+ status(MPI_STATUS_SIZE)

DOUBLE PRECISION SUM_all, TT1,TT2, WHO(2),

+ WHO_ALL(2), SUM, SUM1

CHARACTER*256 MY_NAME

CALL MPI_INIT(ierr)

CALL MPI_COMM_RANK(MPI_COMM_WORLD, MY_ID,ierr)

CALL MPI_COMM_SIZE(MPI_COMM_WORLD, NPROC,ierr)

NLAST = NPROC - 1 ! Proc ID for the last proc

MASTER = 0 ! Master can be any proc>1

TT1 = MPI_WTIME()

c---------------------------------------------------

IF (MY_ID .EQ. 0) THEN ! Main Proc

PRINT*,'Type in N (required number of terms)?'

N = 8000000

CALL MPI_GET_PROCESSOR_NAME(MY_NAME,ierr,INFO)

PRINT'(A)','=============cup1.f==========='

PRINT*,'Number of processes started: ',NPROC

PRINT*,'Main processor is: ID =',MY_ID,' on ',

+ MY_NAME(1:13)

ENDIF

CALL MPI_barrier(MPI_COMM_WORLD, ierr)

IF (MY_ID .NE. 0) THEN

CALL MPI_GET_PROCESSOR_NAME(my_name,ierr,INFO)

PRINT*,' and ID =',MY_ID,' on ', MY_NAME(1:13)

ENDIF

c---------------------------------------------------

c Let other procs know about N (from MY_ID=0)

CALL MPI_bcast(N,1,MPI_INTEGER, 0,

+ MPI_COMM_WORLD, ierr)

CALL MPI_barrier(MPI_COMM_WORLD, ierr)

NDIV = N / NPROC ! Subtask for each processor

K1 = MY_ID*NDIV+1 ! Start of series

K2 = (MY_ID+1)*NDIV ! End of the series

IF (NDIV*NPROC.LT.N .and. MY_ID.eq.NLAST) K2=N

SN = -1 !! Sign for Even Terms

IF (MOD((K1+1),2 ).eq.1 ) SN = 1 !! Odd terms
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c---------------------------------Even Terms (local)

SUM1 = 0.0D0

DO K = K1+1, K2, 2

SUM1 = SUM1 + SIN(DBLE(K))/DBLE(K)

ENDDO

SUM1 = SUM1*SN

SN = -SN

c----------------------------------Odd Terms (local)

SUM = 0.0D0

DO K = K1, K2, 2

SUM = SUM + SIN(DBLE(K))/DBLE(K)

ENDDO

SUM = SUM1 + SUM*SN !-Partial Sum on My_ID

Table 15.2. Part 2 of the program cup1.f as available from the book web page.

c--Collect partial sums to get the answer on MASTER

CALL MPI_reduce(sum,sum_all,1,MPI_DOUBLE_PRECISION

+ ,MPI_SUM, MASTER, MPI_COMM_WORLD, ierr)

c---------------------STOP here to check CPU-----------

TT2 = MPI_WTIME() - TT1 !reduce to compute max CPU

who(1)=TT2

who(2)=MY_ID

CALL MPI_REDUCE(who,who_all,1,

+ MPI_2DOUBLE_PRECISION,

+ MPI_MAXLOC, MASTER, MPI_COMM_WORLD, ierr)

IF (MY_ID .EQ. MASTER) then

WRITE(*,'(2X,''The series summing up to '',I9,

+ '' terms ='', G18.12)') N, sum_all

WRITE(*,'(2X,''The Parallel CPU = '',G12.3,

+ '' on Proc '',I2

+ '' [Method 1]'')') who_all(1),INT(who_all(2))

ENDIF

c== Alternative if MPI_REDUCE is not used ======|

IF (MY_ID .EQ. 0) then

WRITE(*,'(/''The partial sum from P'',I2,'' is'',

+ G12.3,'' using cpu:'',G10.2)') my_id,sum,TT2

TT1 = TT2

SUM_All = SUM

DO I = 1, NLAST

call MPI_IRECV(TT2, 1, MPI_DOUBLE_PRECISION,

+ MPI_ANY_SOURCE,
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+ I, MPI_COMM_WORLD, Request, ierr)

call MPI_RECV(SUM, 1, MPI_DOUBLE_PRECISION,

+ MPI_ANY_SOURCE,

+ NPROC+I, MPI_COMM_WORLD, status, ierr)

call MPI_WAIT(Request, status,ierr)

TT1 = MAX(TT1,TT2)

SUM_All = SUM_All + SUM

WRITE(*,'(''The partial sum from P'',I2,'' is'',

+ G12.3,'' using cpu:'',G10.2)') I,sum,TT2

ENDDO

WRITE(*,'(2X,''The series summing up to '',I9,

+ '' terms ='',G18.12,/''The Parallel CPU = '',

+ G12.3, '' NPROC ='',I3, '' [Method 2]'',/)')

+ N, sum_all, TT1, NPROC

c----------------------------------------------------

ELSE ! MY_ID > 0 other procs

call MPI_ISEND(TT2, 1, MPI_DOUBLE_PRECISION,

+ MASTER,MY_ID, MPI_COMM_WORLD,Request, ierr)

call MPI_SEND(SUM, 1, MPI_DOUBLE_PRECISION,

+ MASTER,NPROC+my_id, MPI_COMM_WORLD, ierr)

call MPI_WAIT(Request, status,ierr)

ENDIF

c== Alternative if REDUCE is not used ======|

CALL MPI_barrier(MPI_COMM_WORLD, ierr)

CALL MPI_FINALIZE(ierr)

STOP

END

Algorithm 15.4.1. (The power method).

(1) Generate the random vector z of size n and set k = 0, µ = 1, µ0 = 0;
while |µ − µ0| > TOL or k ≤ 1

(2) Compute y = Az/µ and let µ0 = µ;
(3) Find the largest component µ = ym such that |ym | = max

j
|y j |;

(4) Set z = y/µ and k = k + 1.
end while

(5) Accept µ as the approximation to the largest eigenvalue of A and y the
eigenvector.

We intend to take test data directly from a Harwell–Boeing (HB) data format
(Appendix B). In the supplied files cup2.f and cup3.f, we have adopted a
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simple version similar to routines from Sparskit (see [414]) for reading a HB
matrix.

We now consider how to parallelize the power method or rather how the
two supplied Mfiles are designed. As we intend to read an existing matrix, it
is convenient for all processors to keep the same matrix so it only remains to
partition the matrix for multiplication purpose.

Remark that the data partition will involve the notation identical to (15.2) and
(15.3) (note again we need to reset Np and k2 on processor p − 1 if Np p �= n)
i.e.

Np =
[

N

p

]
, k1 = j Np + 1, k2 = ( j + 1)Np, (15.4)

where N = n is the dimension here, p is the number of processors and j is the
identity number for processor j (0 ≤ j ≤ p − 1).

� Column partition of a sparse matrix. Let A be partitioned in blocks of
columns as illustrated below

Np columns Np columns · · · Np columns
local 1 · · · Np local 1 · · · Np · · · local 1 · · · Np

global k1 · · · k2 global k1 · · · k2 · · · global k1 · · · k2

...
... · · ·

...

for j = 0 for j = 1 · · · for j = p − 1

This partition is quite natural as the sequential data is stored in columns. How-
ever, matrix vector products may not be formed conveniently.

Although processor j is only in charge of Np columns, the main parallel
step (for Algorithm 15.4.1), y = Az/µ, produces a full length vector y( j) of
size n. These vectors must be added together by communication steps. Clearly
there exists a fine balance between the number of blocks (or p processors) and
the number of columns within each block (or Np) to be considered for optimal
performance. It is not hard to imagine that we may not gain much by using
p = n processors (so Np = 1 and communication is dominant).

To test this data partition, we have written cup2.f for implementing the power
Algorithm 15.4.1. It takes any input matrix in the HB format (Appendix B).
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� Row partition of a sparse matrix. To facilitate matrix vector products, we
consider the following row partition of a sparse matrix.

local 1 global k1

.

.

.

local Np global k2

for j = 0

local 1 global k1

.

.

.

local Np global k2

for j = 1

.

.

.
.
.
.

local 1 global k1

.

.

.

local Np global k2

for j = p − 1

In our context, the matrix A is stored in HB format in columns so we have
to convert a column based storage into a row based storage. This is illustrated
in our sample program cup3.f (for implementing the power Algorithm 15.4.1)
where COL2RW does the conversion.

In summary, the sample programs cup2.f and cup3.f used these MPI
routines

MPI_INIT ! The minimal call

MPI_COMM_RANK ! The minimal call

MPI_COMM_SIZE ! The minimal call

MPI_GET_PROCESSOR_NAME ! The optional use for processor name

MPI_bcast ! Broadcast

MPI_barrier ! Set a waiting point for bcast

MPI_ALLREDUCE ! Compute across processors

MPI_ALLGATHERV ! Combine vectors of varying lengths
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MPI_REDUCE ! Compute across processors

MPI_ABORT !

MPI_WTIME ! Obtain the cpu timing

MPI_FINALIZE ! The minimal call

To demonstrate the performance of cup2.f, we have taken the input matrix as
pores_3.rua from the Matrix Market collection (see [347] and Appendix
E). With p = 3 processors, the result is the following

====================cup2.f====================

Number of processes started: 3 ulgsmp1 l

Matrix loaded from HB file : pores_3.rua

... Pointers read ok : 533

... Reading row indices for nnz : 3474

... Reading row indices done

... Reading A starts for nnz = 3474 FORMAT: (4D20.10)

... Reading A values done

Matrix Size = 532 X 532

Matrix Title = 1UNSYMMETRIC MATRIX FROM PORES

Market Title = PORES 3 GUESOL Symbol :

Market Type = RUA (error =0)

CPU after read = 0.18E-01

Max eigenvalue= -149867.499378 found by cup2.f after 1065

iterations

Entire : CPU = 0.27 P0 using 3 Processors (Err=0.10E-05)

Parallel CPU = 0.25 P0 using 3 Processors (Err=0.10E-05)

My CPU = 0.27 0.25 on P0 using 3 Processors (Err=0.10E-05)

My CPU = 0.27 0.25 on P1 using 3 Processors (Err=0.10E-05)

My CPU = 0.27 0.25 on P2 using 3 Processors (Err=0.10E-05)

Clearly, the load balance is excellent since the underlying power method is
easily parallelizable.

15.5 Example 3 of a parallel direct method

The sequential Purcell method as mentioned in Section 2.3.3 is a direct solution
method for (1.1). Two variants of the GJ method, the Gauss–Huard method
[288,163,178,283] and the Purcell method [392], are of special interest because
both require a flop count comparable to the Gaussian elimination method. The
pivoting strategy used in these variants mimics the GJ method with row pivoting
the reliability of which was established in [176]. Parallel algorithms based on



490 Parallel computing by examples

the Gauss–Huard method were developed in [284,177,178]. The Purcell method
is also known as a row projection method [47,54,49].

Without pivoting, the Gauss–Huard method [288,163] and the Purcell
method [392], are identical. So they offer no major advantages over the GE,
apart from the fact that they are of the GJ type (not the GE type). However,
with partial row pivoting, the Purcell method has been shown to perform more
robustly than the GE with the usual partial pivoting [134,143].

As a further example of parallel computing, we illustrate a parallel algorithm
for the Purcell method that was taken from [143]. Our parallel algorithm based
on the Purcell method will address the issue of pivoting and load balancing.
This topic of a parallel Purcell method, to our knowledge, is not widely known
in the literature (see [47]). We encourage the reader to try out this interesting
method.

To proceed, rewrite the linear system Ax = b in the new augmented
notation

Ax = b ⇒
[

A

∣∣∣∣ −b

][
x
1

]
= CV = 0, (15.5)

where A ∈ R
n×n, C ∈ R

n×(n+1), x, b ∈ R
n, V ∈ R

n+1. Denote the i th row
vector of C by CT

i i.e. Ci = [ai1 ai2 . . . ain −bi ]�. Then a vector V , with
Vn+1 = 1, is said to be the solution of the system if V is orthogonal to all Ci ,
namely

C�
i V = 0, for i = 1, 2, . . . , n. (15.6)

Clearly this method, looking for V in R
n+1, is based on the orthogonality of

vectors. As the final subspace R
n+1\span (C1, . . . , Cn) is only of dimension 1,

one may imagine that the task of finding x can be done.
We remark that both the Gauss–Huard method and the Purcell method share

the advantage that at step k of elimination, rows j = k + 2, . . . , n are neither
required nor need to be updated. Therefore both methods can be considered as
flexible elimination methods [328]. That is, the direct solution process can be
combined with the elimination and coefficients-forming (rows of A) processes
to achieve better performance. For some applications such as the solution of
boundary element equations [328], this flexible elimination aspect of methods
is potentially useful but remains to be fully explored.

15.5.1 The Purcell method

The above orthogonality condition (15.6) will be satisfied in a step-by-step
manner. The order in which such conditions are met can be arbitrary [328]. Here
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we assume that constraints C1, C2, . . . , Cn are eliminated in turn, although any
permutation of this order is allowed. Let C = C(n) = {C1, C2, . . . , Cn}. For
i = 1, 2, . . . , n − 1, define the set

C(i) = {C1, C2, · · · , Ci } .

Clearly we have C(i) = C(i−1) ⋃ Ci with C(0) = {∅} empty. Similarly for i =
1, 2, . . . , n, define R(i) as the subspace, of dimension i , of the vector space Rn+1

which consists of vectors orthogonal to C(n+1−i). Let R(n+1) = Rn+1. We shall
use matrix V(i) to denote the basis vectors of R(i). That is,

V(i) =
 V (i)

1

∣∣∣∣∣∣ V (i)
2

∣∣∣∣∣∣ · · ·
∣∣∣∣∣∣ V (i)

i


(n+1)×i

and therefore (note the solution vector V ∈ R(1))

R(i) = span
(

V (i)
1 , V (i)

2 , · · · , V (i)
i

)
.

The basis for the (n + 1)-dimensional space R(n+1) may be chosen as the natural
basis, i.e.

V(n+1) =
[
V (n+1)

1 · · · V (n+1)
n+1

]
= [

[1 0 · · · 0]�, · · · , [0 · · · 0 1]�
]
. (15.7)

We are now ready to state the Purcell method. The objective is to reduce the
large solution space R(n+1) of dimension (n + 1) to the final solution subspace
R(1) of dimension 1.

Starting from this known space R(n+1), at step (n + 1 − i) for each i from
n to 1, subspace R(i) can be constructed by performing linear combinations of
a chosen vector (the pivot) from the basis V(i+1) with the remaining vectors,
subject to the condition that the resulting vectors are orthogonal to Cn+1−i .
More specifically, for Cn+1−i ∈ C(n+1−i), the main construction involves the
following (for i = n, . . . , 1 and k = 1, . . . , i)

V (i)
k := αk V (i+1)

s(n+1−i) + V (i+1)
m(k) , C�

n+1−i V
(i)

k = 0 i.e. (15.8)

αk = − C�
n+1−i V

(i+1)
m(k)

C�
n+1−i V

(i+1)
s(n+1−i)

(15.9)

where 1 ≤ s(n + 1 − i), m(k) ≤ i + 1, s(n + 1 − i) �= m(k). Here the pivot
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index s(n + 1 − i) is so selected that |αk | ≤ 1 i.e. the denominator on the right-
hand side of (15.9) is the largest. Once the final subspace R(1), of dimension 1,
is found, its basis vector V (1)

1 is orthogonal to every vector in C(n) = C. Thus
this vector gives rise to the solution of the system Ax = b.

We observe that, by construction, the vector V (i)
k is orthogonal to each vector

of C(n+1−i) ⊂ C. Pivoting by the above choice of s(n + 1 − i) and m(k) leads
to a more reliable method than the Gaussian, GJ and the Gauss–Huard [288]
methods as illustrated shortly. For the pivoted version, the Purcell method as
described can reduce to the Gauss–Huard method [288,283] if we restrict the
choice of s(n + 1 − i) and impose the condition that 1 ≤ s(n + 1 − i) ≤ n +
1 − i . Recall that for a Purcell method we have 1 ≤ s(n + 1 − i) ≤ n + 2 − i .
This seemingly simple restriction that distinguishes the Purcell method from
the Gauss–Huard method turns out to be a vital condition, which makes
the former a better method. However, the unpivoted version of the Pur-
cell method with the choice of s(n + 1 − i) = 1 and m(k) = k + 1 is not
useful.

Finally from R(i+1) = R(i) ⊕ span (Cn+1−i ), we can summarize the Purcell
method in terms of subspace decomposition. We can derive the following

Rn+1 = R(n+1) = R(n) ⊕
span (C1)

= R(n−1) ⊕
span (C1, C2)

...
= R( j) ⊕

span
(
C1, C2, · · · , Cn+1− j

)
...
= R(2) ⊕

span (C1, · · · , Cn−1)
= R(1) ⊕

span (C1, · · · , Cn) = R(1) ⊕ range(C).

Here the idea of finding the solution subspace R(1), of dimension 1, out of the
initial large space R

n+1 is by squeezing out C j ’s by orthogonal decomposition.
Before we discuss parallel algorithms, we give some examples.

Example 15.5.2. (Solution of a 4 × 4 system by the Purcell method). To il-
lustrate the sequential method, we now consider the following example


5 1 2 1
2 10 3 1
1 4 8 2
6 2 4 20




x1

x2

x3

x4

 =


17
35
41

102

 ,


C�

1

C�
2

C�
3

C�
4

 =


5 1 2 1 −17
2 10 3 1 −35
1 4 8 2 −41
6 2 4 20 −102

 .



15.5 Example 3 of a parallel direct method 493

Step 1, i = n = 4: pivot s(1) = 5, m(k) = 1, 2, 3, 4
C�

1 V(i+1) = [
5 1 2 1 −17

]

V(i) = V(i+1)


1

1
1

1
α1 α2 α3 α4

 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

0.2941 0.0588 0.1176 0.0588

 .

Step 2, i = n − 1 = 3: pivot s(2) = 1, m(k) = 2, 3, 4
C�

2 V(i+1) = [−8.2941 7.9412 −1.1176 −1.0588
]

V(i) = V(i+1)


α1 α2 α3

1
1

1

 =


0.9574 −0.1348 −0.1277

1 0 0
0 1 0
0 0 1

0.3404 0.0780 0.0213

 .

Step 3, i = n − 2 = 2: pivot s(3) = 1, m(k) = 2, 3
C�

3 V(i+1) = [−9 4.6667 1
]

V(i) = V(i+1)

α1 α2

1
1

 =


0.3617 −0.0213
0.5185 0.1111

1 0
0 1

0.2545 0.0591

 .

Step 4, i = n − 3 = 1: pivot s(4) = 1, m(k) = 2
C�

4 V(i+1) = [−18.7549 14.0662
]

V(i) = V(i+1)

[
α1

1

]
=


0.25
0.50
0.75
1.00
0.25

 , V = V (1)
1

[V (1)
1 ]n+1

= V(i)

0.25
=


1.0
2.0
3.0
4.0
1.0

 .

15.5.2 Comparison of the Purcell method with
other related methods

We now use four related examples from [281,280,229] to demonstrate that the
Purcell method has better stability properties. These examples are often used
to test growth factors of the Gaussian method. Define the usual growth factor
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[229] by (for i, k = 1, 2, . . . , n and j = 1, 2, . . . , n, n + 1)

ρ = max
i, j,k

|A(k)
i j |

‖A‖∞
,

where we assume that Ai,n+1 = −bi ; see also [280,281]. For the Purcell method
we measure the growth of the components of all V (i)

k .

(1) Example 1, with µ = 0.4: [A]i j = [A1]i j =


1, if i = j or j = n,

−µ, if i > j,
0, otherwise.

(2) Example 2, transpose of A1: A = A�
1 .

(3) Example 3 (with µ=1 inA1): [A]i j = [A3]i j =


1, if i = j or j = n,

−1, if i > j,
0, otherwise.

(4) Example 4, transpose of A3: A = A�
3 .

Table 15.3 shows results of solving the linear system (15.5) for the above four
examples using

Gaussian (c) — the Gaussian elimination method with complete
pivoting,

Gaussian (p) — the Gaussian elimination method with partial pivoting,
Huard [288] — the Gauss–Huard method with partial pivoting,
Purcell [392] — the Purcell method with partial pivoting.

The exact solution is chosen as x∗
i = 1 that defines the right-hand side b. In the

table, “�” indicates failure by a numerical method and “�” shows a loss of
accuracy due to large growth factors. Note an accuracy is considered acceptable
if it is less than 102ε ≈ 10−13 with ε associated with double precision.

The results clearly demonstrate that the performance of the Purcell method
is close to Gaussian (c), and much better than Gaussian (p) and Huard [288].
Moreover, the partial pivoting used by the Purcell method is inexpensive (unlike
Gaussian (c)), making it a serious candidate for wider applications and more
research and development.

15.5.3 Parallelization of the Purcell method

Denote by p the number of parallel processors that are accessible, and set n j =
n/p for j = 0, 1, . . . , p − 1. Then step 1 can be simultaneously be carried out
by all processors as no real computing is involved. First we locate the maximum
entry m = s(1) in row 1, CT

1 , of matrix C . Then assign n j columns of unit vectors
to basis vectors vk , in V(n+1), that are given vk(m) = αk = −C1(k)/C1(m). For
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Table 15.3. Comparison of the Purcell method with other direct methods.

Problem Size n Method Growth ρ Accuracy ‖x − x∗‖2 Failure

30 Gaussian (c) 1.4 3.8 × 10−14

Gaussian (p) 1.7 × 104 6.0 × 10−11 �

Huard [288] 1.1 × 10−1 3.6 × 10−14

1 Purcell [392] 1.3 × 10−1 3.9 × 10−14

60 Gaussian (c) 1.4 1.3 × 10−13

Gaussian (p) 4.2 × 108 2.8 × 10−6 �

Huard [288] 5.6 × 10−2 1.2 × 10−13

Purcell [392] 6.6 × 10−2 1.2 × 10−13

30 Gaussian (c) 1.4 4.6 × 10−14

Gaussian (p) 1.4 5.0 × 10−14

Huard [288] 5.8 × 102 5.9 × 10−11 �

2 Purcell [392] 1.2 × 10−1 3.9 × 10−14

60 Gaussian (c) 1.4 1.6 × 10−13

Gaussian (p) 1.4 1.9 × 10−14

Huard [288] 7.0 × 106 2.4 × 10−4 �

Purcell [392] 5.8 × 10−2 1.6 × 10−13

30 Gaussian (c) 2.0 1.1 × 10−14

Gaussian (p) 5.4 × 108 3.0 × 10−7 �

Huard [288] 6.7 × 10−2 2.6 × 10−14

3 Purcell [392] 8.8 × 10−2 3.8 × 10−14

60 Gaussian (c) 2.0 5.5 × 10−14

Gaussian (p) 5.8 × 1017 1.5 × 102 �

Huard [288] 3.4 × 10−2 1.2 × 10−13

Purcell [392] 4.3 × 10−2 1.5 × 10−13

30 Gaussian (c) 2.0 5.8 × 10−15

Gaussian (p) 2.0 5.8 × 10−15

Huard [288] 1.8 × 107 2.6 × 10−7 �

4 Purcell [392] 1.3 × 10−1 2.7 × 10−14

60 Gaussian (c) 2.0 7.9 × 10−14

Gaussian (p) 2.0 7.9 × 10−14

Huard [288] 9.6 × 1015 2.8 × 101 �

Purcell [392] 6.5 × 10−2 1.5 × 10−13

simplicity, we can assume that n is divisible by p; if not we can let the last
processor take the extra vectors i.e. n p = n1 + (n − pn1).

Parallel generation of rows of matrix C . For many applications (e.g.
BEM), rows of a matrix can be formed independently. An easy example shown
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in programs cup4.f and cup5.f is to use a parallel counter my count which is
allowed to take the value 1 every p steps, when we let all processors compute
(fetch) a row of matrix C . To ensure that only one processor broadcasts its
row content to all others when needed, we also set another parallel counter
my role and check whether my role=0; such a counter value corresponds to the
processor identity number my first. For example, with p = 4 processors, the
counters may be organized as follows for the first few steps

row i processor j my role my first my count
2 0 0 0 1

1 1 0 1
2 2 0 1
3 3 0 1

3 0 3 1 2
1 0 1 2
2 1 1 2
3 2 1 2

4 0 2 2 3
1 3 2 3
2 0 2 3
3 1 2 3

5 0 1 3 4
1 2 3 4
2 3 3 4
3 0 3 4

Clearly my first tracks down the identity of the processor that has my role= 0.

Storage. The amount of storage required on processor i is (n + 1) × ni ,
corresponding to ni column vectors. Specifically, it is appropriate to as-
sume that after step 1 the following matrix of size (n + 1) × ni is stored on
processor i

V =
 V1

∣∣∣∣∣∣ V2

∣∣∣∣∣∣ · · ·
∣∣∣∣∣∣ Vni


(n+1)×ni

which corresponds (globally) to the vectors V (n)
t(1,i)

∣∣∣∣∣∣ V (n)
t(2,i)

∣∣∣∣∣∣ · · ·
∣∣∣∣∣∣ V (n)

t(ni ,i)
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where (note t(n p, p) = (p − 1)n p + n p = n)

t(k, i) = (i − 1)ni + k for k = 1, 2, · · · , ni .

That is, the subspace R(n) is split into smaller subspaces in p processors. For each
step j = 1, 2, . . . , n, let the j th pivoting vector V (n+1− j)

s( j) reside in processor
p j ; here p j ∈ {0, 1, . . . , p − 1}.

Once data are distributed as above, the pivoting vector V (n+1− j)
s( j) at a sub-

sequent step j has to be broadcast from processor p j to all other processors;
we denote such a step by ‘bcast’ for MPI_BCAST. In implementation it is im-
portant to note that V (n+1− j)

s( j) has at most j nonzero positions (e.g. 1 nonzero
at step j = 1 and 3 nonzeros at step j = 3). One other observation is that
the processor that holds the pivot vector (i.e. uses ‘bcast’) will have one less
vector to work with; this fact may be called dimension reduction for sim-
plicity. Therefore an ideal load balancing will be achieved if p j (the pivoting
processor) takes all values from the set {0, 1, . . . , p − 1} (in any order) ev-
ery p steps. The dimension reduction in the active processor will lead to load
unbalancing.

� Method I. Our first parallel method is illustrated in program cup4.f, where
the global pivoting is restricted in search columns in order to achieve a ‘perfect’
load balancing. In details, every p steps, no processors are allowed to host the
pivot for more than once; hence each processor hosts the pivot exactly once in
any order.

As it turns out, such an idea is quite easy to implement with the command
MPI_ALLREDUCE by modifying a control variable; compare for the maximum
value of{

local maximum pivot product CT
i v1, if n j ≥ [n/p] − [(i − 2)/p],

the value -1, if n j < [n/p] − [(i − 2)/p],

where, i ≥ 2 denotes the row i for matrix C , n j is the total number of working
vectors left on processor j and note that [(i − 2)/p] advances by 1 for every
p steps. As an illustration, we list the case of p = 4 processors, the active
dimensions in the first 4 steps may be look like this

row i processor 0 processor 1 processor 2 processor 3

2 n0 − 1 n1 n2 n3

3 n0 − 1 n1 n2 n3 − 1
4 n0 − 1 n1 − 1 n2 n3 − 1
5 n0 − 1 n1 − 1 n2 − 1 n3 − 1
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As the reader may find out from running cup4.f with the built in data, the
method is adequate in terms of parallel performance (or scalability) but is not
suitable for two of the problems (giving extremely inaccurate solutions) where
pivoting is essential.

� Method II. This algorithm attempts the global (column) pivoting strategy,
which is not somehow compatible with our data partition. At each step, define
the active processor my act as the one that keeps the pivoting vector. One way
to balance the load (in terms of dimension reduction) is for other processors in
turn to send a basis vector to this active processor, which has just reduced its
dimension n j . Thus all processors are forced to reduce their dimension at the
same speed and consequently the work load is balanced. This is our program
cup5.f.

We need MPI_REDUCE with the option MPI_MAXLOC to find out the pivot
and the pivoting processor number. To achieve load balance by shifting vectors
between processors, our idea is to set up a parallel cyclic counter my role that
takes values from {0, 1, 2, . . . , p − 1} cyclically; whenever my role = 0 we
expect the number of vectors Vj ’s to be reduced by one and if the underlying
processor is not the pivot processor, we propose to shift a vector V1 from
it to the pivoting processor. This forces an even dimension reduction across
processors.

Initially set my role = i on processor i i.e. we anticipate at step j , p j = j
otherwise we shift a vector from j to the pivoting processor p j . Therefore this
achieves the aim of load balance while maintaining the global row pivoting, as
depicted in Figure 15.1. For instance, assume n = 16 with p = 4. If the active
processors for the first five steps of i ≥ 2 are my act = 3, 1, 2, 2, 0, then the
load shifting is as shown in Table 15.4. It is possible to adapt the idea further
for specific problems with some predictable pivoting patterns.

Finally we remark on the extra effort made in cup5.f in allowing both n
and p to be arbitrarily integers, by using the counters my turn and my tid to
control fetching row i’s and by focusing the counters my role and my first on
the task of load shifting. In this general case, n �= [n/p]p so we have to defer
the normal shifting process until the last processor p − 1 shifts out all of its
extra nc le f t = n − [n/p]p vectors allocated. We use this feature to highlight
what can be done to deal with general dimensions.

In summary, the sample programs cup4.f and cup5.f used these MPI
routines

MPI_INIT ! The minimal call

MPI_COMM_RANK ! The minimal call
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Space Processor 1 Processor 2 · · · Processor p
Step 1

� bcast Vs(1) from the pivot processor p1

R(n) V1 V2 · · · Vn1 V1 V2 · · · Vn2 · · · V1 V2 · · · Vn p

Step 2
� bcast Vs(2) from the pivot processor p2
� send V1 from processor 2 to p2 if p2 �= 2

R(n − 1) V1 V2 · · · Vn1−1 V1 V2 · · · Vn2 · · · V1 V2 · · · Vn p

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
Step p + 1

� bcast Vs(p+1) from the pivot processor pp+1
� send V1 from processor p to pp+1 if pp+1 �= p

R(n − p) V1 V2 · · · Vn1−1 V1 V2 · · · Vn2−1 · · · V1 V2 · · · Vn p−1

Step p + 2
� bcast Vs(p+2) from the pivot processor pp+2
� send V1 from processor 1 to pp+2 if pp+2 �= 1

R(n − p − 1) V1 V2 · · · Vn1−2 V1 V2 · · · Vn2−1 · · · V1 V2 · · · Vn p−1

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
Step n − p + 1

� bcast Vs(n−p+1) from the pivot processor pn−p+1
� send V1 from processor 1 to pn−p+1 if pn−p+1 �= 1

R(p) V1 V1 · · · V1

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

Step n
� bcast Vs(n) from the pivot processor pn (assume pn �= p for illustration)

R(1) · · · V1

Figure 15.1. Illustration of the parallel Purcell algorithm II.

MPI_COMM_SIZE ! The minimal call

MPI_GET_PROCESSOR_NAME ! The optional use for processor name

MPI_bcast ! Broadcast

MPI_barrier ! Set a waiting point for bcast

MPI_ALLREDUCE ! Compute across processors

MPI_SEND !

MPI_RECV !

MPI_WTIME ! Obtain the cpu timing

MPI_FINALIZE ! The minimal call
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15.5.4 Numerical examples

As shown earlier (in Section 15.5.1), the Purcell method in its sequential form
appears to produce a consistently small growth factor in comparison to other
well-known direct elimination methods, making it a potential winner of all
practical direct methods. Our test examples will be the four simple matrices
shown in Section 15.5.2; for BEM examples, see [328].

Below we demonstrate that our new algorithm II performs better than the
parallel Gauss–Jordan method with global (partial) column pivoting as in
[178,283], in terms of reliability (accuracy expected of a direct method) and
scalability (as the number of processors increases). The tests were carried out
on a SGI IP25 machine with 14 processors and have also been verified on a
Sun-sparc work station cluster.

Reliability and accuracy test. Here we test the four tough (but simple)
problems as in Section 15.5.2 to see how accurate the different algorithms
with our pivoting strategies are; each problem is solved with n = 1024, 2048
equations. Table 15.5 shows the details of our experiments, where � denotes
the problem number, � denotes an acceptable accuracy is achieved for all n and
� denotes a solution failure or inaccuracy. By accuracy, we mean the machine
precision because these are direct methods. Clearly one can observe that only
the Purcell algorithm (from Method II) is very reliable. We remark that Method
I is not so reliable for two of the problems.

Scalability test. We now test the scalability of the parallel Purcell method
II as proposed. This is presented in Table 15.6. One observes that the scalability
of the proposed parallel method is generally good.

Table 15.5. Comparison of accuracy of parallel direct
methods on SGI IP25.

Method GJ Purcell

� p = 1 2 4 8 2 4 8

1 � � � � � � �
2 � � � � � � �
3 � � � � � � �
4 � � � � � � �
5 � � � � � � �
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Table 15.6. Performance of parallel direct algorithms on SGI IP25.

Algorithm Processors Problem IP25 CPU Efficiency
used p size n (s) over p = 1

GJ 1 1024 244
2048 1868

2 1024 122 2
2048 935 2

4 1024 61 4
2048 469 4

8 1024 31 7.9
2048 238 7.8

PC 2 1024 69 2.0
2048 544 2.0

4 1024 35 4.0
2048 277 3.9

8 1024 20 6.9
2048 143 7.5

Once a reader becomes familiar with the functionality of basic MPI rou-
tines, there are ‘endless’ algorithms to be attempted. For instance, in [209], we
considered how to parallelize a DWT. Parallelizing SPAI type precondition-
ers [148,149,253] will be another interesting task to complete. The multigrid
methods (Chapter 6) may also be parallelized [21,185,346].

15.6 Discussion of software and the supplied
MPI Fortran files

Parallel computing, also refered to as the high performance computing, is a
fast expanding subject. There exist ample examples of MPI programs, that
are available often along with sequential software (as remarked, not all of the
parallel programs are easy to follow). Here we highlight three of such resources
for information.

(1) The ScaLAPACK (Scalable LAPACK):

http : //www.netlib.org/scalapack/

(2) The PLAPACK (parallel LAPACK):

http : //www.cs.utexas.edu/users/plapack/
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(3) The BlockSolve package:

http : //www−unix.mcs.anl.gov/sumaa3d/BlockSolve/index.html
http : //www.netlib.org/misc/blocksolve.tgz

This book has supplied some more gentle programs for first attempts of MPI
programming.

[1] cup1.f – Example 1 of a parallel series summation.
[2] cup2.f and cup3.f – Example 2 of a parallel power method using

respectively the column and row partition.
[3] cup4.f and cup5.f – Example 3 of a parallel direct (Purcell) method,

where pivoting is done differently in each program.



Appendix A: a brief guide to linear algebra

Information in science and mathematics is often organized into rows and
columns to form rectangular arrays, called “matrices” (plural of “ma-
trix”). Matrices are often tables of numerical data that arise from physical
observations, but they also occur in various mathematical contexts.

Howard Anton. Elementary Linear Algebra. Wiley
(1973 1st edn, 2000 8th edn).

To be able to read or work on matrix computing, a reader must have completed
a course on linear algebra. The inclusion of this Appendix A is to review some
selected topics from basic linear algebra for reference purposes.

A.1 Linear independence

Let v j ∈ R
n for j = 1, . . . , r with r ≤ n. The set of r vectors v1, v2, . . . , vr is

said to be linearly independent if the only solution of the equation

k1v1 + k2v2 + · · · + krvr = 0 (A.1)

is k1 = k2 = k3 = . . . = kr = 0. Otherwise, the set of vectors is said to be
linearly dependent.

An interesting fact is that equation (A.1) can be put into matrix vector form

Ak = 0, with A = [v1 v2 · · · vr ]n×r , k = [k1 k2 · · · kr ]T ∈ R
r . (A.2)

Let the subspace V = span (v1, v2, . . . , vn) and the matrix A =
[v1, v2, . . . , vn]. Then y ∈ V is the same as

y = Ax, for x ∈ R
n. (A.3)

504



A.2 Range and null spaces 505

A.2 Range and null spaces

Given a matrix A ∈ R
m×n , the range space and the null space are defined by

Range(A) = {y | y = Ax ∈ R
m, x ∈ R

n}
Null(A) = {x | y = Ax = 0 ∈ R

m, x ∈ R
n} (A.4)

with the dimension of Range(A) called the rank of A and the dimension of
Null(A) called the nullity of A. The important connection is that

rank(A) + nullity(A) = n.

If m = n, we have the direct sum: R
n = Range(A) ⊕ Null(A). Note also that

Range(A) �= Range(AT ) unless A is symmetric, but rank(A) = rank(AT ) for
any Am×n .

A.3 Orthogonal vectors and matrices

Two vectors p, q ∈ R
n are called orthogonal to each other if

pT q = (p, q) =
n∑

j=1

p j q j = 0.

Mutually orthogonal vectors p1, p2, . . . , pr , if normalized with (p j , p j ) = 1,
are called orthonormal i.e. they satisfy

pT
i p j = (pi , p j ) = δi j =

{
1, i = j,
0, i �= j.

(A.5)

An orthogonal matrix An×r has orthonormal column vectors

A = [p1 p2 · · · pr ].

From (A.5), we see that

AT A = Ir×r .

When r = n, we have the usual result AT A = AAT = I .

A.4 Eigenvalues, symmetric matrices and diagonalization

For A ∈ R
n×n , its eigenvalue λ and eigenvector x are defined by

Ax = λx (A.6)

where λ ∈ C, x ∈ C
n . At most, there are n such pairs (λ j , x j ) for a general A. If
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� either all n eigenvalues λ j ’s are distinct,
� or all n eigenvectors x j ’s are linearly independent,

then matrix A can be diagonalized by its eigenvector matrix X

X−1 AX = diag(λ1, · · · , λn), X = [x1 x2 · · · xn]. (A.7)

The above conditions imply that the only case where (A.7) does not hold is when
some λ j ’s are the same and there are not enough corresponding eigenvectors
(linearly independent). This case is referred to as A having defective eigen-
values; that is, at least one eigenvalue has an algebraic multiplicity (multiple
eigenvalues) larger than its geometric multiplicity (eigenvector count). Then
the alternative to (A.7) will be the Jordan decomposition.

When A is symmetric, all λ j ’s are real and X will be invertible; if all columns
are normalized, X is orthogonal. (Likewise a Hermitian A will lead to an unitary
X ). Once diagonalization is established, there are various applications.

A.5 Determinants and Cramer’s rule

The determinant |A| or det(A) is normally computed by its row-wise (or
columnwise) expansion: for any k

|A| = ak1 Ak1 + ak2 Ak2 + · · · + akn Akn =
n∑

j=1

akj Ak j =
n∑

j=1

(−1)k+ j ak j Mkj

(A.8)

where Mkj = |A(r, r )|, with r = [1 · · · k − 1 k + 1 · · · n], is the minor of A
at entry akj and Akj = (−1)k+ j Mkj is the cofactor at akj . Here the MATLAB
notation A(r, r ) for submatrix extraction is used.

Formula (A.8) is only a special case of the Laplace theorem for determi-
nant expansion. In general, let vector k = [k1, k2, . . . , kτ ] be a subset of size τ

(ordered sequentially) taken from the index set N = [1, 2, . . . , n]; e.g. k = [2 4]
with τ = 2. Consider the determinant |A(k, j)| with j = [ j1, j2, . . . , jτ ] and

1 ≤ j1 < j2 < . . . < jτ ≤ n. There are t =
(

τ

n

)
= Cτ

n = n!

τ !(n − τ )!
such de-

terminants; name them as M1, M2, . . . , Mt . For each determinant |A(k, j)|, de-
fine its ‘cofactor’ by |A(k̂, ĵ)|(−1)k1+···+kτ + j1+···+ jτ with k̂ = N\k and ĵ = N\j.
Denote such cofactors by A1, A2, . . . , At . Then the Laplace theorem states that

|A| = M1 A1 + M2 A2 + · · · + Mt At (A.9)

which reduces to (A.8) if we choose τ = 1 and k = k.
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Once determinants are defined, for a square linear system Ax = b with
rank(A) = n, denote B j = [a1 . . . , a j−1, b, a j+1, . . . , an] the matrix A with
its j th column replaced by vector b. Then the solution by Cramer’s rule is

x j = |B j |
|A| , j = 1, 2, . . . , n,

which may be derived from using x = A−1b and considering |A−1 B j |. Replac-
ing b = ek (the kth unit vector) in turns gives rise to the solution of Azk = ek

zk = 1

|A|


|Bk

1 |
|Bk

2 |
...
|Bk

n |

 , Z = [z1, z2, · · · , zn] = 1

|A|


|B1

1 | |B2
1 | · · · |Bn

1 |
|B1

2 | |B2
2 | · · · |Bn

2 |
...

... · · · ...
|B1

n | |B2
n | · · · |Bn

n |

 ,

(A.10)

where Bk
j is the matrix of A with its j th column replaced by ek so |Bk

j | = Akj

is the cofactor for entry (k, j) and hence Z = A−1. Therefore the last matrix in
(A.10) is precisely the adjoint matrix.

A.6 The Jordan decomposition

Whenever (A.7) does not hold for a matrix A, we have to use the Jordan decom-
position which exists for any A. Note that in (A.7), X is complex. The same
is true with a Jordan decomposition: for any matrix A ∈ C

n×n , there exists a
nonsingular matrix C ∈ C

n×n such that

C−1 AC = J = diag(B1, B2, · · · , Bd ),
Bi = diag( λi , · · · , λi ,︸ ︷︷ ︸

pi − 1 terms

Ji ), Ji =


λi 1

λi
. . .
. . . 1

λi


qi ×qi

(A.11)

where d is the total number of distinct eigenvalues and the eigenvalue λi has
pi linearly independent eigenvectors (i.e. pi is the geometric multiplicity for
λi and λi has qi − 1 deficient eigenvectors). Here pi + qi − 1 is the algebraic
multiplicity for λi . As C has n independent column vectors, so

d∑
i=1

(pi + qi − 1) = n.
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Assuming that pi , qi are known, to find C , we identify its column vectors
from

C = [c1 c2 · · · cn]

and (A.11)

Ac j = λi c j , if c j belongs to the set of independent eigenvectors
Ac j = c j−1 + λi c j , if c j belongs to the set of deficient eigenvectors

(A.12)

where the ‘deficient’ eigenvectors (usually called the generalized eigenvectors
for λi ) will have to be replaced and computed while the independent eigenvec-
tors can be assumed to be known. Therefore all c j can be found from the above
linear systems. Practically, the generalized eigenvectors c j for λi can be found
from solving the least-squares problem (by the QR method of §2.4 and (5.25))

(A−λi I )c j = c j−1, j = si + 1, . . . , si + qi − 1, si =
i−1∑
k=1

(pk + qk − 1)

+ pi ,

which has the property

(A − λi I ) j−si +1c j = (A − λi I )csi = 0, j = si + 1, . . . , si + qi − 1.

That is, the generalized eigenvectors are simply the null vectors of powers of
matrix (A − λi I ); see [508]. Consider the following 4 × 4 example, where the
matrix has a single eigenvalue λ1 = 4 with algebraic multiplicity p1 + q1 −
1 = 4 and geometric multiplicity p1 = 1 i.e. there exists only one eigenvector
x1 = [0.5 0.5 0.5 0.5]T . Using the QR method (see the Mfile my_jordan.m),
we find that

A =


3 1 0 0

−1 4 1 0
−1 0 4 1
−1 0 0 5

, X−1 AX =


4 1

4 1
4 1

4

,

X =


0.5 −0.5 0 0.5
0.5 0 −0.5 0.5
0.5 0 4 0
0.5 0 0 0.5

.

Here x2, x3, x4 are q1 − 1 = 3 deficient eigenvectors. One can verify that (A −
4I )x1 = (A − 4I )2x2 = (A − 4I )3x3 = (A − 4I )4x4 = 0 and (A − 4I )x j =
x j−1 etc.
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A.7 The Schur and related decompositions

The Jordan decomposition provides a similarity transform to simplify A. The
transform is not unitary. The Schur decomposition supplies us with an unitary
transform to simplify A, not to a block diagonal matrix such as the Jordan
matrix J but to a triangular matrix whose diagonals are the eigenvalues of
A. Related decompositions aim for the diagonal matrix and two simultaneous
matrices.

Schur. For any matrix A ∈ C
n×n , there exists an unitary matrix U ∈ C

n×n

that can transform A to an upper triangular form, with λ j ∈ C,

U H AU = T, diag(T ) = diag(λ1, λ2, · · · , λn). (A.13)

Note that most columns of U , u j ’s for j > 1, are in general not eigenvectors of
A; the first column is an eigenvector as Au1 = T11u1 from equating AU = U T .
If A has n independent eigenvectors, the Schur decomposition is equivalent to
orthogonalizing them to make up an orthonormal basis via the Gram–Schmidt
process.

For a real matrix A ∈ R
n×n , there exists an orthogonal matrix U ∈ R

n×n that
can transform A to an upper triangular form with diagonal blocks,

U H AU = T, diag(T ) = diag(b1, b2, · · · , bd ), b j ∈ R or b j ∈ R
2×2,

(A.14)

where the 2 × 2 blocks correspond to a complex pair of eigenvalues. On
MATLAB r©, the default setting is to give a real Schur decomposition, unless
specified otherwise

>> rand('state',0), A=rand(4) % set the seed

>> a = eig(A)' % 2.3230, 0.0914+/-0.4586i, 0.2275

>> b = schur(A) % b1,b2,b3 with b2=2 x 2

>> c = schur(A,'complex') %diag = 2.3230, 0.0914+/-0.4586i, 0.2275

Related decompositions. For A ∈ C
n×n , the singular value decomposi-

tion is

U H AV = D, D = diag(σ1, σ2, · · · , σn), (A.15)

where U, V are unitary matrices, and σ j ≥ 0 is the j th singular value of A. For
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two matrices A, B ∈ C
n×n , there exist Schur type decompositions

U H AV = T1, U H BV = T2, diag(T1)./ diag(T2) = diag(g1, g2, · · · , gn),
(A.16)

where T1, T2 are upper triangular, ‘./′ is the usual pointwise division and g j ∈ C

is the j th generalized eigenvalue as defined by [329,280]

Ax j = g j Bx j . (A.17)

Similarly to the Schur case, if A is real, U, V can be real [329].



Appendix B: the Harwell–Boeing (HB)
data format

The matrix market [347,188] contains a rich source of test matrices from various
applications, many of which are challenging test examples (other sources can
be found from Appendix E). The Harwell–Boeing data format is one of the two
text formats used to store matrices. To help the reader to understand this sparse
storage, we give a brief introduction.

Let A be sparse. For simplicity, we first consider the sample matrix (as from
the supplied Mfile size6.m):

A =



−8.4622 0 0.3046 0 0 0
0 0 0.1897 0.6979 0 0.2897

0.2026 0.8318 0 0 0 0
0 0 0 0 0.6449 0.5341

0.8381 0.7095 0.3028 0.8537 0 0
0.0196 0.4289 0.5417 0 0 0


.

For this matrix, we have prepared a sample data set sample.ruawhich keeps
this A in HB format:

Sample HB data (see size6.m - the Mfile) sample.rua

1 2 8 14 0

rua 6 6 16

(7I3) (9I3) (2D20.13) (4D20.14)

} Title

No of lines

Type/Rows/Cols/NNZ

Listed Data Formats

1 5 8 12 14 15 17

1 3 5 6 3 5 6 1

2 5 6 2 5 4 2 4

}
Column pointers 7I3

Row indices

(Format 8I3)

-8.4622141782399D+00 2.0264735764999D-01

8.3811844505199D-01 1.9639513864800D-02

8.3179601761001D-01 7.0947139270301D-01

4.2889236534100D-01 3.0461736686901D-01

1.8965374754701D-01 3.0276440077701D-01

5.4167385389801D-01 6.9789848186001D-01

8.5365513066301D-01 6.4491038419400D-01

2.8972589585600D-01 5.3407901762700D-01


The 16 non-zeros

of matrix A

(Format 2D20.13)

511
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The best way to read a matrix of this type is to use the utility routines from the
‘official site’ http : //math.nist.gov/MatrixMarket/formats.html
or from the Sparskit [414]

http : //www−users.cs.umn.edu/∼saad/software/SPARSKIT/sparskit.html

A simple example can be found in cup2.f in Section 15.4.
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There are many books written on MATLAB r© at both tutorial and advanced
levels e.g. [135,279]; see also the official site

http : //www.mathworks.com,

http : //www.mathworks.com/support/books/

This short appendix is to illustrate some MATLAB notation and highlight the
excellent graphics facilities. Further elementary introductions may be found
from

http : //www.liv.ac.uk/maths/ETC/matbook/ (Chen et al. [135])
http : //www.math.uiowa.edu/∼atkinson/m72 master.html

(Atkinson and Han [25])

C.1 Vectors and matrices

In mathematics, we use either the round braces or the square brackets to denote
a vector or matrix. MATLAB sticks to the square brackets for entering a matrix
e.g.

>> x = [ 1 2 3 ] % for a row vector of size 3

>> y = [ 1 2 3 4:6 ]' % for a column vector of size 6

>> A = [ 1 2 3; 4 5 6;

7 8 9 % for entering a 4 x 3 matrix

0 1 2] % (note the use of ';' and end-of-line)

>> B = [ 1 2 3 4 ...

5 6; 7 8 ... % for entering a 2 x 6 matrix

9 0 1 2] % (note the use of ... for continuation)

>> z = 0:0.001:2*pi; % An uniform vector of stepsize h=0.001

>> rand('state',0); V=rand(3,5); % A random matrix of 3 x 5
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Once a matrix (or vector) is entered, the power of MATLAB really starts

>> A = round( rand(6)*9 ) % Generate a 6 x 6 random matrix

>> [X D] = eig(A) % Compute the eigen-system

>> [U D V] = svd(A) % Compute A=U*D*V' or U'*A*V=D

>> b = A(:,1) % Extract the first column of A

>> x = A \ b % Solve Ax = b

>> [v j]=max(abs(x)),xm=x(j)% Locate the largest component

>> s1 = eigs(A,1,0) % The smallest 1 eigenvalue near 0

>> s2 = svds(A,2,1) % Smallest 2 singular values near 1

Data extraction via an index vector is very convenient. Below we show a
few examples using submatrices or building larger blocks

>> row = randperm(6) % Set up an index vector 'row'

>> T = toeplitz(row) % Create a Toepliz matrix

>> add = 6:-1:2 % index list

>> new = [row 0 row(add)] % New extended row vector

>> C = gallery('circul',new); % Create a larger circulant matrix

>> mat_pr0(C,6,1,0) % Observe T is embedded in C

>> T = C(1:6,1:6) % Extract T out of C directly

where mat_pr0.m is a supplied Mfile.

C.2 Visualization of functions

Plotting is really easy with MATLAB, although complex plots may take a lot
of practice. First, we plot a peanut-shaped curve.

>> t = 0:0.01:2*pi;

>> r = sqrt( 100*cos(4*t) + sqrt(11000 - 10000*sin(4*t).ˆ2) );

>> x = 4.1*r.*cos(t); y = 4.1*r.*sin(t);

>> H = plot(x,y,'r'); set(H,'linewidth',6)

Second, we plot selected curves over a sphere:

>> p=0:0.001:2*pi; z=cos(p); % Vertical

>> for t=0:pi/8:2*pi %------------------------

>> x=sin(p)*cos(t*2); y=sin(p)*sin(t*2);

>> h=plot3(x,y,z,'b'); hold on

>> set(h,'linewidth',2)

>> end

>> t=0:0.001:2*pi;

>> for p=0:pi/10:2*pi %-----------------------

>> x=sin(p)*cos(t*2); y=sin(p)*sin(t*2);
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Figure C.1. MATLAB plots of functions.

>> z=cos(p).*ones(size(x)); % Horizontal

>> plot3(x,y,z,'r'); hold on

>> end

>> hold off

Finally, we show a surface plot:

>> [x y z]=peaks(35);

>> surf(x,y,z), axis tight

The three plots are shown in Figure C.1. In addition, we should mention the
‘non-numerical’ and ‘easy’ plotting commands.

>> ezplot('xˆ2-4*yˆ2=1')

>> ezsurf('sqrt(1-xˆ16-yˆ18)')

Since MATLAB version 6, a user can annotate a figure by adding texts and
arrows interactively. From version 7, more conveniently, the annotated results
can be saved as a Mfile, with a view to reproduce the same plot later.
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Figure C.2. MATLAB plots of matrices.

C.3 Visualization of sparse matrices

Visualization of matrices is necessary especially for large matrices, because
it is not possible to print out all entries. The sparse matrices are dealt with
very efficiently in MATLAB with commands like A=sparse(I,J,V),
speye(n), A=spdiags([e -2*e e], -1:1, n, n) and associated
operations!

The command spy is the most useful to visualize a matrix and also relevant
are the plotting routines such as mesh. A somewhat surprising choice may
be the command imagesc, usually for displaying images. If necessary, use
different colours, symbols and superimposition as illustrated below and with
results shown in Figure C.2.

>> n = 64; A=hilb(n);

>> subplot(131)

>> spy(A>1/n/2,'b.'),hold on

>> spy(A>2/n/3,'mx'),hold on

>> spy(A>1/n,'go'), hold on

>> spy(A>2/n,'rd'), hold on

>> xlabel(['Hilbert matrix A: entries > 1/' num2str(n*2)])

>> subplot(132)

>> B = fwt(A);

>> spy(abs(B)>1/n/2,'b.'),hold on

>> spy(abs(B)>0.1,'go'), hold on

>> spy(abs(B)>0.5,'rs'), hold on

>> xlabel(['Hilbert B=fwt(A): entries > 1/' num2str(n*2)])

>> subplot(133)

>> imagesc(B)

>> xlabel('Hilbert B=fwt(A) displayed by imagesc')

>> axis equal; axis([0 n 0 n])
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C.4 The functional Mfile and string evaluations

The functional Mfile is the subroutine (or sub-program) facility offered by
MATLAB. It is allowed to contain its own functional Mfiles within the same
file – a convenient option.

Any reader with experience of a programming language should find Mfiles
easy to use and understand, for example, regarding passing a list of input and
output parameters. We only need to point out two useful facilities.

(1) global allows all Mfiles that declare the same members of global vari-
ables (of any type) to access the latest content. (This resembles COMMON
statements in Fortran).

(2) eval of a string that may be generated by sprintf can trigger any nor-
mal commands in MATLAB. The facility is specially useful for generating
a variable number of matrix or vector names, depending on other control
variables. For instance, given an n × n matrix A, illustrating LU factor-
ization will require saving all intermediate matrices L1, L2, . . . , Ln−1, all
depending on n. That is to say, if n = 3, we only need L1, L2 and there is
no need to generate L3, L4 etc. This idea has been used in various parts of
the book notably in Chapter 6 when programming multilevel methods.

To be brief, we give an example of using a functional Mfile and the above
facilities to automatically generate a certain number of subplots (depending
on the input parameter). These plots illustrate the Harr wavelets from a fixed
coarse level to a used-specified fine level:

%ap2f.m - Functional Mfile for Harr wavelets -- lev >= 0

%Usage: figs = ap2f(lev) %lev can be -2, -1, 0, 1, 2, 3, etc

function out=ap2f(lev)

if nargin<1, help ap2f, return, end

x=(-10:0.01:10)'; figure

global total num color

total = lev+3; num = 0; color=1;

out = total;

for j=-2:lev

num = num + 1;

for k_shift=-10*2ˆj : 10*2ˆj

my_plot(x,j,k_shift)

end

if j==-2,title(['Levels =' num2str(out)]),end

end

set(gca,'color','y') % Mark the finest level
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return

%_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

function my_plot(x,j_scale,k_shift)

global total num color

str = sprintf('subplot(%d,1,%d)',total,num); eval(str)

hold on

Scale = 2ˆ(j_scale/2);

y = 2ˆj_scale * x - k_shift; yy=zeros(size(y));

yy = (y>=0 \& y<1/2) - ...

(y<1 \& y>=1/2) + ...

(y<0 } y>1) * 0;

p=plot(x,yy*Scale);

if color==1, set(p,'color','r'); color=2; else

set(p,'color','b'); color=1; end

hold off

return

The slight long Mfile is supplied as ap2f.m and the result from
out=ap2f(0) is shown in Figure C.3.
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Figure C.3. Use of MATLAB functional Mfiles.
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C.5 Interfacing MATLAB r© with Fortran or C

MATLAB is a useful research and development tool. As such, the reader may
find a need either to experiment on a specific matrix (or other data) from a
different platform (e.g. Fortran or C) to MATLAB or to output results from
MATLAB to be further tested by another platform. This is a topic not widely
discussed. We give a brief summary.

(1) MATLAB output of a dense matrix to text files. As high level pro-
gramming languages often require a formatted data input, one can use the
MATLAB command fprintf to format data as in the following (assume
a real n × n matrix A exists):

>> str = sprintf('fid=fopen(''mpta_%d.txt'',''w'');',n);

eval(str)

>> fprintf(fid, '%d %% dimension n for n x n\n',n);

>> for j=1:n % by columns

>> fprintf(fid, '%20.12e %20.12e %20.12e %20.12e\n',

A(:,j));

>> end

>> fclose(fid); % File mpta_64.txt ready (if n=64)

(2) MATLAB output of a sparse matrix to text files. Suppose A is a real and
sparse n × n matrix. We wish to save it as an ascii text file in the Harwell–
Boeing format Section 15.4. Fortunately, such Mfiles exist; download from

http : //math.nist.gov/MatrixMarket/formats.html

which also keeps Mfiles that read such data onto MATLAB.
(3) Simple text files loadable by MATLAB. This is a simple and neat way to

load data onto MATLAB, but the file can only contain one matrix having
the same number of columns per row! Therefore for large matrices, one has
to think about folding rows correctly and recovering them later. Otherwise,
the command to import the data file mpta.txt is

>> load mpta.txt % Internal name => mpta or

>> importdata mpta.txt % Internal name => ans

(4) GeneratingMfiles forMATLAB. This is a robust and yet basic method of
loading multiple data sets onto MATLAB. Simply generate a text file with
data formatted as in Section C.1 for manual data entry. For example, with
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Fortran,

...

STR='mpta_gen.m'

OPEN(24, FILE=STR)

WRITE(24,'('' n ='',I5)') N

WRITE(24,'('' A = [ % Start of a matrix'')') ! By rows

DO I=1,N

WRITE(24,'(4E22.10, ''...'')') (A(I,J),J=1,N)

ENDDO

WRITE(24,'( / )')

WRITE(24,'('' ]; % End of a matrix'')') ! By rows

WRITE(24,'('' b = [ % Start of a vector'')') ! By rows

WRITE(24,'(4E22.10, ''...'')') (B(J),J=1,N)

WRITE(24,'('' ]; b=b''''; % End of a vector'')') ! By rows

WRITE(24,'('' whos A b '')')

CLOSE(24)

...

(5) MAT and MEX files on MATLAB. These two facilities are provided by
MATLAB for advanced data and programs integration. Firstly MAT files
are normally generated by the MATLAB command save FILE A b for
saving matrix A and vector b to FILE.MAT, which can be loaded in next
time when one types load FILE. However, such MAT files can be read
by Fortran and C directly and likewise one can generate MAT files directly
from Fortran and C for MATLAB use.

Secondly, MEX files are subroutines produced from Fortran or C source
code and can be used by MATLAB like Mfiles! In this way, our own (effi-
cient) codes can be used by simple commandswithinMATLAB.Vice versa,
Fortran or C sources are allowed to call the MATLAB engine library – in
this latter case, the original motivation for inventing MATLAB to relieve
users of working with Fortran routines (in using LINPACK1) is completely
lost. This does not suggest that there will not be needs for MAT and MEX
files for some readers (and developers).

However, to use either facility, one may have to learn quite a lot about ex-
ternal interfaces (or application program interface - API) and this is worth-
while if the effort can help many people to access an otherwise difficult
code. (The dilemma may be that if an average reader must really know all
these, again there might be less of a need for linking the interfaces in the
first place). The two facilities will surely improve in the near future.

1 Seehttp://www.netlib.org/lapack/ for LAPACK – the modern version of early LIN-
PACK and EISPACK.
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Finally, it should be remarked that there exists aC++ translation compiler
to turn MATLAB Mfiles (or scripts) to C++ codes, which can then be run
on a standalone basis. This might be useful if a MATLAB development
code is to be converted. Check the MATLAB website.

C.6 Debugging an Mfile

It is inevitable that an experienced MATLAB user will soon write long Mfiles.
MATLAB version 7 has provided a useful command mlintwhich can suggest
modifications and pinpoint fatal errors:

>> mlint('file') % to check the Mfile file.m

>> mlintrpt('file') % in graphical user interface (GUI) mode

However it cannot do the algorithms for us, e.g. it will not pick out A = 3 + x;
as an error (which will be found out at the running stage) when x is not defined.

C.7 Running a MATLAB r© script as a batch job

Running a large job at background or off-peak periods is a standard practice
on Unix (or Linux) systems. Although few readers run large MATLAB jobs,
the increasing computer power makes it feasible for MATLAB to solve bigger
problems.

To run file.m as a batch job, use the usual commands at hh.mm (e.g. at
11:55pm) or batch using

matlab < file.m

where graphics is displayed in the device defined by DISPLAY (check echo
$DISPLAY). If there is graphics involved in file.m and there is no display
facility during a batch run, then use

matlab -display /dev/null < file.m

C.8 Symbolic computing

Symbolic computing is another useful tool for a researcher as well as a gradu-
ate student or similar. Maple is a well-known symbolic computing package,
that has been included in MATLAB (from version 5) as a symbolic tool-
box. With it, symbolic computation can be done with ease. Interestingly with
syms, the adoption of the MATLAB notation for some commands such as
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y = (x + 5) ∧ 6 makes the usage easier than within a standalone Maple where
one must type y := (x + 5) ∧ 6; including ‘:’ and ‘;’; the difference is more
remarkable with matrix input and operations. However for other commands
such as int for integration, the MATLAB adaption is not as flexible and yet
some Maple commands share names with the normal MATLAB commands as
sum, plot, roots; in these cases, we must call the Maple kernel explicitly, e.g.
maple(′sum(k ∧ 2, k = 1..n)′) or use the newly defined names such as sym-
sum, poly2sym, ezplot.

Here we display only a couple of short examples in a MATLAB session
(given as ap2m.m):

>> syms A w x y z % Declare variables (allowed to be variables)

>> A = [ -5 2 4

2 -8 2 % Note the syntax is in MATLAB

4 2 -5 ] % (Maple itself would need the "array"

command)

>> P3 = det(x*eye(3) - A) % Result = xˆ3+18*xˆ2+81*x

>> cof = sym2poly(P3) % Result = 1 18 81 0

>> A2=double(A) % Convert back to normal matrix

>> c2 = poly(A2) % Result = 1.0 18.0 81.0 0 (usual)

>> c2 = poly2sym(c2) % Result = xˆ3+18*xˆ2+81*x

>> ezplot(c2,[-12,2]) % PLOT the cubic polynomial

>> Integral=int(c2,x,-12,2)% Result = -434 (integrate the cubic)

>> p =taylor(1/(1-x)ˆ2,x,3)% Result = 1+2*x+3*xˆ2

>> w = cos(x*y*z) % Define another function

>> a = diff(w,x,2)+diff(w,y,2) ... % Compute 3D Laplacian

+diff(w,z,2)

>> a = factor(a) % a = -cos(x*y*z)*(yˆ2*zˆ2+xˆ2*zˆ2+xˆ2*yˆ2)

>> latex(a) % Convert to LaTeX for word processing

>> mhelp('dsolve') % Invoke the help system for doing "dsolve"

Owing to the MATLAB adaption of commands, not all Maple script files can be
runwith the toolbox, e.g. the usualMaple command read('file.txt');
may not be run by using

>> maple('read('file.txt')') %% NEED the full Maple package
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M-files and programs

Most supplied Mfiles for MATLAB r© experiments and illustrations have been
explained in the text and at the end of the concerned chapters. The summary
given here as a single and brief list is for reference purposes. As shown in the
preface, the Mfiles supplied can be downloaded from the internet

http://www.cambridge.org/9780521838283
http://www.liv.ac.uk/maths/ETC/mpta

Chapter 1 . . . . . . . . . . . .
� hess_as.m
� exafft16.m
� mygrid.m
� mat_prt.m
� mat_prt4.m
� fwt.m
� ifwt.m
� fft_fwt.m

Chapter 2 . . . . . . . . . . . .
� circ_toep.m
� ge_all.m
� gh_all.m
� givens.m
� houses.m
� mgs.m
� gj_ek.m
� g_e.m

� g_h.m
� g_j.m
� mk_ek.m
� nsh.m
� waz_fox.m
� waz_zol.m
� waz_all.m

Chapter 3 . . . . . . . . . . .
� ch3_fmm.m
� gmrest_k.m
� gmres_c.m
� gmres_k.m
� index2.m
� intera.m
� iter3.m

Chapter 4 . . . . . . . . . . .
� banda.m
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� bandb.m
� bandg.m
� circ_pre.m
� detect.m
� ilu_0.m
� ilu_t.m
� matrix0.mat
� matrix1.mat
� matrix2.mat
� matrix3.mat
� multic.m
� schts.m
� t_band.m
� t_dete.m

Chapter 5 . . . . . . . . . . . . .
� chebg.m
� cheb_fun.m
� def_no.m
� run_ai.m
� spai2.m
� waz_t.m

Chapter 6 . . . . . . . . . . . . .
� cf_split.m
� ch6_gs.m
� ch6_mg2.m
� lap_lab.m
� mgm_2d.m
� mgm_2f.m
� mgm_2s.m

Chapter 7 . . . . . . . . . . . . .
� hb1.m

Chapter 8 . . . . . . . . . . . . .
� ch8.m
� cz.m
� fwts.m

� iperm0.m
� iperm2.m
� perm0.m
� perm2.m
� run8.m
� spyc.m

Chapter 9 . . . . . . . . . . . . . . . . .
� gmres_nr.m
� iwts.m
� richa_nr.m
� run9.m

Chapter 10 . . . . . . . . . . . . . . . .
� ch0_w2.m

Chapter 13 . . . . . . . . . . . . . . . .
� bccb.m
� bttb.m
� ch13.m

Chapter 14 . . . . . . . . . . . . . . . .
� bprod.m
� hopf.m

Chapter 15 . . . . . . . . . . . . . . . .
� cup1.f
� cup2.f
� cup3.f
� cup23.in
� cup4.f
� cup5.f

Appendices A–E . . . . . . . . . .
� ap2f.m
� ap2m.m
� my_jordan.m
� mat_pr0.m
� size6.m
� size6.rua



Appendix E: list of selected scientific
resources on Internet

In this Appendix we list a small and selected sample of internet sites that
contain specific topics and useful software relating to matrix preconditioning,
fast solvers and scientific computing in general. Any list of this kind cannot be
complete because there are simply too sites to be found and listed (unfortunately
Internet addresses can be time sensitive).

E.1 Freely available software and data

Here the commonly used word ‘freely‘ should better be replaced by ‘gener-
ously’. Indeed, only some selected sites are listed below some of which might
require a simple online registration which is generously reasonable.

〈1� Survey of freely available software for linear algebra on the web
(Jack Dongarra):

http://www.netlib.org/utk/people/JackDongarra/la-sw.html

〈2� Overview of Iterative Linear System Solver Packages (Victor Eijkhout):

http://www.netlib.org/utk/papers/iterative-survey/

〈3� NETLIB (Collection of mathematical software, papers, and databases)
(Chief editors: Jack Dongarra and Eric Grosse)

http : //www.netlib.org/

〈4� TOMS (ACM Transactions on Mathematical Software) (Association for
Computing):

http : //math.nist.gov/toms/
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〈5� Matrix Market:

http : //math.nist.gov/MatrixMarket/formats.html

〈6� University of Florida Sparse Matrix Collection (Tim Davis):

http://www.cise.ufl.edu/research/sparse/matrices/

〈7� BPKIT (Block Preconditioning Toolkit) (Edmond Chow):

http://www-users.cs.umn.edu/∼chow/bpkit.html/

〈8� PETSc (Portable, Extensible Toolkit for Scientific Computation):
(PETSc team):

http://www-unix.mcs.anl.gov/petsc/petsc-2/

〈9� SPARSLAB (Michele Benzi and Miroslav Tuma):

http://www.cs.cas.cz/∼tuma/sparslab.html

〈10� SPAI (SParse Approximate Inverse) (Stephen Barnard and Marcus
Grote):

http://www.sam.math.ethz.ch/∼grote/spai/

〈11� SAINV (Stabilized Approximate Inverse) (Robert Bridson):

http://www.cs.ubc.ca/∼rbridson/download/ainvInC.tar.bz2

〈12� The Sparskit (Youcef Saad):

http : //www − users.cs.umn.edu/∼saad/software/SPARSKIT/

sparskit.html

〈13� The BILUM package (Jun Zhang and Youcef Saad):

http : //cs.engr.uky.edu/∼jzhang/bilum.html

〈14� FMM Toolbox (The MadMax Optics, Inc):

http : //www.madmaxoptics.com/

〈15� Meshless Methods (Ching-Shyan Chen):

http://www.neveda.edu/∼chen/computer code.html

〈16� NSPCG package (Solving Large Sparse Linear Systems by Various Iter-
ative Methods) (Thomas Oppe, Wayne Joubert and David Kincaid):

http : //www.ma.utexas.edu/CNA/NSPCG/
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〈17� The MATLAB r© file exchange: (Various contributors)

http : //www.mathworks.com/matlabcentral/fileexchange/

E.2 Other software sources

Some of the following software may already be licensed and available in a
reader’s institution.

1 � NAG (The Numerical Algorithms Group Ltd): comprehensive Fortran and
C libraries

http : //www.nag.co.uk/

2 � IMSL (Visual Numerics, Inc): comprehensive Fortran and C libraries

http : //www.vni.com/products/imsl/

3 � AMG (Algebraic MGM by Fraunhofer-SCAI)

http : //www.scai.fraunhofer.de/samg.htm

4 � FEMLAB (Finite Element Modelling Laboratory, COMSOL Ltd)

http : //www.uk.comsol.com/

5 � HSL (Harwell Subroutine Library)

http : //www.cse.clrc.ac.uk/nag/hsl/contents.shtml

E.3 Useful software associated with books

There are many mathematics and scientific computing related books, that pro-
vide associated software – the main MATLAB site (at www.mathworks.com)
keeps an up-to-date list.

http : //www.mathworks.com/support/books/

Below we highlight a few of such books.

〈1� Templates for the Solution of Linear Systems: Building Blocks for Iter-
ative Methods, 2nd ed in [41]: Mfiles again from

http : //www.mathworks.com/support/books/
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〈2� Templates for the Solution of AEP in [36]: software from

http : //www.cs.ucdavis.edu/∼bai/ET/sa alg list book.html

〈3� Matrix Computation Toolbox [280] (Nicholas Higham):

http://www.ma.man.ac.uk/∼higham/mctoolbox/

〈4� Spectral Methods in MATLAB [458] (Nicholas Lloyd Trefethen):

http : //web.comlab.ox.ac.uk/oucl/work/nick.trefethen/spectral.html

〈5� IFISS (Incompressible Flow and Iterative Solver Software) [197]
(David Silvester and Howard Elman):

http : //www.ma.umist.ac.uk/djs/software.html
http : //www.ma.umist.ac.uk/djs/vers.html

〈6� Numerical Mathematics and Computing (5th ed) (Ward Cheney and
David Kincaid, 2004, Brooks/Cole):

http : //www.ma.utexas.edu/CNA/NMC5/sample.html
ftp : //ftp.ma.utexas.edu/pub/kincaid−cheney/

〈7� Numerical Computing with MATLAB (Cleve Moler, 2004, SIAM pub-
lications, USA):

http : //www.mathworks.com/moler/ncmfilelist.html

〈8� Numerical Recipes Software [390] (Cambridge University Press):

http : //www.nr.com/

〈9� Mathematical software (Curt Vogel [476]):

http : //www.math.montana.edu/∼vogel/

〈10� Boundary elements software (Stephen Kirkup [317]):

http : //www.soundsoft.demon.co.uk/tbemia.htm

E.4 Specialized subjects, sites and interest groups

1 � nanet – for community of numerical analysts and other researchers:

http : //www.netlib.org/na−net/
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2 � mgnet – for community of multigrid and multilevel related researchers:

http : //www.mgnet.org/

3 � ddm net – for community of multidomain and multilevel related re-
searchers:

http : //www.ddm.org/

4 � waveletnet – for community of multiresolution researchers:

http : //www.wavelet.org/

5 � at-net – for community of approximation theory researchers:

http ://www.uni−giessen.de/www−Numerische−Mathematik/at−net/

6 � mathscinet – excellent sources to find research from various results:

http : //www.ams.org/mathscinet

7 � google specializes in everything (but the search list is often too lengthy):

http : //www.google.com
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44. Beauwens R. and Quenon L. (1976). Existence criteria for partial matrix factor-
ization in iterative methods. SIAM J. Numer. Anal., 13, 615–43.

45. Bellman R. (1997). Introduction to Matrix Analysis. vol. 19 of Classics in Applied
Mathematics, 2nd edn, SIAM.

46. Benson M. W. and Frederickson P. O. (1982). Iterative solution of large sparse lin-
ear systems arising in certain multidimensional approximation problems. Utilitas
Math., 22, 127–40.

47. Benzi M. (2001). Who was E. Purcell? NA Digest, 2001 (4), http://www.netlib.org/
na-net

48. Benzi M. (2002). Preconditioning techniques for large linear systems: a survey. J.
Comput. Phys., 182, 418–77.

49. Benzi M. (2004). A direct projection method for Markov chains. Lin. Alg. Appl.,
386, 27–49.

50. Benzi M., Cullum J. K. and Tuma M. (2000). Robust approximate inverse pre-
conditioning for the conjugate gradient method. SIAM J. Sci. Comput., 22,
1318–32.



References 533

51. Benzi M., Gander M. J. and Golub G. H. (2003). Optimization of the Hermitian
and skew-Hermitian splitting iteration for saddle-point problems. BIT, 43, 1–19.
(See also SCCM 03-06 from the web [340]).

52. Benzi M. and Golub G. H. (2003). A preconditioner for generalised saddle point
problems. SIAM J. Matr. Anal. Appl., 26, pp. 20–41. (See also SCCM 02-14 from
the web [340]).

53. Benzi M., Haws J. C. and Tuma M. (2000). Preconditioning highly indefinite and
nonsymmetric matrices. SIAM J. Sci. Comput., 22, 1333–53.

54. Benzi M. and Meyer C. D. (1995). A direct projection method for sparse linear
systems. SIAM J. Sci. Comput., 16, 1159–76.

55. Benzi M. and Tuma M. (1998). A sparse approximate inverse preconditioner for
nonsymmetric linear systems. SIAM J. Sci. Comput., 19, 968–94.

56. Benzi M. and Tuma M. (1999). A comparative study of sparse approximate inverse
preconditioners. Appl. Numer. Math., 30, 305–40.

57. Benzi M. and Tuma M. (2000). Ordering for factorised sparse approximate in-
verses. SIAM J. Sci. Comput., 21, 1851–68.

58. Bergamaschi L., Pini G. and Sartoretto F. (2003). Computational experience with
sequential and parallel, preconditioned Jacobi–Davidson for large, sparse symmet-
ric matrices. J. Comput. Phys., 188, 318–31.

59. Beylkin G. (1993). Wavelets and fast numerical algorithms. Lecture Notes for short
course, AMS-93 AMS, Proceedings of Symposia in Applied Mathematics, v.47,
89–117.

60. Beylkin G., Coifman R. and Rokhlin V. (1991). Fast wavelet transforms and nu-
merical algorithms I. Comm. Pure Appl. Math., 44, 141–83.

61. Beylkin G. and Cramer R. (2002). A multiresolution approach to regulariza-
tion of singular operators and fast summation. SIAM J. Sci. Comput., 24, 81–
117.

62. Beyn W. J., Champneys A., Doedel E., Govaerts W., Sandstede B. and Kuznetsov
Yu A.(2002). Numerical continuation and computation of normal forms. In: Hand-
book of Dynamical Systems II: Towards Applications, eds. B. Fiedler, G. Iooss,
and N. Coppell. Elsevier Science.

63. Bjorck A. (1996). Numerical Methods for Least Squares Problems. SIAM Publi-
cations.

64. Blomgren P., Chan T. F., Mulet P., Vese L. and Wan W. L. (2000). Variational PDE
models and methods for image processing. In: Research Notes in Mathematics,
420, pp. 43–67, Chapman & Hall/CRC.

65. Board J. A. (1997). Introduction to ‘a fast algorithm for particle simulations’.
J. Comput. Phys., 135, 279.
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Figure 1.1. Comparison of FFT ( Ã = FAFH ) and FWT ( Ã = W AW T ) for com-
pressing two test matrices. Clearly FFT is only good at circulant matrix 1 but FWT
is more robust for both examples.
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Figure C.2. MATLAB plots of matrices.
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