CHAPTER

FOUr FiniteElement Method Primer

Various methods in the last chapter are mostly applicable to small size problems. We have demonstrated that
the VectorSpace C++ Library help to ease the programming task significantly. However, if the problem size is
down to one or two variables, they might be solved by hand as well. For better approximation of the solution, we
often need to increase the number of the variables substantially. Finite difference method, finite element method,
and boundary element method are three widely accepted methods for large size problems. We have introduced
the finite difference method in Chapter 1 and the boundary element method in the Chapter 3. Yet another defi-
ciency for the variational method in the last chapter is that it is very simplistic in terms of the geometry of the
problem domains. The geometry of the problem domains is, in most case, very simple; aline segment, a square
(or rectangle), or acircle. In real world applications, the geometry of the problem domains is always much more
complicated. We devote the following two chapters for finite e ement method with considerable depth. The finite
element method is the most well-established method among the three methods for the large-scale problems. It is
also most capable of handling arbitrarily complicated geometry

Moreover, we would also like to demonstrate to the users of the VectorSpace C++ Library that a numerical
method is often not just about mathematical expression which is already made easy by using VectorSpace C++
Library. The programming complexities caused by complicated geometry (and its large size variables) in finite
element method serves as an excellent test bed that the object-oriented programming can make a significant dif-
ference. The source code of “fe.lib” is used to demonstrate the power of object-oriented programming in nume
ical applications.

The object-oriented programming is the present-day programming paradigm which is supported by the indu:
trial flag-ship general purpose language—C++. Other alternative approaches for programming highly matheme
ical problems are symbolic languages, special purpose packages, or program generators written specifically
dedicated application domains. These alternative approaches may have specialized capability in solving matl
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matical problems just like what VectorSpace C++ Library is designed for. However, for genera purpose pro-

gramming, none of these alternative approaches could come close to rival that of C++. If we have chosen those

alternative approaches, we will be seriously penalized by their limited capability in non-mathematical aspects of

the programming. If you choose to program in C++ with the VectorSpace C++ Library, your programming task

will be significantly empowered by the object-oriented programming—the modern programming paradigm.
Time have proven that specific purpose languages do not last long, they come and go and never gaining any
wide acceptance. Sometimes, they are even quickly forgotten by the communities of the applications that they
are specifically targeting for. Jump on the band wagon of C++, you have entire software industry (particularly all
the first-ranked compiler vendors), professional programmers, and a vast number of C++ literatures behind you.
Our program'’s potential can only be limited by our own imagination, not some un-supported language features.

4.1 Basics of Finite Element Method

4.1.1 Mathematical Abstraction of Finite Element M ethod

Finite element method can be considered as a special case of variational methods, with special emphases on
the a systematic treatment of complicated geometry.

Finite Element—A Systematic Treatment for Complex Geometry

In finite element method, thapproximation basis functions for the variableu, is defined in each subdo-
main—element Qf (see Figure 4«1, the subscript “e” denotes “element”, and “h” denotes element discretization
into a “characteristic size”—h)

UeDUQE(pg GS, where a =0, ...,nen-1 Eq 4e]1

where “nen” is the number of nodes in an element. The spaggsinfinite dimensional, in which every point
x on the element has a variabigx) associated with it. In Figure 41, thiginite dimensional variableg(x) is
approximated by finite dimensional space of approximated functidnx) which in turn only depends on finite

<

element—QP

discretized global domain-gh

global domain Q

boundary—F

Figure 4¢1 Geometry of global domain discretization.
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number of nodal valuesg 4g" is the element node number, “hat” denotesdal value). The approximated
function, rewritten am? (& ), is defined through a set ifterpolation (basis) function @2 on the element as
in Eq. 4+1. The space spans by these bages, , is knownfiatéeement space. The trio set= Qf 2 ,
ul}, defined as dinite element is consists of (1¢ement (domain) ‘Qg", (2) interpolation functions “ 2", and
(3) degree of freedoms tif .1

We have seen some examples of linear and quadratic interpolation functions for the purpose of numeric
integration in 1-D and 2-D in the Chapter 3. For example, interpolation functions for a bilinear four-node elemen
can be defined with the formula

Na(E. 1) = 3(1+ 6L +n,n) Eq. 42

where index&” (=0, 1, 2, 3) is thelement node number. The coordinateég , ny) = {{-1, -1}, {1, -1}, {1, 1}, {-
1, 1}} is the natural (or referential) coordinates of the four nodes. Therefore, the explicit forms for the interpola-
tion functions are

No=3(1-8)(1-1),N; = F(L+E)(1-n), N, = 3(1+ E)(1+1), N3 = 5(L-E)(1+n) Eq. 43

The interpolation function formula for linear triangular element can be degenerated from Eq. 43 by settin
Ng" = Ng, NJ"' =N, , and

N;ri - N2+N3 = i(l+§)(l+n)+j—i(l—z)(l+r‘|) = %(1+r‘|) Eq Qo4

(or using “triangular area coordinates” as in page 454 of Chapter 5). That is
NgT = F@-8)(L-n), N = 31+ )(L-n), NI = 5(1+n) Eq. 45
0 4 LR 4 1 1N2 2 '

Coordinate transformation using Eq. 4¢3 for quadrilateral and Eq. 4¢5 for triangular elements are shown in th
middle column of Figure 4+2. From those integration examples, we note refateace element®, Q. , can be
defined in a normalized region withcaordinate transformation rule x = x(Qg) which maps the reference ele-
ment, Qg , to aphysical element, Qf ; i.e., a normalized domain in natural coordingtestransformed to a phys-

ical domain in coordinate. The interpolation functions for the coordinate transformation rule can be chosen to
be the same as the interpolation for the approximated funefior) as (n Eq. 4¢1. That is

x(S_le)E(p;’;1 x2, where a = 0,nen—1 EQ. 4+6

wherex2 is the nodal coordinates (“over-bar” indicditessl nodal values). A finite element with the same set of
interpolation functions for (1) approximation functions and (2) coordinate transformation rule is caled an

1. P. G. Ciarlet, 1978, “ The finite element method for elliptic problems”, North-Holland, Amsterdam.

Workbook of Applicationsin Vector Space C++ Library 267



Chapter | 4 Finite Element Method Primer
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Figure 4¢2 (1) 1-D linear and quadratic line elements, and (2) 2-D curve, linear quadrilateral and
trianglular elements, and quadratic quadrilateral and triangular elements.

parametric element. The interpolation functions in finite element method are further subject to continuity and
completeness requirements. The continuity requirement demands that the approximated function to be continu-
ous both in the interior and the boundaries of the element. The completeness requirement demands arbitrary
variation, up to certain order, in the approximated function can be accurately represented. When these require-
ments are relaxed, we have the so-called non-conforming el ements.

Finite Element Approximation

In the standard finite element method, the weighting functions, W, is taken as that in the Galerkin method in
the context of weighted residual methods (see page 232), which are the same as the element interpol ation func-
tions ¢2 in Eq. 4-1, but vanishing at boundaries corresponding to the essential boundary conditions; i.e.,

0, for Ug=g=¢? ug on I

W= Eq. 4+7

g, otherwise

g is the essential boundary conditions on the boungrand ug (“over-bar” indicates fixed nodal values) is

the nodal value of the essential boundary condition with a boundary interpolation fuqition on the boundary
associated with the element. Singe s defined in the element domain only, this parficular choice of weighting
function resembles theibdomain collocation method (see page 229) in the weighted residual method, villere

=1 on each subdomain awWd = 0 elsewhere.
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For a self-adjoint operator, from Eq. 3125 in Chapter 3, the finite element approximation, at each element
gives

a(@2, gR)UE = (@3 ) + (92 h)p —a(ed eR)ud Eq. 4.8
or in matrix forms
kab gf = fa Eq. 49

where,

kab = a(¢2 ¢b)
fa = (93 f) + (93 h)r —a(eg eR)ug Eq. 4+10

The difference of Eq. 48 from Eq. 3+125 in Chapter 3 is now we have second and third terms in the right-han
side. The second terms is the non-homogeneatusal boundary conditions

gen =h E(pla_‘e h& only, Eq. 411

whereq + n is fluxq projected on the outward unit surface normarhis term occurs when we take integration

by parts on the weighted-residual statement, then, applied the Green’s theorem to change the resultant rig
hand-sidedomain integral into aboundary integral. The third term is due to non-homogeneous essential bound-
ary conditions. According to the first line of Eq. 4«7, rewritten with a new indéasg= (pl? uk. In Eq. 4+10 the

index “a” is the element equation number, and the indexly” is theelement variable (degree df freedom) number.
SinceW has been taken according to Eq. 47, the rows (or equations) corresponding to the fixed degree of fre
doms (essential boundary conditions) will have vanishing weighting fundfios Q) multiplies through-out
every term of Eq. 4+8. Therefore, the rows (or equations) corresponding to the fixed degree of freedoms will &
eliminated at the global level. We also note that the element tek@ors  elentiet stiffness matrix, and the
element tensorg2 s teement force vector.

In summary, for a differential equation problem, we first discretize its domain into elements (as in Figure 41
and approximate its variables (Eq. 4+1), and weighting functlons (EQ. 4+7) corresponding to a variational princi
ple. These steps are known asfihie element approxi mation. A finite element approximation depends on the
choice of (1) the variational principle, and (2) a corresponding set of variables approximated by a selected set
interpolation functions. The various variational principles make the finite element method such an open area f
improvements. These various variational principles also bring a challenge that a finite pkagrant should
be able to endure a dramaitigpact of changes in its design structure, and to enablerfese of existing code in
its evolutionary course. The object-oriented programming has a lot to offer in this regard.

1. p. 3in F. Brezzi and M. Fortin, 1991, “ Mixed and hybrid finite element methods”, Springer-Verlag, New York, Inc.
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Global Matrix and Solution Phase—Systematic Treatment for L arge-Size Degree of Freedoms

Eq. 4+8 to Eq. 4+10 are defined only on an element domaifj— , while the variational principle needs to be
applied on the global discretized domai@- ; i.e., the element stiffness igkrix and the element force vec-
tor f2 need to be assembled into a global stiffness mtaterd global force vectdt as

Kj=A k&, and F = A f2 EQ. 4+12
Oe Oe

where u, is the global nodal solution vector. The sym@ol stands for the procedssenddly of all ele-
ments. The index “i” is theglobal equation number and index “j” is theglobal variable number of f‘i .

4.1.2 Object-Oriented Modeling of the Finite Element Method

The central theme of the object-oriented programming isldteeabstraction andinheritance. Firstly, the
data abstraction enabling software modules to be modeled after the real world objects. Each of such a software
module —elass defines thestates of an object as its member data, anddf@viors of the object as its member
functions. In the procedure programming method, data structure and algorithms (subroutines) performing on the
data structure are separate. In an abstract data type, they are organized into a coherent uritase.Cthe
also provides user access control mechanism to declare its member data or fungiiorateaprotected, or
public, such that the complexities can déreapsulated inside the abstract data type. Secondly,itheritance
relation enables factoring of common parts to define a more geweseatiass higher in the class hierarchy.
More specific classes can be derived from the base class by adding details to facilitate theradganafing
by specification and to enforceode reuse. The most impressive power comes out of this inheritance relation is
the dynamic binding mechanism provided to implement the conceptyofhorphism. In C++ such mechanism
is provided by declare member functionsiatial. A call on the virtual function of a base clasdigpatched by
the virtual function mechanism to the corresponding member function of the derived class, where a specific
behavior is actually defined. We explore all these programming concepts in the modelin@ rofetlebement
library— “fe.lib”, in which the source codes are provided for demonstrating the object-oriented method.

Then, we go further on. The object-oriented paradigm is meant to replace the old-way—the procedure pro-
gramming. As we have mentioned earlier, the data and function are now organized together as a coherent
abstract data typeetass. The objects are empowered with inheritance and virtual function mechanism. How-
ever, thedependency relations among the objects can grow to an extremely complicated network of objects. The
object-oriented analysis is applied on the problem domains to understand the dependency relations among
objects and thebject-oriented design is the newly programmingdiscipline taken to harness the rampant power
of C++. It sounds so familiar that we used to write “go to” among Fortran statements which has the potential to
grow into an extremely complicatéidw chart (a network oftatements). The procedure programming is the old
discipline proposed to rescue the old-world from chaos. Now, we introduce the object-oriented method and the
resultant complicatedetwork of objects turns out to be a serious problem too. A new discipline, the object-ori-
ented design, is a lesson learned from a frequently cited costly experience from Mentor Graphics (one of the
world largest CAD company today), which is the very first company to attempt a large-scale C+wl.project
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In the section on the mathematical abstraction of finite element method, only Eq. 4+8 to Eq. 4¢10 contain the
core of mathematics of the differential equation problems. All other things in finite element method are really
complicated details. As we have mentioned earlier, the finite element method can be viewed as a systema
treatment for these non-mathematical trivia. However, these trivia are no simple matter, which are actually qui
a challenging task that we will use object-oriented modeling for their implementation.

Sep 1. Discretization Global Domain—qh

The first step of the finite element method is to discretize the problem domain into ele@fent— . An elemen
Qh is often described as simple geometrical area like triangles or quadrilaterals. The vertices for these simg
geometrical objects are called nodes with nodal coordinates asmodefbiject is instantiated by its constructor

Nodefnt node_number,
int number_of _spatial_dimension,
doubler array_of_coordinates);

Using the terminology of theelational database the “node_number” is thkey to this abstract data type—
“Node”. One considers that the “node_number” as the identifier for an instancectzstii¢ode. The following
example is to define a 2-D case with the node number “5”, and coordinates = {170, 2.0}

double *v;

v =new doubld?2];

v[0] = 1.0; v[1] = 2.0;

Node *nd =new Node(5, 2, v);

This instantiates an object of type “Node” pointed to by a pointer “nd”. Data abstraction is applied to model the
“Node” as an object. The states of the “Node” is consist of private data members inclnddethember, the
spatial_dimension, and the values of iordinates. The behaviors of the “Node” are public member functions
that provide user to query the states of the “Node” includingdé number, andspatial dimension, ... etc. The
“operator[](int)” is used to extract the components of the coordinates, and logical opergpers- “
tor==(Node&)” and ‘operator !=(Node&)” are used for the comparison of the values of two nodes. The data and
the functions that operating on them are now organized together into a coheremtassitFhe private mem-

bers of the object arseapsulated from users that the access are only possible through its public members. The
encapsulation mechanism provides a methdddden complexities from bothering users (see Figure 4.3).

An element—Q} is constructed by

=

Omega_elift element_number,

int element_type number,
3 int material_type number,
int element_node_number,
int *node_number_array);

N

1. see p. 1inJ. Soukup, 1994, “Taming C++", Addison-Wesley, Reading, Massachusetts, and preface in J. Lakos, 1996,
“Large-scale C++ software design”, Addison-Wesley, Reading, Massachusetts.
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classNode

int node_no
int spatial_dim
doubler value

Figure 4¢3 The class Node is consists of private data members to describe its
states, and public member functions provide the accessto query its states. The
private members are encapsulated away from the controlled access through the
public members.

controlled access

The “element_number” play the role of tkey for the element class “Omega_eh”. The “element_type _number”

and the “material_type_number” are integers greater or equal to “0”. The default values for the both numbers are
“0". For example, the “element_node_number” is “3" for a triangular element, and “4” for a four-node element.
The “node_number_array” points to im pointer array ofjlobal node nhumbers for the element. An example is

1 int *ena; /110 11
2 ena =new int[4]; /B — +

3 enal0] = 0; ena[1] = 1; I/ |

4 enal2] = 11; ena[3] = 10; I/ |

5 Omega_eh *elem = /R — +

6 new Omega_eh(0, 0, 0, 4, ena); /0 1

The order of global node numbers in the “node_number_array” is counter-clockwise from the lower-left corner,
as illustrated in the comment area after each statement, which is conventional in finite element method.

A discretized global domain-@"  basically consists of a collection of all nodes and elements as

1 cdassOmega_h { // discretized global domairg
2 protected:

3 Dynamic_Array<Node> the_node_array;

4 Dynamic_Array<Omega_eh>the_omega_eh_array;

5 public:

6 Omega_h(); /I declared by not defined

7

8 k
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Figure 4¢4 Nine elementsin arectangular area consist of 16 nodes.

The data structure Dynamic_Array<T> does what it means, which is declared and defined in “dynamic_array.h”.
It is a simplified version of <dynarray> in tiseandard C++ libraryl. Two protected member data consist of
“the_node_array” and “the_omega_eh_array” (element array). The default constructor “Omega_h::Omega_h(
is declared in the header file, The users of the “fe.lib” are responsible for its definition. The following code seg
ment shows an example of a user defined discretized global domain as illustrated in Figure 44,

1 Omega_h::Omega_h() { /I define default constructor
2 int row_node_no = 4;

3 row_element_no = row_node_number -1;

4 double v[2];

5 for(inti=0;i <row_node_no; i++)

6 for(intj = 0; j <row_node_no; j++) { Il ena[3] enal2]
7 int nn =i*row_node_no + I e +

8 v[0] = (double) j; v[1] = (double) i; /. |

9 Node *node =new Node(nn, 2, v); I/ |

10 the_node_array.add(node); I/ |

11 } I/ |

12 int enal4]; Il e +

13 for(inti = 0; i < row_element_no; i++) Il ena[0] ena[l]
14 for(intj = 0; j < row_element_no; j++) {

15 int nn =i * row_node_no + j; /I node number at lower left corner
16 ena[0] = nn; ena[1] = ena[0] + 1,

17 ena[3] = nn + row_node_no; ena[2] = ena[3] +1;

18 inten =i*row_element_no + j; /I element number

1. PJ. Plauger, 1995, “The draft standard C++ library”, Prentice-Hall, Inc., Englewood Cliffs, New Jersey.
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19 Omega eh *dem =

20 new Omega_eh(en, 0, 0, 4, ena);
21 the_omega_eh_array.add(elem);

22 }

23 }

Then, we can make an instance of the discretized global domain “Omega_h" by declaring in main() function
Omega_h oh;
The instance “oh” calls the default constructor “Omega_h::Omega_h()” that is custom made by the user.

Remark: For users who are familiar with database Iangdaglae class definitions of Node, Omega_eh, and
Omega_Iper se define thedatabase schema; i.e., the format of the data, which serves the function ofiatee
definition language (DDL). The function “Dynamic_Array<T>::add(T*)” is an exampledzta manipulation
language (DML) that assists user to modify the database. And two most important featuiaa qfiery lan-
guage provided by “fe.lib” are thaode selector “Node& Omega_haoperator [ ](int)” and theelement selector
“Omega_eh& Omega_loperator ()(int)”.

Sep 2. Freeand Fixed Variables

The discretized globditee degree of freedoms are (“hat” indicate a nodal value)
a" onQ".
Theessential boundary conditions (fixed degree of freedoms) matdral boundary conditions are
g"onrhy ,anch" orrf

respectively, where the “over-bar” indicates a fixed value. The global variables are modeled as class “U_h".
And, the global boundary condition8 ahl  are modeled as class “gh_on_Gamma_h". A constraint flag is
used to switch in between “Dirichlet” and “Neumann” to indicate whether the stored values are essential or nat-
ural boundary conditions, respectively.

All three kinds of valuesi” gh |, and  are nodal quantities, which are somewhat similar to the coordinates
of a node; i.e.x . Therefore, we can factor out the code segment on coordinatedass tiede and create a
more abstraatlass Nodal Value for all of them.

dassNodal_Value {
protected:
int the_node_no,
nd; /I number of dimension

A WNPF

1. e.g,, Al Stevens, 1994, “ C++ database development”, 2nd eds., Henry Holt and Company, Inc., New York, New York.
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5 double*the value;
6 public:

7 operator[](int);

8

9 1

Now the three classes are publicly derived from the base class “Nodal_Value” as

1 classNode :public Nodal_Value { ... }
2 classU_h :public Nodal_Value{... }
3 cdassgh_on_Gamma_hpublic Nodal_Value { ... }

All three derived classesherit the public interfaces (member functions) of ttess Nodal_Value. For example,
now all three derived classes can useoffeeator[](int) to access the nodal values. If “nd” is an instance of the
dass Node and “uh” is an instance of thessU_h, and “gh” is an instance of thiass gh_on_Gamma_h, then,
the access is performed by

1 nd[0]; /I first coordinate value
2 uh[1]; /I second degree of freedom
3 ghl[0]; /I first constraint values

The common part of the three classes are factored out to form a new base class “Nodal_Value”. The code w
be significantly duplicated, if we have not done so. In addition, factoring out this common part is good for the
maintenance of the code. If we have found out in the future that the way we modeled the “nodal values” is unse
isfactory, changes made in this single class are sufficient comparing to changes needed to be made in all th
classes. In general, the object-oriented programming method not only use data abstraction to organize data :
functions (the algorithm operating upon data), it also hefpeksify these software modules, which are modeled
after real world objects, into a hierarchical structure. We note that classification of things into hierarchical struc
ture is one of the most powerful tools that human beings have to built knowledge.

We now consider an example of heat conduction (see Figure 4+5) using the discretized global domail
declared as “oh” previously, and was illustrated in Figure 4¢4. The number of degree of freedom “ndf’ = 1; i.e.
the temperature. We should instantiate, in the “main()” program, the variable “uh” of class U_h, and the bounc
ary conditions “gh” of class gh_on_Gamma_h as the followings

1 int main() {

2 int ndf = 1,

3 U_h uh(ndf, oh);

4 gh_on_Gamma_h gh(ndf, oh);
5 }

The constructor of class U_h is defined in “fe.lib”. The users do not need to worry about it. However, the esser
tial and natural boundary conditions in the class gh_on_Gamma_h are parts of every differential equation pro
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Figure 4¢5 Heat conduction problem with two side insulated, bottom and top temperature
boundary conditions are set to 0 °C and 30 °C, respectively.

lems. Therefore, defining the constructor of dass gh_on_Gamma_h is users’ responsibility. This constructor
needed to be defined before it is instantiated in the above. For the problem at hand, we have

gh_on_Gamma_h::gh_on_Gammanhgf, Omega_h& oh) {
__initialization(df, omega_h);
int row_node_no = 4;
for(inti=0; i <row_node_no; i++) {
the_gh_array[node_order(i)](0) = gh_on_Gamma_h::Dirichlet;
the_gh_array[node_order(row_node_no*(row_node_no-1)+i)](0) = gh_on_Gamma_h::Dirichlet;
the_gh_array[node_order(row_node_no*(row_node_no-1)+i)][0] = 30.0;
}
}

The first line in the constructor (line 2) called a private member function of class gh_on_Gamma_h. This func-
tion initiates a private data member “Dyanmic_Array<Nodal_Constraint> the_gh_array” for the class
gh_on_Gamma_h. This is a mandatory first statement for every constructor of this class for ochestrating internal
data structure. The first line in the for loop usesrestraint type selector “operator ()(int degree_of freedom)”.

It can be assigned, for each degree of freedom, to either as “gh_on_Gamma_h::Dirichlet” to indicate an essential
boundary condition or as “gh_on_Gamma_h::Neumann” to indicate a natural boundary condition. Line 7 uses a
constraint value selector “operator [ ](int degree_of freedom)” to assign®80to the nodes on the upper bound-

ary. The default condition and default value, following finite element method convention, are natural boundary
condition and “0”, respectively. Therefore, for the present problem, the natural boundary condition with “0” on
two sides can be neglected. On the bottom boundary conditions, we only need to specify their constraint type as
essential boundary conditions, the assignment of value of “0.0” (the default value) can be skipped too.

©Coo~NOULE, WNPE
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Sep 3. Element Formulation

At the very heart of finite element program is the element formulation. This part does every thing that is most
relevant to the variational methods we have introduced in Chapter 3. Henceforth, this part is highly mathemati-
cal. The VectorSpace C++ Library is therefore most heavily used in the element formulation. For every differen-
tial equation problem, the element formulation is different. The impact of change to the code from one problem
to the other is a routine rather than an exception. Under the procedure programming paradigm, it is soon recog-
nized that an element subroutine should be used to form an replaceable module. In object-oriented programming,
further flexibility for element formulation can be obtained through the polymor phism supported in C++.

We have seen that for data abstraction C++ provides class to organize data and functions into a coherent
object. The inheritance is provided to build hierarchical structure of objects and enable code reuse. Now the
objects put into the hierarchical structure can be made to be intelligent to perform some autonomous tasks. For
example, we may have a base class of “Animal”. Then, we derived from this class of “Animal” to form classes o
“Lion”, “Horse”, and “Whale”. Next, we declare three instances “lion”, “horse”, and “whale” of general type
“Animal”, each of polymorphic concrete types “Lion”, “Horse”, and “Whale”. Now, God says “Animals eat food
I” The “lion” goes to catch a zebra, the “horse” bites grass, and the “whale” catches tons of fishes. The advanta
of this higher level of intelligent is enormous. Now we can have one single generic command for all kinds of des
perately different individual objects.

A simple algebraic example is described in root-finding problem in page 40 of Chapter 1, where the New
ton’s formula gives the increment of solutidxas

dx=-f/df
The corresponding C++ code can be written as a function
CO dx(congt CO& f, congt CO& df) { return - f/ df; }

For one dimensional problem, f, df, and dx are all Scalar obje2® tfpe. For n-dimensional problem, n > 1, f

and dx are Vector object @0 type with length “n” and df is a Matrix object 60 type with size “nx n”. The
“CO0::operator / (const C0&)” now no longer implies “divide” operation. It actually means to invoke matrix solver
that use df as the left-hand-side matrix and “-f” as the right-hand-side vector. The default behavior of Vector
Space C++ Library is the LU decomposition, although you have the freedom to change the default setting
Cholesky decomposition (for symmetrical case only), QR decomposition (for ill-conditioned case) or even the
singular value decomposition (for rank deficient case). This single function is sufficient for the very different
arguments taken, and different operations intelligegitiyatched to perform upon themselves.

In Chapter 3, we have introduced tie-linear andtransient problems in the context of variational methods
which are now the kernel of tleement formulation. We considers the impact of change by these two types of
problems that will be played out in the element formulation. We note that an even greater impact will be playe
out in the mixed formulation, introduced in Chapter 3 in page 217, if we use giatsat substructuring solu-
tion method (or &tatic condensation”). We defer the more complicated matrix substructuring until Section 4.2.5.

First, from “fe.lib” user’s perspective, the design of tlekefhent formulation definition language”, if you
would, is for (1)definition of an element formulation and (&gistration of an element type. The user code seg-
ment for the declaration and instantiation of a class HeatQ4 is
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1 dassHeatQ4 : public Element_Formulation {

2  public:

3 HeatQ4(Element_Type Register @) : Element_Formulation(a) {}

4 Element_Fomulation *make(int, Global _Discretization& );

5 HeatQ4(int, Global_Discretization&);

6 }

7 Element_Formulation* HeatQ4::make(int en, Global_Discretization& gd) { return new HeatQ4(en, gd);}
8 HeatQ4::HeatQ4(int en, Global_Discretization&) : Element_Formulation(en, gd) {

9

10 }

From this code, the line 5 which is the declaration of the constructor of the heat conduction element formula-
tion—"HeatQ4({nt, Global_Discretization&)”. The definition of this constructor is user customized, the contents
of this constructor is the variational formulation of differential equation problem at hand. We will get to the
details of definitions for the constructor (line 8) at the end of this section.

Polymorphism: First, let's look at the fe.lib implementation mdlymorphism, in this code segment, enhanced by
emulating symbolic language by C++. The class Element_Formulation and the custom defined user class
HeatQ4 are used hand-in-hand. The Element_Formulation is &kabml class for its actuatontent class—

HeatQ4. The symbol class Element_Formulation is responsible for doing all the chores including memory man-
agement and default behaviors of the element formulation. The content class HeatQ4 does what application
domain actually required; i.e., the variational formulation. The class Element_Formulation has a private data
member “rep_ptr” (representing pointer) which is a pointer to an Element_Formulation type as

1 dassElement_Formulation {

2

3 Element_Formulation *rep_ptr;

4 CO stiff, force, ...;

5 protected:

6 virtual CO& __lhs() { return stiff; }
7 virtual CO& __rhs() {return force; }
8

9 public:

10

11 CO0& Ihs() { return rep_ptr->__lhs(); }
12 CO0& rhs() { return rep_ptr->__rhs(); }
13

14}

Since the derived class HeatQ4 is publicly derived from the base class Element_Formulation, an instance of
HeatQ4 has its own copy of Element_Formulation as its “header”. Therefore, the rep_ptr can point to an instance

1. see (1) p. 58 “handle / body idiom”, (2) p. 70 “envelope / letter” idiom, and (3) p. 315 “symbolic canonical form” in J.O.
Coplien, 1992, “ Advanced C++: Programming styles and idioms”, Addison-Wesley, Reading, Massachusetts.
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Symbol Element_Formulation

[Pt
Content E Element_Formulation

HeatQ4

Figure 4¢6 Emulating symbolic language features using C++.

of HeatQ4. This is done by invoking “Element_Formulation* HeatQ4::miatkeGlobal Discretization&)” to
produce a pointer to HeatQ4 instance. We also see that the two public member functions lhs() andahs() are
warding, by its delegate “rep_ptr”, to its derived class protected member functions __lhs() and __rhs(), in th
present case, forwarding to an instance of HeatQ4's two protected virtual member function __Ihs() and __rhs
The default behaviors of these two protected virtual member function has been defined ebaratntistiffness

matrix andelement force vector.

We have explained the mechanisms built for polymorphism. Now we can consider hiowatteof change
bring out bynonlinear andtransient problems can be accommodated under this design. For a nonlinear problem
the solution is obtained from an iterative schertié = u' + du' for the convergence of thesidual vector R = F
- K(u) u (from Eq. 4+12) defined as

Ri+1=R(ui*1) = R(ui+6ui)DR(ui)+% dui =0 Eq. 4-13
ul

From this approximated equation, we haveitizeemental solution 3u' as the solution of the simultaneous linear
algebraic equations
-1

) O ) -1 . :
sui :—%5 CR() = K (ul) R(u') Eq. 414
ui

where both théangent stiffness matrix KF(u') and theesidual vector R(u') are functions ofi'. That is at the
element level, the nodal valuesi— must be available. Therefore, a new class derived from clas
Element_Formulation is

1 dassNonlinear :public Element_Formulation {

2 COul;

3 void __initialization{nt, Global_Discretization&) { ul &= gd.element_free_variable(en); }
4 public:
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5 Nonlinear(int, Global_Discretization&);

6

7}

8 Nonlinear::Nonlinear(int en, Global_Discretization& gd) : Element_Formulation(en, gd) {
9 __initialization(en, gd);

10

1}

The dass “Nonlinear” inherits all the public interfaces of the class Element_Formulation. On top of that we have
declared a private data member “ul”, the element nodal variables, for this nonlinear element. When the class
“Nonlinear” is defined, it is imperative to invoke its private member function “Nonlinear::__initialization(
Global_Discretization&)” to setup the element nodal variables. In this case, the use of inheritanogr fon-

ming by specification is very straight forward. An example of a simple nonlinear problem is shown in Section
4.2.3. In Chapter 5, we investigate state-of-thevaterial nonlinear (elastoplasticity) andgeometrical nonlin-

ear (finite defor mation problems).

For a transient problem, the polymorphic technique is much more complicated. We show the parabolic case
here. From Eq. 3191 in Chapter 3 (page 253) we have

(M +AtOK) 0,41 = (M —At(1-0)K){, —f Eq. 4+15

In this case, the nodal values from the last time st&p— is also needed. In addition, we also need to compute
the mass (heat capacitance) mathx':

1 dass Transientpublic Element_Formulation {

2 COmass, ul;

3 void __initialization{nt, Global_Discretization&) { ul &= gd.element_free_variable(en); }

4  public:

5 Transient(Global_Discretization&);

6

7 CO0& __Ihs();

8 CO0& __rhs();

9 §

10 Transient::Transient{ en, Global_Discretization& gd) : Element_Formulation(en, gd) {

11 __initialization(en, gd);

12

13 }

14 daticdouble theta = 0.5, dt = 0.01; I central differerite 0.5
15 CO0& Transient::_lhs() {

16 the_lhs &= mass + dt*theta *stiff; M + AtBK

17 return the_lhs;

18 }

19 CO0& Transient::__rhs() {

20 Element_Formulation::__rhs(); /t;-the default force vector
21 the_rhs += (mass -dt*(1-theta)*stiff)*ul; M - At(1-8)K)u, —f
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22 return the_rhs;
23 }

Note that in the definition of class Element_Formulation the default behaviors of the last two protected member
functions are through two virtual member functions to return element “stiff” matrix and element “force” vector
as

virtual C0& __|hs() { return stiff; }
virtual CO& __ rhs() {return force; }

This is standard for thaatic, linear finite element problems. When an instance of Element_Formulation calls its
public member functions “Element_Formulation::lhs()” and “Element_Formulation::rhs()”, the requests are for-
warding to its delegates’ virtual member functions. If these two protected virtual member functions have bee
overwritten (lines15-23), the default behaviors in the base class will be taken over by the derived class. An exatr
ple of transient program is shown in Section4.2.4.

Element Type Register: A differential equation problem, solved by a finite element method may apply different

elements for different regions. For example, we can choose triangular elements to cover some of the areas, wi
quadrilateral elements to cover the rest of the areas. We can have a “truss” element on certain parts of “plann
elements to simulated a strengthened structure. From user’s perspective, he needs to register multi-elements

1 Element_Fomulation* Element_Formulation::type_list = 0; /I register element type

2 Element_Type_Register element_type_register_instance;

3  datic Truss truss_instance(element_type_register_instance); /I element type number “2”
4 datic T3 t3_instance(element_type_register_instance); /I element type number “1”

5 dgatic Q4 gq4_instance(element_type_register_instance); /I element type number “0”

The element type register uselsshdata structure. We number the last registered element’s element type number
as “0”. This number increases backwards to the first registered element in the “type_list". When we define a
element as introduced in page 271. The second argument is supplied with this number such as

Omega_eh *elem;
elem =new Omega_eh(Gglement_type_number, 0, 4, ena);

The C++ idiom to implement the element type register is discussed in Section 4.1.3.

Element Formulation Definition: Now we finally get to the core of the Element_Formulation. That is the defi-
nition of its constructor. We show an example of heat conduction four-node quadrilateral element

1 HeatQ4::HeatQ4ft en, Global_Discretization& gd) : Element_Formulation(en, gd) {

2 Quadrature gp(2, 4);

3 H1Z(2, ([double®)0, gp), /I natrual coordinates
4 N = INTEGRABLE_VECTOR_OF_TANGENT_BUNDLE(4, 2, qp),

5 Zai, Eta; /I alias

6

Zai &= Z[0]; Eta &= Z[1];
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7 N[O] = (1-Zai)* (1-Eta)/4; N[1] = (1+Zai)* (1-Eta)/4; ITNG(E, ”):%1(1 +&,8)(1+n,n)
8 N[2] = (1+Zai)* (1+Eta)/4; N[3] = (1-Zai)* (1+Eta)/4;

9 H1X =N*xl /I coordinate transformation
10 HO Nx = d(N)*d(X).invers(); /I derivative of shape functions
11 J dv(d(X).det()); /I the Jacobian

12 doublek = 1.0, q = 1.0; /I conductivity and heat source
13 stiff &= (Nx * k* (~Nx)) | dv; /I element stiffness matrix

14 force &= ((HO)N)*q) | dv; // element force vector

15 }

The “xI” is theelement nodal coordinates which is aCO type Matrix object of size nen nsafnber of element

nodes) x (number of spatial dimension). The “stiff’ is the element stiffness matrix, a square matrix of size
(nenx ndf) x (nerx ndf) (“ndf” as number of degree of freedoms). The “force” is the element force vector of
size (nen« ndf). The VectorSpace C++ Library is most heavily used in this code segment, since it concerns the
subject of variational methods the most. If you have mastered Chapter 3 already, these lines should be com-
pletely transparent to you.

The treatment of the terms on natural boundary conditieh#), and the essential boundary conditions
—a(@l, gl)uj - in Eq. 48 in page 269, requires some explanation. “fe.lib” adopts the conventional treatment that
the natural boundary conditions are taken care of at the global level in Matrix_Representation::assembly() where

the user inpuéguivalent nodal forces of natural boundary condition are directly added to the global force vector.
The treatment of the third term is also conventional that when the Element_Formulation::__rhs() is called it
automatically call Element_Formulation::__reaction() which is defined as

C0 & Element_Formulation::__reaction() {
the_reaction &= -stiff *gl; I/ “gl" is the element fixed boundary conditions
return the_reaction;

}

The the “reaction” is added to the element force vector as

C0 & Element_Formulation::__rhs() {
the_rhs &= __ reaction();
if(force.rep_ptr()) the_rhs += force;
return the_rhs;

}

These two default behaviors can be overwritten as in the class “Transient” in the above. Another example is that
we might want to have different interpolation function to approximate the boundary conditions. In such case,
first we need to call “Matrix_Representation::assembly()” in main() program as

assembly(FALSE); /I FALSE turns off nodal force loading
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Then, redefine “__rhs()” in user defined element. In the definition of the user element, we cahalefiaey
integration of these two terms to the element force vector. The basic idea is just like we can overwrite the virtua
functions “__lhs()” and “__rhs()” for the transient problem.

Now we have shown that object-oriented programming does provide unprecedented flexibility to implemen
seemly incompatible problems in finite element method. Most importantly, the flexibility does not come by sac-
rifying the organization or simplicity of the code. A beginner of “fe.lib” can always study the same simple kernel
code. The kernel code does not grow because of the irrelevant details have been added during the course of «
lution of “fe.lib” to encompass more advanced problems. The “code-reuse” and “programming by specification’
can be repeated applied to the “fe.lib” relentlessly, while the very kernel of the “fe.lib” may reside in the eve
grander architecture un-disturbed.

Sep 4. Matrix Representation and Solution Phase

The user’s code for the steps of matrix representation and solution phase is

1 int main(){

// instantiation of Global_Discretization object
Matrix_Representation mr(gd);
mr.assembly();

CO u = (CO)(mr.rhs())) / (CO)(mr.lhs()));
gd.u_h() =u;

gd.u_h() = gd.gh_on_gamma_h();
cout << gd.u_h();

return O;

©O©oO~NOOOUTDh WN

}

We show an example illustrated in Figure 43f&p 4a. A global stiffness matrix is a square matrix of size
tnnx ndf = 7x 7 per side, and global force vector is of size<tnn ndf = 7, respectively (where “tnn” is the total
number of node, and “ndf’ is number of degree of freedoms assumed as “1” for simplicity). The fixed degree o
freedoms are then removed from the global stiffness matrix (with remaining size =5 5) and global force vecto
(with remaining size = 5). This is done at line 2 when an instance of Matrix_Representation “mr” is initialized
with an instance of Global_Discretization “g&tep 4b. The mapping relationship of element stiffness matrix to
global stiffness matrix, and element force vector to global force vector can be constructed element by elemel
This global-element relation is also established in ling&teh 4¢c. The maps irep 4b are used to add element
stiffness matrices and element force vectors to the global stiffness matrix and global force vector as in line
where the public member function “Matrix_Representation::assembly()” is called. Then, the global stiffness
matrix and global force vector are used for linear algebraic solution of the finite element problem as in line 4
Sep 4d. The solution is in the order &fee degree of freedom number which is then mapped back to thiebal
degree of freedom number for output of the solution. This is done in line 5 where the global solution vector
gd.u_h() is updated with the solution “u”. The values for the fixed degree of freedoms can be retrieved from th
program input of the problem. That is the line 6 where the same global solution vector gd.u_h() is updated wit
fixed degree of freedom “gd.gh_on_gamma_h()”".

In between th&ep 4¢c andSep 4d, the variational problem has been reduced to a matrix solution problem. A
regular matrix solver provided i80 type Matrix in Chapter 1 can be applied to solve this problem, although
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Element connectivity Step 4a: eliminate fixed degree of freedoms
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Sep 4b: map element stiffness matrix and element force vector to global matrix and global vector, respectively
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Figure 4¢7 Element connectivity example. Step 1. elimination of fixed degree of fr@oms, Step 2.
element to global mapping, Step 3. assembly all elements, and Step 4. equation number to global
degree of freedoms number.
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there are many matrix computational methods specifically designed for the finite element method. To name a
few, profiled sparse matrix, frontal method, and nested dissection’. These methods are not supported by “fe.lib”.
However, we reserve an entry point to declare the Matrix_Representation as

Matrix_Representation mr(gd, “ ... user defined string to identify special matrix ...");.

The global stiffness matrix and global force vector can be replaced by corresponding special matrix and vectc
provided you have code all the needed interfaces for retrieving the components in the special forms of the glok
matrix and vector.

Just as in the Element_Formulation, object-oriented programming provides mechanisms to deal with impac
of change for a swift evolution of “fe.lib”. Examples of these changes are mixed and hybrid method and contac
mechanics. In abstract mathematical form, they all belong to the category of constrained optimization problem:

4.1.3 Object-Oriented Analysis and Design of Finite Element M ethod

As in many books on object-oriented analysis and design have suggested, we defineokedttbeented
analysisis to understand the object dependency relation, anubjbet-oriented design is the discipline to man-
age the potentially complicated dependency relation among objects.

We may think of analysis and design probably is the first thing to consider, logically, even before the model
ing in the previous section. However, an experienced programmer will point out that the nature of the progran
ming is more like an iterative process that one goes over again and again from analysis/design to modeling th
re-analysis/re-design and then to re-modeling. Some problems are unraveled only after first model has been p
posed. In this perspective, the modeling in the previous section provides us the materials to begin with for anal
sis and design process.

Dependency Graph

The four major components in the modeling of finite element method are (1) the discretized global
domaingh , (2) variablesh , (3) element formulation (EF), and (4) matrix representation (MR). We can draw ¢
tetrahedron with the four vertices represent the four components and the six edges represents their mutual re
tions (see Figure 4+8). The first thing we can do is this tetrahedron can be reduced to a planner graph, mean
that no edge among them can cross each other; i.e., to reduce it to a lower dimension. This step can not alway
done. If there is any such difficulty, we need to appligabndency breakers (to be discussed later) to the graph
to reduce it to a lower dimension. In a planner graph, we represent a component as a node, and their relation:
the arrows. For a component, the number of arrows pointing towards the node idaggbledf entrance. In the
convention of object-oriented method, an arrow stands for a dependency relation that the node on the starti
point of an arrow depends on the node at the ending point of the arrow.

We briefly explain these dependency relations. The entrance number “0” says the global discretized variabls
u" depends on the global discretizatiah uh. is defined as interpolation of nodal variables as in Eq. 4+1; i.e
conceptuallyuh(g, u) , and the nodal variables  depends on how nodes and elefment, , are defined. TI

1. Johnson, C., 1987, “ Numerical solution of partial differential equations by the finite element method”, Press Syndicate o
the University of Cambridge, UK.
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tetrahedron planner graph
q @

EF @
MR

Figure 4«8Tetrahedron to show four components on the vertices with six edges. This can be
transformed to a planner graph with arrows to show dependency relation. The numbers
marked are the entrance numbers.

Qn

entrance number “1” says the element formulation depends on the global vaufables |, since the element stiff-
ness matrix and element force vector are all calculated corresponding to the interpolated value of the element
nodal variablesi, . The entrance number “2” says the matrix representation depends on the element formula-
tion, since element formulation supplies the element stiffness matrices and element force vectors to be mapped
to the global matrix and global vector. The entrance number “3” is a redundant dependency relatiam Since
depends o@" and EF dependsubn , we can conclude that EF must degénd on . The entrance number 4 is
a similar redundant relation with one more step of MR depending on EF. The entrance number 5 and 7 show a
mutual dependency relation that MR dependsion  for MR is just the |hs and rhs to salve for , and after we
get solution from solving MR we need to map the solution vector from MR badkto , since the fixed degree of
freedom is excluded from the MR, the variable number in MR is different from the number of global degree of
freedom. Thereforeyh  depends on the knowledge of MR. The entrance number ‘@" has depends on EF.
When we define elements, we need to specify the element type number.

Graph Level Sructure

A complicated network such as the one in Figure 4¢8 may look aesthetically pleasant, but it isn’t the best for
human mind to comprehend.clque is formed if we starts the flows of dependency steps from node MR to EF
then tou" it goes right back to MR itself. The members in a cligue depend on each other so strongly that they
are notseparable. It is much easier to understand if the relation is hierarchical. In our mind we only need to pic-
ture a simple sequence of states and top-dwon relations. We would like to change the grdphelrdoiature
such as a tree or even better a simple chain. These are same structures that we always prefesdedspro-
gramming method. Therefore, we proceed to sort out the planner graph igtaph level structure.
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First we compare the degree of entrance of the four components (see TABLE 4+1) to transform, byscalation
anddemotion® of nodes on the planner graph in Figure 4+8, into a graph level structure.

Component Degree of entrance
Qn 3
uh 2
EF 2
MR 1

TABLE 41 Degree of entrance of the four components.

The Qh has highest degree of entrance that means it should be at the highest root of class hierarchyuFlowever,
and EF have same degree of entrance. Since the EF explicitly depemtisubn . is to be escalated and EF i
be demoted. The order in the class hierarchical is, thereiérey® , , EF, MR, as the order shown in TABLE 4
The pseudo-level structure is shown in the right-hand-side of Figure 4¢9. The redundant relations, entrance nu
bers 3, 4, and 5, are drawn as light arrows. These redundant dependencies are first to be eliminated. Next, tt
are still two un-resolved entrances (entrance 6 and 7 pointing downwards) in the left-hand-side of Figure 4¢
which make the graph not to be a level structure. Therefore, in the rest of this section we will expliemelC++
ization idioms! that help us to break these two dependency relations. Now not only the graph is simple to unde
stand for human mind, but also it will have a profound impact on the organization of the software component:
Firstly, with a simplified dependency hierarchy, the interfaces of the software components are much more simpl
fied. The interaction among the components can be understood easier. For example one can just bear in mind |
only components that are lower in the hierarchy depend on those on the above. And , then, if there are excepti
such as entrances 6 and 7, we just mark them as such. On the other hand, the complicated network of softw
components such as the one in the left-hand-side of Figure 4+8 will be extremely difficult to follow. There are s
many cliques among them. One nodes can lead to the other and then back to itself. The dynamical interacti
patterns among the components seems to have a life of its own. The sequence of events can be acted out di
ently every time. Therefore, the model based on the graph level structure will be less error proned. Secondly, t
complicated network demands all module to be developed, tested and maintained all together. Divide and co
quer is the principal strategy that we always need to deploy in the development, testing and maintenance of a p
gram. The graph level structure in the right-hand-side of Figure 49 means that now these processes can be d
in a more modulized fashion from top level 0 down to level 3 incrementally. We discuss two dependency breal
ers in the followings.

Pointer to a Forward Declaration Class: We can apply a traditional C technique to break the dependency rela-
tion caused by entrance number 7. That is the output for solution needs the knowledge of clas
Matrix_Representation. The the order of the solution vector “u”, in the main(), is corresponding to the order o
variable number in the Matrix_Representation. For output of solution, we need to map this internal order of th
Matrix_Representation back to the order of global nodal degree of freadbms according to the specificatio
from the problem. This breaking of dependency relations can be done wibhvtaed declaration in traditional

1. J. Lakos, 1996, “Large-scale C++ software design”, Addison-Wesley, Reading, Massachusetts.
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(a) levelization (b) simplify to achain
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Figure 4+9evelization of non-hierachical network into alevel structurethento a
chain. The entrances 6 and 7 remained. We need to apply C++ levelization
idioms to reslove them.

C. Four separate files “u_h.h”, “u_h.cpp”, “matrix_representation.h” and “matrix_representation.cpp”, are
shown in the followings.

la. “u_h.h”

dass Matrix_Representation;

dassU_h {
Matrix_Representation *mr;

public:

1
2
3
4
5
6
7 Matrix_Representation* &matrix_representationfgfurn mr; }
8 U_h& operator=(C0&);

9 U_h& operator+=(C0&);

10 U_h& operator-=(C0&);

1 %

Ib, “u_h.cpp”

12 #include “u_h.h"

13

Ila. “matrix_representation.h”

14 dass Matrix_Representation {

15

16 protected:

17 Global_Discretization &the_global_discretization;
18

19 public:
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20 void __initiaization(char *s);
21
22 };

I1b. “matrix_representation.cpp”

23 #include “u_h.h”

24 #include “matrix_representation.h”

25 void Matrix_Representation::__initializatiah@r *s) {

26 if(I(the_global_discretization.u_h().matrix_representation()) )

27 the_global_discretization.u_h().matrix_representation() = this;
28

29

}
30 U_h& U_h:operator=(C0& a) { ... }

31 U_h&U_h:pperator+=(C0& a) { ... }
32 U_h& U_h:pperator-=(C0& a){ ... }

The class U_h and class Matrix_Representation are actually depend on each other. Therefore, the implemer
tions of them in the “cpp” extension files will require the knowledge of their definitions. That is to include the
“.h” extension files. Traditional C language (note ttlass can be viewed as a special caseatifc) provides

mechanism to break this mutual dependency relation by forward declaration such as in line 1 that the class na
Matrix_Representation is introduced in the name scope of the translation unit “u_h.h”, on the condition that onl
the name of class Matrix_Representation, not its member data or member functions are to be used in the defin
tion of class U_h. In class U_h, we at most refer to a pointer of class Matrix_Representation, which is only a
address in the computer memory, not an actually instance of the class Matrix_Representation, because the tran
tion unit has no knowledge yet of what class Matrix_Representation really is. Now a programmer in the devel
oper team can compile and test “u_h.cpp” separately, without having to define class Matrix_Representation at a

One scenario of usinie forward declaration of a class and using a member pointer to it is after the entire
product has been completed and sale to the customer, if we want to change the definition and implementation
class Matrix_Representation we do not need to recompile the file “u_h.cpp”. The changes in “.h” and “.cpp” file:
of the class Matrix_Representation do not affect the object code of class U_h module. A less dramatic scenario
using a member pointer is that a developing process is iterative and the files always need to be compiled ma
times. During developing cycles, class U_h module does not need to be recompiled every time that cla
Matrix_Representation is changed. Therefore we have seen a most primitive focompflation firewall been
set toseparate the compile-time dependency among source files. In a huge project, such as the one developed in
Mentor Graphics we mentioned earlier. They may have thousands of files. It will be ridiculous that when an un
important change of a tiny file higher in the dependency hierarchy is mademake& ‘tommand may trigger
tens of hours in compile time to update all modules that are depending on it. Not for long you will refuse to dc
any change at all. In yet another scenario, when class Matrix_Representation is inteneadasbiated from
end-users, this same technique insulates end-users from accessing the class Matrix_Representation directly.

Certainly, the dependency relation of entrance number 7 exists, which is demanded by the problem domai
we can only find a way to get around it. We successfully break this particular dependency and make class U_h
independent software module, but how do we re-connect them as the problem domain required. When we defi
the constructor of the class Matrix_Representation, the first line of the constructor is to call its private membe
function “__initialization(char*)”. This private member function set up the current instance of
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Matrix_Representation as the pointer to Matrix_Representation in the class U_h. We break up the dependency

relation using forward declaration now we reconnect them when an instance of class Matrix_Representation is

initiated. This closes the cyclic dependency relation, at link-time, that was broken at compile-time for making an
independent module of classU_h. Furthermore, the definitions of three public member operators “=", “+=", and
“-=", which map the equation number of solution vector back to global degree of freedoms for output, are push
down the hierarchical levels. They are not defined in “u_h.cpp” with other class U_h member functions, because
the independent module class U_h has no idea what is a class Matrix_Represenation, let alone to access its infor-
mation for the mapping. Therefore, these three public member functions of class U_h are defined in
“matrix_representation.cpp” with other member functions of class Matrix_Representation. Certainly, had we not
defined these three operators anywhere, at link-time, the linker will refuse to build the executable module and
will complain that these three operators, declared in “u_h.h'yraresolved external references.

Element Type Register: In page 281, we have discussed dfemnent type register from user’s code segment as
registration by

1 Element_Fomulation* Element_Formulation::type_list = 0;

2 Element_Type_Register element_type_register_instance;

3 datic Truss truss_instance(element_type_register_instance); /I element type number “2”
4  datic T3 t3_instance(element_type_register_instance); /I element type number “1”

5 datic Q4 g4_instance(element_type_register_instance); /I element type number “0”

The element types are registered lisadata structure. The last registered element type number is “0”, and then
the number increases backwards to the first registered element in the “type_list". This element type numbers are
referred to when we define the element as

Omega_eh *elem new Omega_eh(element_numbeement_type number,
material_number, nodes_per_element,
node_number_array);

This user interface design itself breaks the dependency of the definition of an element on element types. The
C++ technique to implement this design is alinomous virtual constructor®. Let’s first look at the definitions
of the class Element_Formulation

1 dassElement_Type_ Registerdublic: Element_Type_ Register() {} };
2 dassElement_Formulation {
Global_Discretization& the_global_discretization;

public:
datic Element_Formulation *type_list;
Element_Formulation *next;
Element_Formulation(Element_Type_Register) :

coO~NO UL~ W

1. see autonomous generic constructor in J. O. Coplien, 1992, “ Advanced C++: Programming styles and idioms”, Addison-
Wesley, Reading, Massachusetts.
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9 the_global_discretization(Globa _Discretization()) { next = type list; type list = this; }
10 Element_Formulation& create(int, Global _Discretization& );

11 virtual Element_Formulation* make(int, Globa_Discretization&);

12

13 }

The dassElement_Type Register, in line 1, isadummy onethat is used like a signature in line 8 to indicate that
the instance of dass Element_Formulation generated is for element type identifier, and the static member
type_list embedded in the Element_Formulation will be maintained automatically. This element_type number
information is used in “Matrix_Representation::assembly()” as

1 Element_Formulation *element_type = Element_Formulation::type_list;
2 for(inti=0;i<element_type number; i++) element_type = element_type->next;
3 Element_Formulation ef = element_type->create(element_no, the_global_discretization);

Line 3 is to compute the Element_Formulation, and form an instance of Element_Formulation, say “ef”, it can b
used as “ef.lhs()” and “ef.rhs()” to query information. The task of “create()” is to call “mafoegyard by its
delegate “rep_ptr->make()”. Since “make()” is virtual and to be redefined in the derived class. The requestin lin
3 is dispatched to a user defined element class. The virtual function mechanism is usually referredateas the
binding technique atun-time. In this case, the cyclic dependence of an element on element formulation, deliber-
ately broken for the software modulization, is re-connected at the run-time by the late-binding technique suj
ported by C++.

Composite Class from a Dependency Graph

In Figure 4+8 and Figure 4+9, the four nodes are actually the software modules in “fe.lib” which are consist o
the classes. A class dependency graph, not including all classes, is shown in Figure 4¢10. The entire picture
much more complicated one. The definition afompoiste classis similar to the partitioning of the graph to a
(quotient)tree structure with sets of composite vertices as composite nodes. In software design, the choice of the
composite class is somewhat more arbitrary than that of composite vertices in graph theory; as long as it is cc
ceptual meaningful temphasis the essential and eiminate the irrelevant (i.e., the process a@hbstraction). For
example, it makes all sense to combined the level 0 and level 1 together and called it a Global_Discretizatio
which is a discretization made to both the domain and the variables. We can even combined th
Global_Discretization class and Element Formulation class to form a new conceptual class o
“Finite_Element_Approximation”. In this way, the designer may want to emphasize that the finite element
method is mainly consist of only two steps. One step ifirttie element approximation, and the other step is the
solution in its matrix form. The coalescence of several composite classes into yet higher level of composite cla
shows that the recognition of a composite class may depend on design decision on what conceptual abstract
the designer wants to emphasize (an art), not just physical dependency relations and technical requirements
separate them. Sometimes, the decision depends on the intent of the final product. For a product designed tc
used as a canned program, the abstraction can be put to a coherently higher level in which all the details
encapsulated from the end users as much as possible. On the contrary, if the product is intended to be open, :
as “fe.lib” that large-scale change to the backbone structure of the program is to be permissible. Abstraction
put down to a granularly lower level to facilitate the re-use of each composite class and therefore more flexibilit
for change.
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Level O

Level 1

Global_Discretization

Level 2

Finite_Element_Approximation

Level 3

P
Tensors X
MR

__—Globla Discretizaiion—
b

EF

D
MR

Figure 4«10Composite classin the hierachical level structure.
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4.1.4 A Program Template for Using “fe.lib”

We summarize the Section 4.1 with a template for using fe.lib to write finite element programs. It is very
much like we have an extended C++ language features that are specialized in finite element method. “fe.lib” is
framework-based package very similar to if you are writinggeaphic user interface (GUI) program. In GUI pro-
gramming, there are some routine code that you need to incorporate with its framework to make the GUI kern
up and running. On the other hand, since finite element method requires a lot of user input to specified the pro
lem, the fe.lib acts much like a database engine that you wdttabase language to define the database
schema, manipulate the data and query its contents. The fancslintaserver package may even more appro-
priate for “fe.lib”. The client-server packages for writing business applications provide a high-level library for
routine database services and GUI interfaces. Under such model, the fe.lib is the server that provides the ba
mechanisms in finite element method for user programs to implement their own design policies in the vast are
of finite element problem domain.

A user program template is illustrated in the followings

[|====== ==

/I Step 1: Global_Discretization

[|====== ==

1 Omega_h::Omega_h{ /I define discretizaed global domain
/I define nodes

2
/I define elements

3

4 }

5 gh_on_Gamma_h::gh_on_Gammant{f, Omega_h& oh) { /I define boundary conditions

6 __initiialization(df, oh); [l initialize internal data structure
/I define b.c.

7

8 }

[|=== =====
/I Step 2: Element_Formulation

[|=== =—====
9 dassUserEL :public Element_Formulation { /I define user element

10 public:

11 UserEL(Element_Type_Register a) : Element_Formulation(a) {}

12 Element_Formulation *maki&f, Global_Discretization&);

13 UserEL{nt, Global_Discretization&);

14 };

15 Element_Formulation* UserEL::maket(en, Global_Discretization& gd) {

16 return new UserEL(en, gd);

17 }

18 UserEL::UserELifit en, Global_Discretization& gd) : Element_Formulation(en, gd) {
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/I define element formulation constructor
19
20 }
21 Element_Formulation* Element_Formulation::type list = 0; /I register elements
22 Element_Type Register element_type register_instance;
23 datic UserEL userel_instance(element_type register_instance);

I
Il Step 3: Matrix_Representation and Solution Phase
I

24 int main() {

25 int ndf = 1; /I instantiation of Global_Discretization
26 Omega_h oh;

27 gh_on_Gamma_h gh(ndf, oh);

28 U_h uh(ndf, oh);

29 Global_Discretization gd(oh, gh, uh);

30 Matrix_Representation mr(gd);

31 mr.assembly(); /I assembl e the global matrix
32 COu = ((CO)(mr.rhs())) / ((CO)(mr.1hs())); // solution phase

33 gd.h_h(); = u; gd.u_h() = gd.gh_on_gamma_h(); I/ update solution

34 cout << gd.u_h(); /I output solution

35 return O;

36 }

Many segments and their variations of this template have been discussed in 4.1.2. The rest of this Chapter con-
sists of concrete examples of writing user programs using this template.
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4.2 One Dimensional Problems

We intent to go through many proto-type problems, in one dimension, to demonstrate a wide mathematical

variety in the finite element method.

4.2.1 A Second-Order Ordinary Differential Equation (ODE)

Considering a second-order differential equation we have solved using Rayleigh-Ritz method (Eq. 355 c

Chapter 3 in page 204)

_d_u_ cosTX, 0<x<1

dx?
with three sets of different boundary conditions

1. Dirichlet boundary conditions—u(0) = u(1) =
2. Neumann boundary condition—u’(0) = u’(1) =0
3. Mixed boundary conditions—u(0) =0, and u’(1) =0

The Galerkin weak formulation is

a(ed, d) - (@ ,f) =

1
0 99t dok

d2eL del del, del
J ¥l e - thoosmi :I T ot ReoT I g = [
0

.[IZI dx dx (pecosr[x%Jx =0

1. Dirichlet boundary conditions: From Eqg. 49 and Eq. 410 we hawtament stiffness matrix as

(100, doy

kd = a(ol, ob) = JDax ax ax X

and theelement force vector as

1
fl = (9h 1)+ (oL ) —a(oL eh)ub = [(ghcosmx)dx

Eq. 4+16

Eq. 417

Eq. 418

Eq. 4+19

The last identity is obtained, since the essential and natural boundary conditions are all homogeneous the sec
term (gL, h). and the third term-a(q], @l)uk  always vanish. In more general cases that they are not homoge

1. p. 367-371 in J.N. Reddy, 1986, “Applied functional analysis and variational methods in engineering”, McGraw-Hill, Inc.
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nous conditions, the default behaviors of “fe.lib” will deal with these two terms behind the scene as long as you
have not overwritten them as we have discussed in the previous section.

Linear Line Element

We can choose the linear interpolation functions for both variable interpohagie@g ul (EqQ. 4-1) and
coordinate transformation rube= ¢, x,  (Eq. 4¢6); i.e., an isoparametric element as

1 1
9Q = 5(1-8), and i =5(1+8) Eq. 4+20

This is the linear interpolation functions we have used for integration of a line segment in Chapter 3 (Eqg. 3+10
and Eq. 311 of Chapter 3).

The finite element program using VectorSpace C++ Library and “fe.lib” to implement the linear element is
shown in Program Listing 4+1. We use the program template in the previous section. First, we define nodes and
elements in “Omega_h::Omega_h()". This constructor for the discretized global domain defines nodes with their
node numbers and nodal coordinates as

1 doublev = (double)i/(double)element_no; /I nodal coordinates, 0 <x <1
2 Node *node =new Node(global_node_number,

3 spatial_dimension_number,

4 &v);

5 the_node_array.add(node);

The elements are defined with global node number associated with the element as

1 int ena[2]; ena]0] = first_node_number; ena[1] = ena[0]+1;

2 Omega_eh* elem rew Omega_eh(element_number,

3 element_type number,

4 matrial_type_number,

5 number_of node_per_element,
6 ena);

7 the_omega_eh_array.add(elem);

Three sets of boundary conditions are (1) Dirichlet (2) Neumann, and (3) Mixed. The corresponding code seg-
ments can be turned on or off with a macro definitions set, at compile time, as

1 #if defined(__TEST_MIXED_BOUNDARY_CONDITION)

2 gh_on_Gamma_h::gh_on_Gammanhdf, Omega_h& omega_h) {

3 __initialization(df, omega_h);

4 the_gh_array[node_order(0)](0) = gh_on_Gamma_h::Dirichlet;

5 the_gh_array[node_order(0)][0] = 0.0;

6 the_gh_array[node_order(node_no-1)](0) = gh_on_Gamma_h::Neumann;
7 the_gh_array[node_order(node_no-1)][0] = 0.0;
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I
#include "include\fe.h”

static congt int node_no = 9; static const int element_no = 8; static const int spatial_dim_no = 1;

Omega_h::Omega._h() {
for(inti =0; i < node_no; i++) {
doublev; v = ((double)i)/((double)element_no);

Node* node = new Node(i, spatial_dim_no, &V); the_node_array.add(node);

}

int ena[2];

for(inti =0; i <element_no; i++) {
ena[0] =i; ena[1] = ena0]+1;

Omega_eh* elem = new Omega_eh(i, 0, 0, 2, ena); the_omega_eh_array.add(elem);

}
}
gh_on_Gamma_h::gh_on_Gamma_h(int df, Omega_h& omega h) {
__initialization(df, omega_h);
the_gh_array[node_order(0)](0) = gh_on_Gamma_h::Dirichlet;
the_gh_array[node_order(node_no-1)](0) = gh_on_Gamma_h::Dirichlet;
}
class ODE_2nd_Order : public Element_Formulation {
public:
ODE_2nd_Order(Element_Type_Register a) : Element_Formulation(a) {}
Element_Formulation * make(int, Global_Discretization&);
ODE_2nd_Order(int, Global_Discretization&);
¥

Element_Formulation®* ODE_2nd_Order::make(int en, Global_Discretization& gd) {

return new ODE_2nd_Order(en,gd);
}
static const double PI = 3.14159265359;
ODE_2nd_Order::ODE_2nd_Order(int en, Global_Discretization& gd)
: Element_Formulation(en, gd) {
Quadrature gp(spatial_dim_no, 2);
H1Z(gp),

N=INTEGRABLE_VECTOR_OF TANGENT_BUNDLE("int, int, Quadrature", 2, 1, qp);

N[0] = (1-Z)/2; N[1] = (1+Z)/2;

H1 X = N*xl;

HO Nx = d(N)(0)/d(X);

J av(d(X));

stiff &= (Nx * (~Nx)) | dv;

force &= ( ((HO)N)*cos(PI* ((H0)X)) )| dv;
}
Element_Formulation* Element_Formulation::type_list = 0;
static Element_Type_Register element_type_register_instance;

static ODE_2nd_Order ode_2nd_order_instance(element_type register_instance);

int main() {
const int ndf = 1;
Omega_h oh; gh_on_Gamma_h gh(ndf, oh);
U_h uh(ndf, oh); Global_Discretization gd(oh, gh, uh);
Matrix_Representation mr(gd);
mr.assembly();
CO u = ((CO)(mr.rhs())) / ((CO)(mr.Ihs()));
gd.u_h() = u; gd.u_h() = gd.gh_on_gamma_h();
cout << gd.u_h();
return 0;

Definte discretizaed global domain
define nodes

define elements

define boundary conditions
uO =ul)=0

instantiate fixed and free variables and
Global_Discretization

Define user element “ODE_2nd_Order”
1d Gauss Quadrature

No = (1£)/2,N; = (1+)/2
coordinate transformation rule
N,X

the Jacobian

€”)0dx dx
0
register element

Matrix Form

assembly all elements

solve linear algebraic equations
update solution and B.C.
output

1 . . 1
, e d L
ki cfioe ﬂeng ,andfgImgmsmdx
0

Listing 4«1 Dirichlet boundary condition u(0) = u(1) = 0, for the differential equation - Li(project:
“2nd_order_ode” in project workspace file “fe.dsw” (in case of MSVC) under directory “vs\ex\fe”).
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8 }

9 #elif defined(__TEST_NEUMANN_BOUNDARY_CONDITION)

10 gh_on_Gamma_h::gh_on_Gamma_h(int df, Omega h& omega h) {

11 __initialization(df, omega_h);

12 the_gh array[node_order(0)](0) = gh_on_Gamma_h::Neumann;

13 the_gh array[node_order(0)][0] = 0.0;

14 the_gh array[node_order(node_no-1)](0) = gh_on_Gamma_h::Neumann,
15 the_gh array[node_order(node_no-1)][0] = 0.0;

16 the_gh array[node_order((hode_no-1)/2)](0) = gh_on_Gamma_h::Dirichlet;
17 the_gh array[node_order((node_no-1)/2)][0] = 0.0;

18 }

19 #else

20 gh_on_Gamma _h::gh_on_Gamma_h(int df, Omega_h& omega h) {

21 __initialization(df, omega_h);

22 the_gh_array[node_order(0)](0) = gh_on_Gamma_h::Dirichlet;

23 the_gh array[node_order(0)][0] = 0.0;

24 the_gh_array[node_order(node_no-1)](0) = gh_on_Gamma_h::Dirichlet;
25 the_gh array[node_order(node_no-1)][0] = 0.0;

26 }

27 #endif

The Dirichlet boundary conditions is taken as the default macro definition. The constraint type selector is the
“operator () (int dof)”. We can assign type of constraint to the corresponding degree of freedom as
“gh_on_Gamma_h::Neumann” or “gh_on_Gamma_h::Dirichlet”. The default constraint type is Neumann con-
dition. Theconstraint value selector is the ‘bperator [ ](int dof)”. The default constraint value is “0.0". In other
words, you can eliminate lines 5-7, lines12-15, and lines 17, 23, 25, and the results should be the same.

The added essential boundary conditions on the middle point of the problem domain (line 16, and 17) are
necessary for the Neumann boundary conditions for this problem, because the solution is not unique under such
boundary conditions only.

“fe.lib” requires the following codes to ochestrate piokymor phic mechanism of the Element_Formulation
to setup theelement type register. For a user defined class of “ODE_2nd_Order” derived from class
Element_Formulation we have

1 cdassODE_2nd_Order public Element_Formulation {

2 public

3 ODE_2nd_Order(Element_Type_Register a) : Element_Formulation(a) {}

4 Element_Formulation *makief, Global_Discretization&);

5 ODE_2nd_Ordei(t, Global_Discretization&);

6 %

7 Element_Formulation* ODE_2nd_Order::makégn, Global_Discretization& gd) {
8 return new ODE_2nd_Order(en,gd);

9 }

10 Element_Formulation* Element_Formulation::type_list = 0;
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11 datic Element_Type Register element_type register_instance;
12 datic ODE_2nd_Order ode 2nd order_instance(element_type register_instance);

Lines 10 and 11 setup the data for registration and Line 12 register the element formulation “ODE_2nd_Order
Line 5 is the constructor for class ODE_2nd_Order where we defined the user customized element formulation

1 daticcong double Pl = 3.14159265359;

2 ODE_2nd_Order::ODE_2nd_Ordet(en, Global_Discretization& gd)

3 : Element_Formulation(en, gd) {

4 Quadrature gp(spatial_dim_no, 2); /I 1d, 2-pts Gauss quadrature
5 H1Z(qp), /I natural coordinate€&—

6 N = INTEGRABLE_VECTOR_OF_TANGENT_BUNDLE( // “shape functions”

7 "int, int, Quadrature”, 2/*nen*/, 1/*nsd*/, qp);

8 N[O0] = (1-2)/2; N[1] = (1+Z)/2; INg=(1-€)/2, N = (1K)/2

9 H1X = N*xl; /I coordinate transformation= N; xk
10 HO Nx = d(N)(0)/d(X); IIN

11 J dv(d(X)); /I the Jacobian, X

12 stiff &= (Nx * (=Nx)) | dv; lD‘E doi

131 force &= ( (HO)N)*cos(PI*((H0)X)) )| dv; I Kij =IDdXe d—xegdx , and
fgfmgcosmdx 0

145 }

For the element stiffness matrix, instead of “stiff &= (Nx* (~Nx)) | dv;”, the tensor product opet&d&r “
HO::operator %(const HO&)” in VectorSpace C++ can be used for expressing

1

d
kezf% 0 d—(f(e%ix EQ. 421
0

as

stiff &= (Nx%NX) | dv;

The instantiation ofjlobal discretized domain, fixed and free variables, andmatrix representation and solu-
tion phase are taken directly from the template without modification

1 int main() {

2 congint ndf =1,

3 Omega_h oh; // global discretizaed domaiai—
4 gh_on_Gamma_h gh(ndf, oh); /I fixed variablesg8 FghOT,
5 U_h uh(ndf, oh); /I free variablesut-

6 Global_Discretization gd(oh, gh, uh); /I ttlass Global_Discretization
7 Matrix_Representation mr(gd);

8 mr.assembly(); /I assembly all elements

9 COu = (C0o)(mr.rhs())) / (CO)(mr.lhs())); /l matrix solver
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10 gd.u_h() = u; gd.u_h() = gd.gh_on_gamma_h(); /I update free and fixed degree of freedom
11 cout << gd.u_h(); /I output solution

12 returnO;

13}

The instances of global discretization, “oh”, and fixed and free variables, “gh” and “uh”, respectively, are then

all go to instantiate an instance of class Global_Discretization, “gd”. The results of using the linear line element
for the second order differential equation in finite element method are shown in Figure 4¢11.

Dirichlet Neumann Mixed

0.02 : .2 0.4 0.6 0.8 1

-0.02 -0.1 0.2

Figure 411 The results from eight linear elements for (1) Dirichelt (2) Neumann and (3) Mixed
boundary condtions for the second-order ordinary differentail equation. Line segmentswith open
squares are finite element solutions, and continuous curves are analytical solutions.

Quadratic Line Element

The quadratic interpolation functions for both variable interpolatipa @ ul (Eq. 4+1) and coordinate
transformation rulex= g}, x. (Eq. 4¢6) are

9 = 2(1-8),04 = (1-8)(1+8) and @2 =3(1+8) Eq. 4+22

These are the same quadratic interpolation functions in the Chapter 3 (Eq. 3¢22).

The finite element program using VectorSpace C++ Library and “fe.lib” to implement the quadratic line ele-
ment is shown in Program Listing 4+2. The definitions of 5 nodes and 2 quadratic elements are

gatic cong int node_no = 5;

gatic cong int element_no = 2;

datic cong int spatial_dim_no = 1;

Omega_h::Omega_h() {

for(int i = 0; i < node_no; i++) {

double v; v = ((double)i)/((double)(node_no-1));
Node* node =new Node(i, spatial_dim_no, &v);
the_node_array.add(node);

coO~NO UL WNBE
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[
#include "include\fe.h”
static congt int node_no = 5; static const int element_no = 2; static const int spatial_dim_no = 1; Definte discretizaed global domain
Omega_h::Omega._h() {
for(inti =0; i < node_no; i++) {
doublev; v = ((double)i)/((double)element_no); define nodes
Node* node = new Node(i, spatial_dim_no, &V); the_node_array.add(node);

i}nt end[3]; define elements

for(inti =0; i <element_no; i++) {
ena[0] =i; ena[1] = ena[0]+1; ean[2] = ena[0] + 2;
Omega_eh* elem = new Omega_eh(i, 0, 0, 3, ena); the_omega_eh_array.add(elem);
}
}
gh_on_Gamma_h::gh_on_Gamma_h(int df, Omega_h& omega h) { define boundary conditions
__initialization(df, omega_h);
the_gh_array[node_order(0)](0) = gh_on_Gamma_h::Dirichlet; U(O) = U(l) =0
the_gh_array[node_order(node_no-1)](0) = gh_on_Gamma_h::Dirichlet;

class ODE_2nd_Order_Quadratic : public Element_Formulation { instantiate fixed and free variables and

public: Global_Discretization
ODE_2nd_Order_Quadratic(Element_Type Register a) : Element_Formulation(a) {}
Element_Formulation *make(int, Global_Discretization&);
ODE_2nd_Order_Quadratic(int, Global_Discretization&);
¥
Element_Formulation* ODE_2nd_Order_Quadratic::make(int en, Global_Discretization& gd) {
return new ODE_2nd_Order_Quadratic(en,gd);
}
static const double PI = 3.14159265359;
ODE_2nd_Order::ODE_2nd_Order_Quadratic(int en, Global_Discretization& gd)

: Element Formulation(en, gd) { Define user element “ODE_2nd_Order”
Quadrature gp(spatial_dim_no, 2); — —
H1Z(gp),
N=INTEGRABLE_VECTOR_OF_TANGENT_BUNDLE("int, int, Quadrature’, 3, 1,qp); 1d Gauss Quadrature
N[O] =-Z*(1-Z)/2; N[1] = (1-2)*(1+Z); N[2] = Z*(1+Z)/2; — —
H[1]X:N*(XI; )2, N[1] = (1-Z)*(1+2); N[2] (1+2) No—'E (1%)/ 2,N1—(1'§) (1+5),
HO Nx = d(N)(0)/d(X); Np=¢ (1) /2
J dv(d(X)); coordinate transformation rule
stiff &= (Nx* (~Nx)) | dv; N
force &= ( ((HO)N)*cos(PI* ((H0)X)) )| dv; X .
} the Jacobian
EIer_nent_FormuIaIion* EI_ernent_FormuIation::type_list =0 (Pi d (PJ
static Element_Type Register element_type_register_instance; Kii= f e _e%jx andfi= (pi cosTXdx
static ODE_2nd_Order_Quadratic € JUdx dx ’ e I e
ode_2nd_order_quadratic_instance(element_type_register_instance); 0 0
int main() { register element
const int ndf = 1; Omega_h oh; gh_on_Gamma_h gh(ndf, oh); :
U_h uh(ndf, oh); Global_Discretization gd(oh, gh, uh); Matrix Form
Matrix_Representation mr(gd); assembly all elements
mr.assembly(); solve linear algebraic equations

COu = ((CO)mr.rhs()) / ((CO)(mr.Ihs))); ;
o 10 = g hO = gdlgh on.gemma hO): update solution and B.C.

cout << gd.u_h(); output
return 0,

Listing 42 Quadratic Element for Dirichlet boundary condition u(0) = u(1) = 0 of the differential equa-
tion - u” =f (project: “quadratic_ode” in project workspace file “fe.dsw” under directory “vs\ex\fe”).
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9 }

10 int end[3];

11 for(inti=0; i <element_no; i++) {

12 ena[0] = i*2; eng[1] = ena[0]+1; ena[2] = ena[0]+2;
13 Omega_eh* elem = new Omega_eh(i, 0, 0, 3, ena);
14 the_omega _eh array.add(elem);

15 }

16 }

The interpolation functions for Eq. 4¢22 in the constructor of the user defined element is

H1Z(qgp),
N = INTEGRABLE_VECTOR_OF TANGENT_BUNDLE(

"int, int, Quadrature”, 3/*nen*/, 1/*nsd*/, qp); —E g
N[O] = -Z*(1-2)/2; N[1]=(1-2)*(1+2); N[2]=Z2*(1+2)I2; Il 9¢ = 5 (1-&), @5 = (1-&)(1+8), @5 = 5(1+ &)

A WNPF

The results of using only two quadratic elements are shown in Figure 4¢12.

Dirichlet Neumann Mixed

Figure 4¢12 The results from two quadratic elements for (1) Dirichelt (2) Neumann and (3)
Mixed boundary condtions for the second-order ordinary differentail equation. Dashed curves
with open squares are finite element solutions, and continuous curves are analytical solutions.

Cylindrical Coordinates For Axisymmetrical Problem

In cylindrical coordinates (8, z), the Laplace operator is writterf as

_ 195dug, 192, d%u

2 = ocu o<
Heu ror 6rD+r2692+622

EqQ. 4+23

We consider an axisymmetrical heat conduction problem governing by the Laplace equg&tion 0
shown in Figure 4+13.This is a cross-section of two coaxial hollow cylinders. The inner and outer cylinder

1. see for example p. 667, Eq (11.4.C4) in L.E. Malvern, 1969, “Introduction to the mechanics of a continuous medium”,
Prentice-Hall, Inc., Englewood Cliffs, N.J.

2. example in p. 364-367 in J.N. Reddy, 1986, “Applied functional analysis and variational methods in engineering”,
McGraw-Hill, Inc.
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K=5 =
r100°C k=1 0°C
» —Ga—:a—L=i o o [m} a
20mm 31.6mm 50mm

Figure 4+13Cross-section of two hollow cylinder with diffusivity of k =5, and k =
1 for the inner and outer cylinder, respectively.

have different thermal diffusivity “5” and “1”, respectively. For this axisymmetrical problem u depends only on
r, the second and the third terms in the left-hand-side of Eq. 4¢23 dropped out. The Laplace equation becomes

du|:| R
rdrB( drd ™ 0 Eq. 424

ReplacedQ = 2rr dr in the volume integral, the element stiffness matrix in Eq. 49 and Eq. 4+10 is obtained by
integration by parts of the weighted-residual statement with Eq. 424

Ko = IKD - 0 Bandr Eq. 425
The C++ code for Eq. 4¢25 is
“stiff &= (kapa[matrial_type_no] *(Nr%Nr)*2*PI(dQ)r) ) | dr”
where “Nr” is the derivative of shape functiord™with respect to “r”. This is implemented in Program Listing
43. The results are shown in Figure 4+14.
1004
80t
TOoC 60

40}

20+

r

25 30 35 40 45 50
Figure 4+14T he solution of heat conduction of an axisymmetrical problem with two
hollow cylinders.
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#include "include\fe.h"
static const int node_no = 9; static const int element_no = 8; static const int spatial_dim_no = 1; Definte discretizaed gl obal domain
Omega_h::Omega_h() {
doubler[9] ={20.0, 22.6, 25.1, 28.4, 31.6, 35.7, 39.8, 44.9, 50.0} ;
for(int i =0; i <node_no; i++) { define 9 nodes
Node* node = new Node(i, spatial_dim_no, r+i); the_node_array.add(node); }
int ena[2], material_type no; .
for(int i = 0; i < dement_no; i++) { define 8 elements
eng[0] =i; ena[1] = eng[0] +1;
if(i < element_no/ 2) material_type no = O; else material_type no=1;
Omega_eh* elem = new Omega_eh(i, O, material_type_no, 2, ena);
the_omega_eh_array.add(elem);
}

gh_on_Gamma_h::gh_on_Gamma_h(int df, Omega_h& omega h) { define boundary conditions

__initialization(df, omega h); u(20) = 100, u(50) =0
the_gh_array[node_order(0)](0) = gh_on_Gamma_h::Dirichlet;
the_gh_array[node_order(0)][0] = 100.0;
the_gh_array[node_order(node_no-1)](0) = gh_on_Gamma_h::Dirichlet;
the_gh_array[node_order(node_no-1)][0] = 0.0;
}class ODE_Cylindrical_Coordinates : public Element_Formulation {

public: . . . .
ODE _Cylindrical_Coordinates(Element_Type_Register ) : Element_Formulation(a) {} instantiate fixed and free variables and
Element_Formulation * make(int, Global_Discretization&); Global_Discretization

ODE_Cylindrical_Coordinates(int, Global_Discretization&);

¥

Element_Formulation* ODE_Cylindrical_Coordinates::make(int en, Global_Discretization& gd) {
return new ODE_Cylindrical_Coordinates(en,gd); }

static const double Pl = 3.14159265359; static const double kapa[2] = {5.0, 1.0};

ODE_Cylindrical_Coordinates::ODE_Cylindrical_Coordinates(int en, Globa_Discretization& gd)
: Element_Formulation(en, gd) { . “ "
Quadrature ap(spatial_dim_no, 2): Define user element “ODE_2nd_Order
H1Z(gp),

N=INTEGRABLE_VECTOR_OF_TANGENT_BUNDLE( "int, int, Quadrature", 2, 1, qp);

N[O] = (1-2)/2: N[1] = (1+2)/2: 1d Gauss Quadrature

H1r=N*xl;
HO Nr = d(N)(Q)/d(r); No= (1) / 2,N4= (1+4€) / 2
Jdr(d(r)); : :
stiff &= ( ( kapa[material_type no]*2.0¢PI* ((HO)r) ) * (Nr%Nr) ) | dr; coordinate transtfmatlon rule
} N, and the Jacobian
Element_Formulation* Element_Formulation::type_list = 0; d
static Element_Type_Register element_type_register_instance; k. =[x Ijj_(pe 0 ie%ZT[r dr
static ODE_Cylindrical_Coordinates ode_cylindrical_instance(element_type_register_instance); e I Odr dr
int main() {
const int ndf = 1; Omega_h oh; gh_on_Gamma_h gh(ndf, oh); register element
U_h uh(ndf, oh); Global_Discretization gd(oh, gh, uh); Matrix Form
Matrix_Representation mr(gd);
mr.assembly(): assembly all elements
COu = ((CO)(mrrhs())) / ((CO)(mr.Ihs()); solve linear algebraic equations

gd.u_h() = u; gd.u_h() = gd.gh_on_gamma_h(); update solution and B.C.
cout << gd.u_h();

return 0; output

I I
Listing 4¢3 Axisymmetrical problem using cylindrical coordinates for the differential equation - u” =0
(project: “cylindrical_ode” in project workspace file “fe.dsw” under directory “vs\ex\fe”).
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4.2.2 A Fourth-Order ODE —the Beam Bending Problem

We recall, from the last chapter in the sub-section on fourth-order ODE (in page 205), that from balance c
force, thetransverse loading (f) is equal to the derivative dahear force (V) as

dv/dx =-f Eq. 426

and the shear forééis equal to the derivative bénding moment (M) as

dM/dx =-V Eq. 427
Therefore,
d2M
o - f Eq. 4+28

Thetransverse deflection of the beam is denoted as w, and dtievature (dzw/dxz) of the beam is related to the
bending momentM” and the flexure rigidity EI” as

2

0= Eq. 429
Substituting M” in Eq. 429 into Eq. 4+28 gives the fourth-order ordinary differential equation
%%I%E = f, O<x<L Eq. 4+30
We consider a boundary value problem that the Eq. 4+30 is subject to the boundary cdnditions
A - O dwO -
w(0) = %V(O) =0, ElgTV;’(L) =M, —F—XEHSTV;’E}(L) =V(L) =0 EQ. 4:31

In the previous chapter, we solved this boundary value problem Rayhgjgh-Ritz method with four weak for-
mulations—(1)irreducible formulation, (2) mixed formulation, (3) Lagrange multiplier formulation, and (4)
penalty function formulation. We usédfinite element method in this section to implement these four weak formu-
lations.

1. J.N. Reddy, 1986, “Applied functional analysis and variational methods in engineering”, McGraw-Hill, Inc.
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Irreducible For mulation—Piecewise Cubic Her mite Shape Functions
The Lagrangian functional is obtained from integrating by pavite on the weighted residual statement
from EqQ. 430

2
D — —
I(w) = _[{EE %E —fW}dX—WVrh—g'—\)’(V Mr, Eq. 4+32

The last two terms amtural boundary conditions generated from integration by parts. Usimg= ev, wheree
is a small real number. Taking the variation@ind settingdJ(u) = O gives

d25wLH y
3I(w) = I{Elﬁ%TWD 6Wf}dx—6wvrh Ty %ﬁrh
0 [ o’ w0 0
\' \\
= e[| Bl o T a0 v |dx-WV, 0
8@{ |31x2[|31x25 V} XUV, * Ddx%\]rhg
0

Droppingg, since it is arbitrary, we have

{E| &%D— Vf:|dX—VVrh + E—g—\;@rh =0 EqQ. 433

X2 eix?

The integrand of Eq. 433 contains derivative of variables up to second order. For this equation to be integrable
through outQ, we have to require that the first derivative of the variable be continuous through out the integra-
tion domain. If the first derivative of the variable is not continuous at any point on the integration domain and its
boundaries, the second derivative of the variable on that point will be infinite, therefore, Eq. 433 is not integra-
ble. In other words, the first derivative of the variable at nodal points should be required to be continuous. This
is to satisfy the so-callecbntinuity requirement. For example, we consider a two nodes line element with two
degrees of freedom associated with each notes. That is the nodal degrees of freedom argeset tgyp@wy/= [w

dx, wy, -dw4/dx] on the two nodes. The node numbers are indicated by subscripts “0” and “1". The variables,
defined in an element domain, are defined as

ul= gl G Eq. 434

where thepiecewise cubic Hermit shape functions ¢}, ,i=0, 1, 2, 3 are?

1. see derivation in p. 383 in J.N. Reddy, 1986, “Applied functional analysis and variational methods in engineering”,
McGraw-Hill, Inc.
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&
I
(|
5
(|

_ o 14
08 =355 2h
3=_¢ Déljz_DE_D EqQ. 4¢35
(pe EheD EheDJ q
The element stiffness matrix is
o, d
) O]
ke = a(Qy @) = J'EIE)—eD a0 “Tdx EqQ. 4+36
The element force vector is
fl = (L, f) + (@l h) —a(eL, ol)ul Eq. 4+37

whereessential boundary conditions areu, = [w, %‘)’(V o’ Wy, %\)’(V L ], and

(ehf) = @k fdx, and (gh h) = [oLPdx Eq. 4438
r

Qe

whereP = {V,,- Mg, V|, -M,} T is thenatural boundary conditions on boundary shear forces andboundary bend-

ing moments. Notice that in the previous chapter we take counter clockwise direction as positive for bending
moment. The sign convention taken here for the bending moment is just the opposite. The natural boundary cc
ditions are programmed to automatically taken care of in “Matrix_Representation::assembly()” where the left
hand-side is assumed to be a positive term instead of what happened in the left-hand-side of Eq. 4+43. This is
reason of take a minus sign in fronf\éffor the definition of the vectd?. The Program Listing 44 implemented

the irreducible formulation for the beam bending problem.

The solutions of the transverse deflection w and sldpédx can be calculated from nodal values according
to Eq. 4+34. They are almost identical to the exact solutions in Figure 316 and Figure 3+17 of the last chapter
page 208 and page 212, respectively. Therefore, the error instead are shown in Figure 415. Note that the ex

2. or alternative form from p. 49 in T.J.R. Hughes, 1987,"The finite element method: Linear static and dynamic finite elemen
analysis”, Prentice-Hall, Inc.
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#include "include\fe.h"

static const int node_no = 5; static const int element_no = 4; static const int spatial_dim_no = 1;
static const doubleL_ = 1.0; static const double h_e = L_/((double)(element_no));

static const double E_ = 1.0; static const double |_=1.0; static const doublef_0 = 1.0;

static const doubleM_ =-1.0;

Omega h:Omega hO{ Definte discretizaed global domain
for(inti = 0; i <node_no; i++) { .
doublev = (double)i)*h_e; define nodes
Node* node = new Node(i, spatial_dim_no, &v);  the node array.add(node); }
int ena[2];

for(inti=0; i <element_no; i++) { define elements

end0] = i; end1] = end[0]+1;
Omega_eh* elem = new Omega_eh(i, 0, 0, 2, ena); the_omega_eh_array.add(elem); }
gh_on_Gamma_h::gh_on_Gamma_h(int df, Omega_h& omega h) { define boundar.y_ COﬂdItIOﬂS-
_initialization(df, omega. h); M(L) = -1 (positive clockwise)
the_gh_array[node_order(0)](0) = gh_on_Gamma_h::Dirichlet;
the_gh_array[node_order(0)](1) = gh_on_Gamma_h::Dirichlet;
the_gh_array[node_order(node_no-1)][1] = M_; . . . .
} instantiate fixed and free variables and
static const int ndf = 2; static Omega_h oh; static gh_on_Gamma_h gh(ndf, oh); Globa Discretization
static U_h uh(ndf, oh); static Global_Discretization gd(oh, gh, uh); -
class Beam_Irreducible Formulation : public Element_Formulation {
public:
Beam_|rreducible Formulation(Element_Type Register a) : Element_Formulation(a) {}
Element_Formulation * make(int, Global_Discretization&);
Beam_|rreducible_Formulation(int, Global_Discretization& ); “ ) _
¥ Beam_Irreducible_Formulation
Element_Formulation* Beam_Irreducible_Formulation::make(int en,Global_Discretization& gd) { Simpson’s rule
return new Beam_lIrreducible_Formulation(en,gd); } B ;
Beam_Irreducible_Formulation::Beam_Irreducible_Formulation(int en, Global _Discretization& Hermit cubics
gd) : Element_Formulation(en, gd) {

doubleweight[3] = {1.0/3.0, 4.0/3.0, 1.0/3.0}, =1 _3D§E|2 + zﬂég
h_e = fabs( ((double)(xI[0] - XI[1])) ); Chy Chy
Quadrature gp(weight, 0.0, h_e, 3);

Jd_I(h_e/2.0); £ 2

H2 Z((double*)0, ap), z= Z/h e, oL = _3[1_ Elh_%

N = INTEGRABLE_VECTOR_OF_TANGENT_OF TANGENT BUNDLE( o

"int, int, Quadrature", 4/* nen x ndf*/, 1/*nsd*/, gp);
N[O] = 1.0-3.0*z.pow(2)+2.0* z.pow(3); N[1] = -Z*(1.0-z).pow(2);
N[2] = 3.0*z.pow(2)-2.0* z.pow(3); N[3] = -Z* (z.pow(2)-2);

HONxx = INTEGRABLE_VECTOR("int, Quadrature", 4, qp); e e

for(inti=0;i < 4; i++) Nxx[i] = dd(N)(i)[0][O];

stiff &= ((E_*1_)* (Nxx*(~Nxx)) ) | d_;
} force &= ( (HO)N) * f_0) [ d_I: 03 = _5[%2%?_%%

e e

Element_Formulation* Element_Formulation::type_list = 0; 2 2
static Element_Type_Register element_type_register_instance; ™ [0R d (peD
static Beam_Irreducible_Formulation beam_irreducible_instance(element_type register_instance); ke = I El [.)—2 O — Cdx
static Matrix_Representation mr(gd); a x dx< Qg
int main() { €

mr.assembly(); CO u= ((CO)(mr.rhs())) / ((CO)(mr.Ihs())); ) )

gd.u_h() = u; gd.u_h() = gd.gh_on_gamma_h(); cout << gd.u_h(); return 0; f('; = I (p:e fdx
} Q

Listing 4¢4 Beam-bending problem irreducible formulation using Hermit cubics (project:
“beam_irreducible_formulation” in project workspace file “fe.dsw” under directory “vs\ex\fe”).
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Figure 4¢15 The error (= exact solution - finite element solution) of the irreducible
formulation for beam bending problem.

solution of the transverse deflection w is a polynomial of x up to fourth-order (see Eq. 368 in page 207). Th
cubic approximation will not give solution identical to the exact solution.

We consider two more examples for different types of boundary conditions and Haelfirst example is to
have unit downwardodal load on a simply supported beam at location of x = 120 in. (Figure 416). The flexure
rigidity of the beam i€l = 3.456x18° Ib in? The length of the beam is 360 in. We divide the beam to two cubic
Hermit elements. The definitions of the problem is now

1 daticcongint node_no = 3gaticcong int element_no = Ztaticcond int spatial_dim_no = 1;
2 daticcong double L = 360.0;gaticconst double E_| = 144.0*24.0€6;
3 Omega_h::Omega_h() { /I discritized global 4domain
5 double v = 0.0; Node* node = new Node(0, spatial_dim_no, &v);
6 the_node_array.add(node);
7 v = 120.0; node new Node(1, spatial_dim_no, &v);
8 the_node_array.add(node);
9 v = 360.0; node new Node(2, spatial_dim_no, &v);
10 the_node_array.add(node);
P=-101b
flexure rigidity (El) = 3.456x1001bin2
| >
0
-€— 120 in.—»‘d 240in. >
o = £]
o [0 1 2

Figure 4¢16 Unit downward nodal loading on position x = 120. The flexure
rigidity of the beam is 3. 456x10'°. Two cubic Hermict elements are used.

1. Example problems from p. 390 in J.N. Reddy, 1986, “Applied functional analysis and variational methods in engineering”,
McGraw-Hill, Inc.
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11
12
13
14
15
16
17 }

int ena[2];

for(inti = 0; i <element_no; i++) {
eng[0] =i; ena[1] = eng[0] +1;
Omega_eh* elem = new Omega_eh(i, 0, 0, 2, ena);
the_omega_eh_array.add(elem);

}

18 gh_on_Gamma h::gh_on_Gamma_h(int df, Omega h& omega h) {

19
20
21
22
23
24
25
26 }

__initialization(df, omega_h);

the_gh array[node_order(0)](0) = gh_on_Gamma_h::Dirichlet;
the_gh array[node_order(0)][0] = 0.0;

the_gh array[node_order(1)](0) = gh_on_Gamma_h::Neumann;
the_gh_array[node_order(1)][0] = -1.0;
the_gh_array[node_order(2)](0) = gh_on_Gamma_h::Dirichlet;
the_gh array[node_order(2)][0] = 0.0;

// boundary conditions
/Iw(0)=0
// P(120) = -1.0

/1 w(360) = 0

Now in the computation for element force vector, you can either set f 0 = 0.0, or use conditional compilation,
with macro definition, to leave that line out. The results of this problem is shown in Figure 4+17.

The second example have distributed load

X
) = fop

Eq. 4+39

whereL = 180 in. and sdf = -1.0. This distributed load is a linear downward loading increases from zero at the
left to unity at the right. Thenoment of inertia is | = 723 in% andYoung's moduluss E = 29x10° psi. with
boundary conditions w(0) = w(L) = dw/dx (L) = 0. We divide the beam into four equal size cubic Hermit ele-

ments. The problem definitions for nodes, elements, and boundary conditions are

1 daticcong int node no = 5; satic congt int element_no = 4; saticcond int spatial_dim no =1,
2 daticcong doubleL_ = 180.0; static const double element_size = L_/((doubl€e)(element_no));
3 daticcong double E_ = 29.0e6; atic const double| = 723.0; gatic congt doublef 0= -1.0;
4  Omega h::Omega h() { /I discritized global domain
B 50 100 150 200 250 300 3 X
-0. 00005 1 108
-0. 0001 dw
w —d’x_’ 50 100 1 200 250 300 350 X
-0.00015
-6
1. 10
-0.0002
-6
2. 10
[m;

Figure 417 Finite element solution for the nodal load problem for irreducible
formulation of beam bending problem.
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5 for(inti=0;i <node no;i++) {

6 doublev = ((double)i)*element_size;

7 Node* node = new Node(i, spatial_dim_no, &Vv);
8 the_node_array.add(node);

9

}
10 int ena[2]; /I lement node number array
11 for(inti=0; i <element_no; i++) {
12 ena[0] =i; eng[1] = ena[ 0] +1;
13 Omega _eh* elem = new Omega _eh(i, 0, 0, 2, ena);
14 the_omega_eh_array.add(elem);
15 }
16 }

17 gh_on_Gamma_h::gh_on_Gamma_h(int df, Omega h& omega h) { // boundary conditions
18 __initialization(df, omega_h);

19 the_gh array[node_order(0)](0) = gh_on_Gamma_h::Dirichlet; /Iw(0)=0

20 the_gh array[node_order(0)][0] = 0.0;

21 the_gh array[node_order(node_no-1)](0) = gh_on_Gamma_h::Dirichlet; fw(L)=0

22 the_gh array[node_order(node no-1)][0] = 0.0;

23 the_gh array[node _order(node no-1)](1) = gh_on_Gamma h::Dirichlet; /l dw/dx(L) =0
24 the_gh array[node _order(node no-1)][1] = 0.0;

25}

In the constructor of the classBeam_Irreducible Formulation the element force vector is computed as

1 HOX =(1-((HO)2)*xI[O]+((HO)2)*xI[1], /l global coordinates; x| isthe nodal coordinates
2 f=(F_0/L)*X; /I distributed load function
3 force&=(((HON)* f)|d_l;

The results of this distributed load problem using the irreducible formulation are shown in Figure 4¢18. Thesi
two extra problems are actually coded in the same project “beam_irreducible_formulation” in project workspac
file “fe.dsw” (in case of MSVC) under directory “vs\ex\ferhey can be activated by setting corresponding
macro definitions at compile time.

5 X
5

-0. 00002 6

1. 10
-0. 00004

w dw

-0. 00006 o 25 50 78 100 126 180 17
-0. 00008 -6

1. 10
-0.0001

-6

-0.00012 -2. 10

Figure 4+18 Finite element solution of the distributed load problem for the irreducible formulation of beam
bending problem. The distributed load is a linear downward |oading increases from zero at the left to unit
load at the right.
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Mixed Formulation

In the irreducible formul ation the second derivative appears in the weak formulation. We use the cubic Her-
mite functions, however, these interpolation functions are quite formidable. In the mixed formulation, we trade
somewhat more complicated variational formulations for reducing the order of derivative to satisfy the continu-
ity requirement (stated earlier in page 268). That is if “n” order derivative appears in the weak formulation, we
should have & -continuity at the nodes, in order to have entire domain to be integrable. For example, the first
derivative w is included in the nodal variables in the irreducible formulation in the last section, which has sec-
ond derivative in the weak formulation. In the cases of higher dimensions, e.g., plate and shell, the irreducible
formulations always lead to extremely complicated schemes. The current trend for these problems is to develop
formulations that requires onlyoébontinuity.1

Recall Eq. 4+28 and Eq. 4+29
2

2
dw _ M dM _ .
K— ZEI,and W =f Eq.440

Integration by parts on both equations, we have the Lagrangian functional

gjde |\/| UjWD UjMD .
I M) =[x T2 ¥ fw%ﬂx M Fix 0, ~Widx Eq. 4-41
0
where the boundary conditions on the shear force and slope areg—M 1] ar\dglxv

The Euler-Lagrange equations are obtained by séififrg M)= 0 (wheredw = ¢, v, anddM = g, vy)

rfVwdM oM o _
By = [Dﬁ&“’ X Va0 = ©
_ Vmdw M ﬂj_VVD _ .
3y = &m wa X VMEI%jx—vaD_h =0 Eq. 4-42

For the Bubnov-Galerkin method we use interpolation functigis for both warashd interpolation func-
tions @M for bothM and \,. In matrix form finite element formulation from Eq. 4+42 is (droppggndey,)

1. p. 310in T.J.R. Hughes, 1987, “The finite element method: Linear static and dynamic finite element analysis”, Prentice-
Hall, inc., Englewood cliffs, New Jersey.
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0 D‘; (Pe pr

Eldx dx ﬂ _ le'e—(pg’fdx—(p(‘Q’\_/rh cq. 443
IIE g M _
fDdx Hd ID B —9¢'br,

E

The natural boundary conditions specified throMgh hard-wired in “fe.lib” to be automatically taken care of in
“Matrix_Representation::assembly()” where the left-hand-side is assumed to be a positive term instead of wh
happened in the left-hand-side of Eq. 4+43. We can choose to take an opposite sign convention on the bound
condition as what we have done for the bending moment boundary condition in the irreducible formulation. Th
disadvantage of doing that is that we have put the burden on user to specify the program correctly. That m
often cause serious confusion. Therefore, we prefer to make the sign of Eq. 4+43 to be consistent with what
done in the “assembly()” by changing sign as

M

IDdx
Q.

3 Eq. 4+44

e

X _
\;ﬂ [ outdx + Qlvr,

ot dgy e O ol
Id;De%j DE|eHdX

Q

(\(’Q"ll_Jrh

e

The Program Listing 4«5 implement the beam bending problem subject to boundary conditions in Eq. 4+31, usir
Eqg. 4+44. In finite element convention, the degree of freedoms for a node are packed together. We can re-arrar

the degree of freedom, for every node, corresponding to the essential boundary conditiohd}dsdmd natu-
ral boundary conditions ar&{(} " The Eq. 4+44 becomes

0 ay 0 ay||wo fo

I by aly boy| |V r
80 Poo 201 Po1 I\A/Io _ "o Eq. 445
0 ap 0 ap||w, fq
afy byg af; by M1 M

where subscripts indicate the element nodal number and each component in the matrix or vectors is defined a

a; = — dord (pJMd o= - M(pJde f, = (prdX+(pWVr and r; = oMy Eq. 4+46
f dx dx b = -] 7F = W sl '
e Qe Qe

The submatrix/subvector component access through eitin&inuous block selector “operator ()(int, int)” or

regular increment selector “operator[](int)” in VectorSpace C++ library makes the coding in the formula of
either Eq. 444 or Eq. 4+45 equally convenient.
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#include "include\fe.h"

static const int node_no = 5; static const int element_no = node_no-1;

static const int spatial_dim_no = 1; static const doubleL_ = 1.0;

static const double h_e = L_/((double)(element_no)); static const double E_=1.0;
static const double|_ = 1.0; static const double f_0 = 1.0; static const double M_ = 1.0;

Omega h:Omega hQ{ Definte discretizaed global domain
for(inti=0; i <node no; i++) { .
doublev = ((double)i)*h_e; define nodes
Node* node = new Node(i, spatial_dim_no, &v); the_node_array.add(node); }
int ena[2];

for(inti=0; i <element_no; i++) { define elements

ena[0] =i; ena[1] = ena0] +1;
Omega_eh* elem = new Omega_eh(i, 0, 0, 2, ena); the_omega_eh_array.add(elem); }
gh_on_Gamma_h::gh_on_Gamma_h(int df, Omega_h& omega_h) { define boundary conditions
__initialization(df, omega_h); M(L)=1
the_gh_array[node_order(0)](0) = gh_on_Gamma_h::Dirichlet; // w(0) = 0
the_gh_array[node_order(node_no-1)](1) = gh_on_Gamma_h::Dirichlet; / M(L) =M_
he gh array[n rder(n no-1)][1] =M_; i A . )
the.gh-aray[node.order(node no-i{] =M. instantiate fixed and free variables and
class Beam_Mixed_Formulation : public Element_Formulation { Globa Discretization
public:
Beam_Mixed_Formulation(Element_Type_Register a) : Element_Formulation(a) {}
Element_Formulation * make(int, Global_Discretization&);
Beam_Mixed_Formulation(int, Globa_Discretization& );
}
Element_Formulation* Beam_Mixed_Formulation::make( int en, Global_Discretization& gd) { w . -
return new Beam_Mixed_Formulation(en,gd); } Beam_Mlxed_FormuIatlon
Beam_Mixed_Formulation::Beam_Mixed_Formulation(int en, Global_Discretization& gd)
: Element_Formulation(en, gd) {
Quadrature gp(spatial_dim_no, 2);
H1Z(ap),
N = INTEGRABLE_VECTOR_OF TANGENT_BUNDLE(
"int, int, Quadrature”, 2/*nen*/, U/*nsd*/, gp);
NI[O] = (1-Z)/2; N[1] = (1+2)/2;
H1 X =N*xl;
HO Nx = d(N)(Q)/d(x); 3 dLI(d(X)); o = oM ={(1-8)2, (1%)/2}7
stiff &= CO(4, 4, (double*)0); CO stiff_sub = SUBMATRIX("int, int, C0&", 2, 2, tiff);
stiff_sub[0][1] = -(Nx * (~Nx)) | d_I; stiff_sub[1][0] = stiff_sub[0][1];
stiff_sub[1][1] = -(L.O/E_/I_)* ( (((HO)N)*(~(HO)N)) | d_1);
force &= CO(4, (double*)0); CO force_sub = SUBVECTOR("int, CO&", 2, force);
force_sub[0] = ((((HO)N)*f_0) | d_I);

W doM
! . , , K10 = KOL = _ e g e
Element_Formulation* Element_Formulation::type_list = 0; e e Odx dx
static Element_Type_Register element_type _register_instance; Q

e
static Beam_Mixed_Formulation beam_mixed_instance(element_type register_instance); M M
int ng(.a)\lnns(t)i{nt ea Kl = _J‘ EM(p_e%jx
; e O El
Omega_h oh; gh_on_Gamma_h gh(ndf, oh); Q,
U_h uh(ndf, oh); Global_Discretization gd(oh, gh, uh);
Matrix_Representation mr(gd);

mr.assembly(); CO u = ((CO)mr.rhs0))/((CO)(mrIhs))); f0 = I @y fdx
gd.u_h() = u; gd.u_h() = gd.gh_on_gamma_h(); cout << gd.u_h(); Q,
return 0;

Listing 4¢5 Beam-bending problem mixed formulation using linear line element (project:
“beam_mixed_formulation” in project workspace file “fe.dsw” under directory “vs\ex\fe”).
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Figure 4¢19 Transverse deflection “w” and bending momeMt’ ‘from mixed
formulation. The dashed line segments with open squares are finite element
solutions, and the solid curves are the exact solutions.

Theresults are shown in Figure 4¢19. The solutions at the nodal points match the exact solutions of the trans-
verse deflection and the bending moment. That is,

Werat(X) = (PMHL2)/4EN) x? - fLI(BEI) X3 + f/(24E1) x*, and
Meyeet(X) = 12 (x-L)? + M Eq. 4+47

Now we proceed to the same (ibdal loading and (2)distributed loading cases solved in the irreducible for-
mulation. For thanodal loading case, the code for the definition of the problem gives

1 daticcong int node_no = 3gtaticcongt int element_no = Ztaticcond int spatial_dim_no = 1;
2 daticcong double L = 360.0;¢tatic congt double E_ = 24.0e6gatic const double | = 144.0;
3 Omega_h::Omega_h() {

doublev = 0.0; Node* node new Node(0, spatial_dim_no, &v); the_node_array.add(node);
v = 120.0; node new Node(1, spatial_dim_no, &v); the_node_array.add(node);
v = 360.0; node new Node(2, spatial_dim_no, &v); the_node_array.add(node);
int enal2];
for(inti=0; i< element_no; i++) {
enal0] = i; ena[1] = ena[0]+1;
Omega_eh* elem mew Omega_eh(i, 0, 0, 2, ena);
the_omega_eh_array.add(elem);

}

_on_Gamma_h::gh_on_Gammanthdf, Omega_h& omega_h) {

__initialization(df, omega_h);

the_gh_array[node_order(0)](0) = gh_on_Gamma_h::Dirichlet; /Iw(0)=0
the_gh_array[node_order(0)](1) = gh_on_Gamma_h::Dirichlet; M(@) =0
the_gh_array[node_order(1)](0) = gh_on_Gamma_h::Neumann; V(120) = -1.0; shear force
the_gh_array[node_order(1)][0] = -1.0;

the_gh_array[node_order(2)](0) = gh_on_Gamma_h::Dirichlet; /I w(360) =0
the_gh_array[node_order(2)](1) = gh_on_Gamma_h::Dirichlet; M(360) =0
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Figure 4«20Transverse deflection w and bending moment M for the nodal 1oading
problem using linear interpolation functions for both w and M.

For the element force vector we can either set t_0 = 0 or just comment out the corresponding statement for effi-
ciency. The result of the nodal 1oading case is shown in Figure 4¢20. The bending moment solution is exact for
this case.

The problem definition in C++ code for thistributed loading case is

1 daticcong int node_no = Sgatic congt int element_no = 4static congt int spatial_dim_no = 1;
2 daticcongt double L = 180.0;¢atic const double element_size = L_/dpuble)(element_no));

3 daticcong double E_ = 29.0e6gatic congt double | = 723.0;gtatic const doublef 0 =-1.0;

4  Omega_h::Omega_h() {

5 for(inti=0; i < node_no; i++) {

6 doublev = ((double)i)*element_size;

7 Node* node =new Node(i, spatial_dim_no, &v); the_node_array.add(node);

8 }

9 int enal2];

10 for(inti=0; i < element_no; i++) {

11 enal0] = i; ena[1] = ena[0]+1;

12 Omega_eh* elem mew Omega_eh(i, 0, 0, 2, ena); the_omega_eh_array.add(elem);
13 }

14 }

15 gh_on_Gamma_h::gh_on_Gammanthdf, Omega_h& omega_h) {

16 __initialization(df, omega_h);

17 the_gh_array[node_order(0)](0) = gh_on_Gamma_h::Dirichlet; /fw()=0
18 the_gh_array[node_order(0)](1) = gh_on_Gamma_h::Dirichlet; /I M(@0)=0

19 the_gh_array[node_order(node_no-1)](0) = gh_on_Gamma_h::Dirichlet; //w(L) =0
20 the_gh_array[node_order(node_no-1)](1) = gh_on_Gamma_h::Neumamia/dx(L) = 0
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The element force vector in the constructor of class“Beam_Mixed_Formulation” is to define the loading function

HOf = (f_0/L_)*((HO)X);

force &=C0(4, (doubleX)0);

COforce_sub = SUBVECTOR("int, C0&", 2, force);
force_sub[0] = ( (IO)N)*f) | d_I);

A WNPF

The results of this problem are shown in Figure 421.

K25 50 75 100 125 150 1B 1000
-0. 00002 500
-0. 00004 M X
25 50 75 100 125 \50 175
W -0.00006 500
-0.00008
-1000
-0.0001
- 1500
-0.00012
-2000

Figure 4«21Transverse deflection w and bending moment M for the distributed
loading problem using linear interpolation functions for both w and M.

In the irreducible formulation, we are required to include the higher-order derivatives be interpolated using
the abstruse cubic Hermite functions. In the mixed formulation this requirement is relaxed. However, both th
irreducible and the mixed formulation require one more varialle/dx, andM, respectively) to be solved
together with w. This increases the number of degrees of freedom in the matrix solution process. This can be d
advantageous for a large-size problem.
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Lagrange Multiplier Formulation

Recall Eq. 4+32 that the Lagrangian functional for the irreducible formulation is

2
D — —
I(w) = _[{EE %E —fW}dX—WVrh—g'—\)’(V Mr, Eq. 4+48

Now, in the context of constrained optimization discussed in Chapter 2, we define constraint equation for nega-
tive slopey that

Clw) =W+ ‘3—")(” -0 Eq. 4+49
o dw .
Substitutingy = ~dx into Eq. 448, we have

El ey f v v
W, w) = Ih%ﬁ-i’g —fw|d-wvr, + yr, Eq. 4+50
Q

The minimization of Eq. 450 subject to constraint of Eq. 449 using Lagrange multiplier method (with the
Lagrange multiplied) leads to the Lagrangian functional in the form of Eq. 2¢11 of Chapter 2 in page 118 as

LW, w, \)=J(P, w) + A C(P,w) = I[EZI %?E —wadx+ I)\E.p + ((jj—vxv%jx—w\_/rh + Lpl\_/lrh Eq. 451
Q Q

The Euler-Lagrange equations are obtained ®ams 0 as (wheréy =¥ v, dw = eV vW, andd\ = et v>‘)

8yd = e‘““[EI%%}dx+Iv¢)\dx+v‘“|§lrh} =0
Q

Q
5,4 = EW{—Ivadx+I Adx— vWVrhi| =0

2= s"Iv"B.p+a\;—(V%1x =0 EQ. 4¢52
Q

Dropping the arbitrary constantsa¥f, €V, ande? and use interpolation functions for each of the variahjesy{
)\}T we have, in matrix form, the finite element formulation as
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Q

L e

d
J'(p)‘ O %dx
QE

[o¢D @hdx
Q.

W

O @)dx

One Dimensional Problems

_(pgl M Th
[ owfdx+ GV, Eq. 453
Qe
0

Again, the bending moment boundary conditions appears on the right-hand-side of the first equation is negativ
This is in conflict with the nodal loading input is positive on the right-hand-side assumed in the implementatior
of the “Matrix_Rxpresentation::assembly()”. In order to keep the convention of counter clock-wise rotation as

positive, we can change sign on the first row of Eq. 4¢53 as

(plIJ
Eﬁaﬂaﬂ

e

I(pé 0 @¥dx

Q

e

dey
[ 0 g

Q

e

—I @Y O @hdx
QE

doy

_e A
Idx O @ddx| |w
QE

lIJe

?\e

o¥ M M
J’ QWfdx + (PWVr Eq. 454

0

Again, the degree of freedoms for each node can be packed together just as in Eq. 4¢45. With the aid of the re
lar increment selectoroperator[](int), the Eq. 454 is sufficient clear without really needing to rewrite to the
form of Eq 4+45. The Program Listing 4«6 implemented the Eq. 4+54 with linear interpolation functions
{ ¥, (pe,cpé} for all three variables. The essential boundary conditionsjane,{\} ', and the natural boundary
conditions are {1, V, 0}T The results are shown in Figure 4+22 which are compared to the exaction solutions.

M +fL2 L
w(x) = 57 %2 et
—(2M+fL?)  fL
Y(x) = 2EI
AMX) = f(L—X)

_X4

24K

X +3E] X2 —gE] X

EQ. 455

Y andA is obtained by differentiating the exact solution of w(x) in the first line from the corresponding defini-
tions. The shear force solution, the lagrange multipliger se, coincides with the exact solution..
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#include "include\fe.h"

static congt int node_no = 5; static const int element_no = 4; static congt int spatial_dim_no =1;
static const doubleL_ = 1.0; static const double h_e = L_/((double)(element_no));

static const double E_ = 1.0; static const double |_ = 1.0; static const doublef_0 = 1.0;
static const doubleM_ =1.0;

Oomegahromegahfl = Definte discretizaed global domain
for(inti=0;i <node_no; i++) { .
doublev = ((double)i)*h_e; define nodes

Node* node = new Node(i, spatial_dim_no, &v); the_node_array.add(node); }
for(inti=0;i < element_no; i++) {

int ena[2]; ena[0] = i; ena[1] = ena[0] +1;

Omega_eh* elem = new Omega_eh(i, 0, 0, 2, ena); the_omega._eh_array.add(elem); }

define e ements

}

gh_on_Gamma_h::gh_on_Gamma_h(int df, Omega_h& omega h) {
__initiaization(df, omega_h);
the_gh_array[node_order(0)](0) = gh_on_Gamma_h::Dirichlet; // psi(0) = -dw/dx(0) = 0
the_gh_array[node_order(0)](1) = gh_on_Gamma_h::Dirichlet; // w(0) =0

define boundary conditions

[
the_gh_array[node_order(node_no-1)](2) = gh_on_Gamma_h::Dirichlet; // lambda(L) = 0;
the_gh_array[node_order(node_no-1)](0) = gh_on_Gamma_h::Neumann; // M(L) =M _
the_gh_array[node_order(node_no-1)][0] = M_; // end bending moment M(L) =1
} instantiate fixed and free variables and
class Bsﬁm_Lagrmge_M ultiplier_Formulation : public Element_Formulation { Global Discretization
public: -

Beam_Lagrange Multiplier_Formulation(Element_Type_Register a)
: Element_Formulation(a) {}
Element_Formulation * make(int, Global_Discretization&);
Beam_L agrange Multiplier_Formulation(int, Global_Discretization& );
}
Element_Formulation* Beam_Lagrange_Multiplier_Formulation::make(int en,
Global_Discretization& gd) { return new Beam_Lagrange Multiplier_Formulation(en,gd); }
Beam_Lagrange Multiplier_Formulation::Beam_Lagrange_Multiplier_Formulation(int en,
Global_Discretization& gd) : Element_Formulation(en, gd) { on
Quadrature gp(spatial_dim_no, 2);
H1Z(gp), N = INTEGRABLE_VECTOR_OF TANGENT_BUNDLE(
"int, int, Quadrature", 2/* nen*/, 1/*nsd*/, qp);
N[O] = (1-Z)/2; N[1] = (1+2)/2;
H1X =N*xI; HONx =d(N)(0)/d(X); Jd_I(d(X)); (leJ =@V = (Pé = {(1-{)/2, (14{)/2}T
stiff &= CO(6, 6, (double*)0); CO stiff_sub = SUBMATRIX("int, int, C0&", 3, 3, stiff);

“Beam_Lagrange_Multiplier_Formulati

stiff_sub[0][0] = -((E_*I1_) * Nx * (~Nx)) | d_l; stiff_sub[0][2] = -(((HO)N) % ((HO)N)) |d_l; KOO = [E(ng d(PgJ
stiff_sub[2][0] = -( ~stiff_sub[0][2] ); stiff_sub[1][2] = (Nx % ((HO)N)) | d_I; e ~ —I El Odx O ax X
stiff_sub[2][1] = ~stiff_sub[1][2]; Q.
force &= CO(6, (double*)0); CO force_sub = SUBVECTOR("int, C0&", 3, force);
* . l‘l"
force_sub[1] = (((HO)N)*f_0) | d_1; K02 = _(k20)T _ —I [E(Pe 0 di()é\
} e e Odx — dx
Element_Formulation* Element_Formulation::type_list = 0; Q.
static Element_Type_Register element_type_register_instance; dgw
static Beam_Lagrange_Multiplier_Formulation lagrange(element_type_register_instance);int _ _ e
main() { kg? = (kT = [ 5 O @hax
congt int ndf = 3; Omega_h oh; gh_on_Gamma_h gh(ndf, oh); Q.

U_h uh(ndf, oh); Global_Discretization gd(oh, gh, uh);
Matrix_Representation mr(gd); 1
mr.assembly(); CO u = (CO)(mr.rhs())/(CO)(mr.Ihs()): fa = I oy fdx
gd.u_h() = u; gd.u_h() = gd.gh_on_gamma_h();cout << gd.u_h(); return O; o)

e

Listing 46 Beam-bending problem Lagrange multipler formulation using linear line element (project:
“beam_lagrange_multiplier” in project workspace file “fe.dsw” under directory “vs\ex\fe”).
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0.2 0.4 0.6 0.8 1 X

Figure 422 Lagrange multiplier formulation for beam bending problem using
linear interpolation function for all three variables.

The problem definitions for the nodal load case can be coded as the followings

1 daticcong int node no = 4; gatic congt int element_no = node_no-1; static congt int spatial_dim_no = 1;
2 daticconst double L = 360.0; static const double E_ = 24.0e6; static const doublel = 144.0;

3 daticconst doubleP_=1.0;

4  Omega h::Omega h() {

5 doublev = 0.0; Node* node = new Node(0, spatial_dim_no, &V); the node_array.add(node);
6 v = 120.0; node = new Node(1, spatia_dim_no, &V); the node_array.add(node);

7 v = 240.0; node = new Node(2, spatial_dim_no, &V); the node_array.add(node);

8 v = 360.0; node = new Node(3, spatia_dim_no, &v); the node_array.add(node);

9 for(inti=0; i <element_no; i++) {

10 int eng[2]; end[0] =i; eng[1] = ena[0]+1;

11 Omega _eh* elem = new Omega _eh(i, 0, 0, 2, end); the_omega_eh_array.add(elem);

12 }

13}

14 gh_on_Gamma h::gh_on_Gamma h(int df, Omega h& omega h) {

15 __initialization(df, omega_h);

16 the_gh array[node_order(0)](1) = gh_on_Gamma h::Dirichlet; // w(0) =0

17 the_gh array[node_order(1)](1) = gh_on_Gamma_h::Neumann; // f(120) = - P; shear force
18 the gh array[node order(1)][1] =-P_;

19 the_gh array[node_order(node no-1)](1) = gh_on_Gamma h::Dirichlet; // w(360) = 0

20 }

Again, we can just comment out the element force vector computation in the constructor of class

Beam_Lagrange_Multiplier for efficiency. The results are shown in Figure 4¢23. The solution for this boundary
condition case is not acceptable. The exact solution shear force is constant within each element, while we use |
ear interpolation functions for the shear force. The problem is overly constrained. On the other hand, the slo|
and transverse deflection require higher order of interpolation functions than the linear functions. The choice «
different order of interpolation functions and the number of nodes per variable/per element to obtain a meanin
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A exact soln.
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Figure 423 The Lagrange multiplier method with all three variables interpolated
using linear element for the nodal load problem does not produce satisfactory
result.

ful result depends on the so-called LBB-condition in finite element method that we will discussed in details in
Section 4.4

The distributed load case is defined as

1 daticcong int node no = 5; gatic cong int element_no = 4; gatic cong int spatial_dim_no = 1;
2 daticconst doubleL_ = 180.0; static const double element_size = L_/((double)(element_no));
3 daticconst double E_ = 29.0e6; static const double| = 723.0; atic congt doublef 0=-1.0;
4 Omega h::Omega h() {

5 for(inti=0; i <node_no; i++) {

6 doublev = ((double)i)* element_size;

7 Node* node = new Node(i, spatial_dim_no, &Vv); the node_array.add(node);

8 }

9 for(inti=0; i <eement_no; i++) {

10 int ena[2]; eng[0] =i; eng[1] = ena[0]+1;

11 Omega_eh* elem = new Omega _eh(i, 0, 0, 2, end); the_omega_eh_array.add(elem);
12 }

13 }

14 gh_on_Gamma_h::gh_on_Gamma_h(int df, Omega h& omega h) {

15 __initialization(df, omega_h);

16 the_gh array[node_order(0)](0) = gh_on_Gamma_h::Neumann; // M(0) = 0

17 the_gh_array[node_order(0)](1) = gh_on_Gamma_h::Dirichlet; // w(0) =0

18 the_gh array[node_order(node_no-1)](0) = gh_on_Gamma_h::Dirichlet; // psi(L) = -dw/dx(L) =0
19 the_gh_array[node_order(node_no-1)](1) = gh_on_Gamma_h::Dirichlet; // w(L) =0

20 }

The element force vector isimplemented as
1 HOf=(f_0/L)*((HOX);

2 force &= CO(6, (double*)0); COforce sub=SUBVECTOR("int, CO&", 3, force);
3 force sub[1] = ((HON)*f) | d_I;
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The results of the distributed load case are un-acceptable that the solution of A and Y show oscillation, while
transverse deflection w is partially “locking” which systematically underestimates the magnitude of the exac
solution (see Figure 4¢24).

g w A
1510° 0.2 0.4 0.6 0.8 r X 100
1 10° -0. 00002 75
-7
510 -0.00004 50
0.2 0 06 0.8 X
-7 -0.00006 25
-5, 10
-6
-1 10 -0.00008 0.2 4 0.6 0.8 i X
-6
1510 -0. 0001 -25
-50

Figure 424 The results of the distrubted loading case using Lagrange
multiplier formulation for the beam bending problem.
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Penalty Function Formulation

From Eq. 4+49 and Eq. 450, the Lagrangian functional for the penalty function formulation can be written in
the form of Eq. 261 of Chapter 2 in page 153

El d - =
Lo, wip) = 3(, w) + SC2(w, w) = f[ > gfg —fw}dx+ ZIHp + d—\:(vgzdx—erh +YMr, Eq. 4+56
Q Q

where the popular quadratic form of the penalty function is taken. The Euler-Lagrange equations obtained from
settingdZ, = 0 are (wheréy =¥ v, dw =" VW)

L[[ de+va¢Bp+—%jx+v4’Mri|:
_ dvv dw -
dpdp = SW|:—J'VWde +p I WHJJ + &de—vwvrh} =0 Eq. 457
Q Q

Dropping the arbitrary constarg$ ande" and substituting interpolation functions fap,{w}, and {W¥, W}, the
Euler-Lagrange equations, Eq. 4¢57, are re-written for the element formulation in matrix form as

0 def dgf A " d<pW _
EElIWDd—deJ'(p O o de p_[(p 0 55 dx . —g¥Mr,
2 e = - EQ. 458
(pév d(pe e We J‘ (pgvfdx + (ngVrh
PJ g U e Pl © 2,
Q
Changing the sign of the first equation to keep the right-hand-side positive, we have
0 def dgf dch _
—£n-==£ U0 oVdx] —o [l 0 —=
EEII I U dx+pJ'(p O ot de pI(p 0 dx . @M,
P Wi + W\_/ Eq 4459
d w Qe TOX + Q" VI
p j 1) g I :;f 2 ) e g{ S

As discussed in a sub-section “Penalty Methods” on page 153 in Chapter 2, the penalty paraheetiel be

initially set to a small number, then gradually increase its values in subsequent iterations. Starting out with a
smallp means we are to weight more on the minimization of the objective functional (for this problem the mini-
mum energy principle in mechanics). Subsequently increasing the penalty parameter enforces the constraint
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gradually. In principle the, exact solution isobtained at p - « . However, when p istoo large the left-hand-side
matrix in Eq. 459 becomes ill-conditioned. The solution will be corrupted.

The Program Listing 4¢7 implements Eq. 459 withadrhoc penalty iterative procedure which find a local
minimum solution with respect to “w” by monitoring the convergenceo#™: When the divergence @w first
occurs we terminate the penalty loop The choice of this termination criterion is that we do not have the value
the original objective functional available for determining the convergence of this problem. The solutions are
shown in Figure 425.

In general, the two constrained cases ukaggange multiplier formulation andpenalty function formulation
do not work well. The penalty method is also not very efficient. Sometimes, the results are even disastrous. T
conditions to obtain an accurate formulation in constrained formulations were area of intensive interest in th
development of the finite element method. We devote entire Section 5.1 to this issue with some canonical form
lations in two-dimension are discussed in details.

Figure 425 The solutions of end-bending moment case with penalty formulation.

Workbook of Applicationsin Vector Space C++ Library 325



Chapter | 4 Finite Element Method Primer

#include "include\fe.h"
static const int node_no = 5; static const int element_no = 4; static const int spatial_dim_no = 1;
static const doubleL_ = 1.0; static const double h_e = L_/((double)(element_no));
static const double E_ = 1.0; static const double |_=1.0; static const doublef_0 = 1.0;
static const doubleM_ = 1.0; static doublek_ = 1.0; Definte discretizaed gl obal domain
Omega_h::Omega_h() { for(inti =0; i <node_no; i++) { double v = ((double)i)*h_e; ;

Node* node = new Node(i, spatial_dim_no, &V); the_node_array.add(node); } def! ne nodes

for(int i = 0; i < dlement_no; i++) { int ena[2]; enal0] = i; ena[1] = enaO]+1; define elements

Omega_eh* elem = new Omega_eh(i, 0, O, 2, ena); the_omega._eh_array.add(elem); } }

gh_on_Gamma_h::gh_on_Gamma_h(int df, Omega_h& omega h) {__initialization(df, omega_h); ; e
the_gh_array[node_order(0)](0)=the_gh_array[node_order(0)](1)=gh_on_Gamma_h::Dirichlet; define boundary conditions

the_gh_array[node_order(node_no-1)][0] = M_; } classBeam_Penalty_Function_Formulation : M (L) =1
public Element_Formulation { public: instantiate fixed and free variables and

Beam_Penalty Function_Formulation(Element_Type_Register a) : Element_Formulation(a) {} Global Discretization

Element_Formulation * make( int, Global_Discretization&); -

Beam Penalty Function_Formulation( int, Global_Discretization&); };
Element_Formulation* Beam_Penalty Function_Formulation::make(int en,

Global_Discretization& gd) { return new Beam_Penalty_Function_Formulation(en,gd); }
Beam_Penalty Function_Formulation::Beam_Penalty Function_Formulation( int en,

Global_Discretization& gd) : Element_Formulation(en, gd) {

Quadrature gp(spatial_dim_no, 2); (ng =@V = {(1-{)/2, (1+E)/2}T

H1Z(qp), N = INTEGRABLE_VECTOR_OF TANGENT BUNDLE(

"int, int, Quadrature", 2/*nen*/, 1/* nsd*/, qp); I £l [ECPES 0 % "
Odx dx
Qe

N[O] = (1-2)/2; N[1] = (1+Z)/2; H1 X = N*xlI; HO Nx = d(N)(0)/d(X); I d_I(d(X)); ke
stiff &= CO(4, 4, (double*)0); CO stiff_sub = SUBMATRIX("int, int, C0&", 2, 2, stiff);

stiff_sub[0][0] = -( (E_*1_) * Nx * (~NX) + k_* ((HON)* (~(HO)N)) ) | d_;

stiff_sub[O][1] = -k_* (((HO)N) * (~Nx)) | d_I ); stiff_sub[1][0] = -(~stiff_sub[O][1]);

stiff_sub[1][1] = k_* ((Nx * (=Nx)) |d_I ); pI(ng 0 gdx
force &= CO(4, (double*)0); COforce_sub = SUBVECTOR("int, C0&", 2, force); Q

force sub[1] = ((HO)NY*f_0) |d_I;

A
4 _ ' ‘ KOL = (k10T = _ (ngD%
Element_Formulation* Element_Formulation::type_list = 0; e e p I Odx dx
static Element_Type_Register element_type _register_instance; Q.
static Beam_Penalty_Function_Formulation beam_penalty_function_formulation_instance(
) . - deV deV
element_type register_instance); kil = e O e d
int main() { ¢ TPl Wik *
const int ndf = 2; Omega_h oh; gh_on_Gamma_h gh(ndf, oh); Q

U_h uh(ndf, oh); Global_Discretization gd(oh, gh, uh);
Matrix_Representation mr(gd); 1
COw(node o, (double*)0), w_old(node_no, (double*)0), fe = _[ Qg fdx
delta_w(node_no, (double*)0), u_optimal; Q
double min_energy_norm = 1.e20, k_optimal;
for(inti=0;i<10;i++){
mr.assembly(); CO u = ((CO)(mr.rhs()))/((CO)(mr.1hs()));
gd.u_h() = u; gd.u_h() = gd.gh_on_gamma_h();
for(int j =0; j < node_no; j++) wlj] = gd.u_hQ[jl[1];
delta w = ((i) ?w-w_old : w); w_old = w; . .
if((double)norm(delta_w) < min_energy_norm) { monitor convergence with norm(AW)
min_energy_norm = norm(delta_w); u_optimal = u; k_optimal = k_; }
cout << "penalty parameter: " << k_ <<" energy norm: " << norm(delta_w) << endl
<< gd.u_h() <<endl; k_*=2.0; }
gd.u_h() = u_optimal; gd.u_h() = gd.gh_on_gamma_h();
cout << "penalty parameter: " << k_optimal << endl << gd.u_h() << endl; return 0;

e

Listing 4¢7 Beam-bending problem with penalty function formulation using linear line element (project:
“beam_penalty function_formulation” in project workspace file “fe.dsw” under directory “vs\ex\fe”).
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4.2.3 Nonlinear ODE
Consider the nonlinear problem in Chapter 3 (page 236)

2

rdurf _ N _ .
udx2+DixD 1, 0<x<1,with u(0) = 0,and u(l) = /2 Eq. 4+60
with exact solution
Uggact(X) = 1+x2 Eq. 461

EqQ. 460 can be rewritten as,

%[ug—ﬂ =1, O<x<Lwith u(0)=0,u(l) = .2 EQ. 4+62

Parallel to the development in Chapter 3, we solve this probldimiteelement with (1) Galerkin formulation,
and (2) least squares formulation.

Galerkin Formulation

Define the residuals of the problem as

R(uh Edi{Uhiij:(J 1 EqQ. 463

With Galerkin we|ght|ngs'Q/ which is homogeneous at the boundaries, Qrav] + u|— where | 3 is the essen-
tial boundary conditions, the weighted residuals statement gives

1 1
(U = [vh R(uMdx = Ivh[ th‘fj‘j(hm } =0 Eq. 4+64
0 0

Integrating by parts on the first term gives the weak formulation

1

I(uh) = I[ uh%%—vh}dx =0 Eq. 4-65

0

An iterative algorithm is employed for this non-linear problem Wf‘Eh'rUIerpoIated at the element level as
ul = gLuk, where “hat” denotes the nodal values.
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LUK+ 1) = 1(0k+30%) O1(0%) + F—[
ou

}mk =0 Eq. 466
E]k

whereuk*1= 0k + 30k . The approximation in this equation is the Taylor expansion to the first-order derivatives.
That is the increment of the solutiék can be solved by

-1 ~k
sok = |91 | il = D) Eq. 4+67
Ju K I+

where thaangent stiffness matrix, |1, can be defined as

| _ a0 (V) dufk o del O, O do
IT=£Ak_€\e B_é[ dx %ﬂedxﬂjedx%jx%_vée B_I&DBPE
u e

e

duf  dey O
—€ 4 yk=—L= o
o Yo ax %jxg Eq. 468

and,

K
10Ky = \““g\e {J— [_uk%%_%}dx} Eq. 469

v is an arbitrary constant of global nodal vector and appears on both the nominator and denominator of Eq.
4+67. Therefore, it can be dropped. We definesthment tangent stiffness matrix andelement residual vector as

de, duX do, de,du¥
Kep = I—[a 0 Bpea + &u‘ég}dx ,and r = I[UGWW + (Pe}dx Eq. 4+70
Q. Qe

The Program Listing 4+8 implements element formulation in Eq. 4+70, then, uses an iterative algorithmic solve
for the increment of the solutioduhy  with Eq. 4+67. An initial values of z&w,Qy will lead to singular left-
hand-side matrix, therefore, the initial values are set to uffity,1u0. In the element level timedal value of |

is supplied by a private member function __initialization(int) of class Non_Linear ODE_Quadratic as “ul”

1 daticint initial_newton_flag;

2 void Non_Linear ODE_Quadratic::__initialization{ en) {

3 ul &= gd.element_free_variable(en) + gd.element_fixed_variable(en);
4 if(linitial_newton_flag) gl = 0.0;

5 }

The line 3 in the above assigns nodal free degree of freedom values plus nodal fixed degree of freedom values to
“ul”. The values of yitself can be computed at the element level as
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[
#include "include\fe.h”

static const int node_no = 5; static const int element_no = 2; static const int spatial_dim_no = 1;

Omega_h::Omega_h() {
for(inti =0;i < node_no; i++) {
doublev; v = ((double)i)/((double)(node_no-1));
Node* node = new Node(i, spatial_dim_no, &V); the_node_array.add(node); }
for(inti =0;i < element_no; i++) {
int ena[3]; ena[0] = i*2; ena[1] = ena]0]+1; ena[2] = ena[0]+2;
Omega_eh* elem = new Omega_eh(i, 0, 0, 3, ena); the_omega_eh_array.add(elem); }
}
gh_on_Gamma_h::gh_on_Gamma_h(int df, Omega_h& omega h) {
__initialization(df, omega_h);
the_gh_array[node_order(node_no-1)](0) = gh_on_Gamma_h::Dirichlet;
the_gh_array[node_order(node_no-1)][0] = sqrt(2.0); }
static const int ndf = 1; static Omega_h oh; static gh_on_Gamma_h gh(ndf, oh);
static U_h uh(ndf, oh); static Globa_Discretization gd(oh, gh, uh);
classNon_Linear_ ODE_Quadratic : public Element_Formulation {
CO ul; void __initiaization(int);
public:
Non_Linear_ ODE_Quadratic(Element_Type_Register a) : Element_Formulation(a) {}
Element_Formulation *make(int, Global_Discretization& );
Non_Linear_ODE_Quadratic(int, Global_Discretization&); };
static int initial_newton_flag;
void Non_Linear_ODE_Quadratic::__initialization(int en) {
ul &= gd.element_free variable(en) + gd.element_fixed_variable(en);
if(finitial_newton_flag) gl = 0.0; }
Element_Formulation* Non_Linear_ODE_Quadratic::make(int en, Global _Discretization& gd) {
return new Non_Linear_ ODE_Quadratic(en,gd); }
Non_Linear_ ODE_Quadratic::Non_Linear_ODE_Quadratic(int en, Global_Discretization& gd)
: Element_Formulation(en, gd) {
__initialization(en); Quadrature gp(spatial_dim_no, 3);
H1Z(qp), N = INTEGRABLE_VECTOR_OF TANGENT_BUNDLE(
"int, int, Quadrature”, 3/*nen*/, 1/*nsd*/, gp);
N[O] = -Z*(1-Z)/2; N[1] = (1-2)* (1+2); N[2] = Z*(1+2)/2;
H1 X =N*xlI; J d_I(d(X)); HO Nx = d(N)(0)/d(X); H1 U = N*ul; HO Ux = d(U)/d(X);
stiff &=-(Nx * ~(((HON)*Ux + Nx * (HO)U) ) ) | d_I;
force&=(((HO)U) * Nx * Ux + (HO)N) ) | d_lI; }
Element_Formulation* Element_Formulation::type_list = 0;
static Element_Type_Register element_type_register_instance;
static Non_Linear_ ODE_Quadratic non_linear_ode_gquadratic_instance
(element_type_register_instance);
static Matrix_Representation mr(gd); static const double EPSILON = 1.e-12;
int main() {
COu, du, unit(gd.u_h().total_node_no(), (double*)0); unit = 1.0; gd.u_h() = unit;
gd.u_h() = gd.gh_on_gamma_h(); initial_newton_flag = TRUE;
do{
mr.assembly(); initial_newton_flag = FALSE; du = ((CO)(mr.rhs())) / ((CO)(mr.lhs()));
if(!(urep_ptr())) { u=du; u=1.0; }
u+=du; gd.u_h() =y;
cout << norm((CO)(mr.rhs())) <<, " << norm(du) << end| << gd.u_h();
(CO)(mr.Ihs()) = 0.0; (CO)(mr.rhs()) = 0.0;
} while((double)norm(du) > EPSILON);
cout << gd.u_h();
return0; }

Definte discretizaed global domain
define nodes

define elements

define boundary conditions
du _ _
ax(® =0 u() = 2

instantiate fixed and free variables and
Global_Discretization

do, duk d(pe

= [ == —¢ kQl

Ker= | [dx 0B + 5 uel:ﬂdx
Q

e

_ depduf
e” [ edx dx (p]dx
Q

e

-1 ~ .
}[—I(ﬁ")] =17 1]

sue |91
du

uk* 1= gk 4 50k

Uk

reset |eft-hand-side and right-hand-side

Listing 4+8 Solution of nonlinear ordinary differential equation using Galerkin formulation for finite ele-
ment (project: “nonlinear_ode” in project workspace file “fe.dsw” under directory “vs\ex\fe”).
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H1U =N*ul, II'yh = L0
e e-e
HO Ux = d(U)/d(X); I dugdx

The default behavior of the class Element_Formulation is that essential boundary conditions “gl” will be
included in the computation oéaction, which is “stiff * gl”, and to be subtracted out from the right-hand-side
vector. For the iterative algorithm which solves the increment of soluiidn, , only at the initial loop (k = 0)
when we computéuo , the reaction need to be subtracted out of the right-hand-side once for all. For k > 0, “gl”
is set to zero, as in line & prevent the reaction to be subtracted out of the right-hand-side at every iteration.

This ad hoc mechanism is incorporated by a “initial_newton_flag” in the main() function as

1 int main() {

2 initial_newton_flag = TRUE;

3 do{ /I Newton iteration loop
4 mr.assembly();

5 intial_newton_flag = FALSE;

6 } while (... );

7}

The “initial_newton_flag” is set to TRUE initially (line 2). After the global matrix and global vector have been
assembled for the first time (line 4), the initial_newton_flag is set to FALSE (line 5). Therefore, at the element
level the reaction can be prevent from subtracting out of the right-hand-side again. The error of this computation,
defined as the difference of the exact solutiag (x) = ./1 +x2 ) and finite element solution, is shown in Fig-
ure 4+26.The nodal solutions are almost identical to the exact solution.

0. 0006
0. 0004 ¢
0. 0002 ¢
Error =
exact - f.e. solution 4 X

0.4 0.6 0.8
-0.0002}
-0.0004 |

-0. 0006 |

-0.0008"

Figure 4426 Nonlinear finite element method using Galerkin formulation.
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L east Squares Formulation

The basic idea of the least squares method is introduced in Eq. 1¢26 of Chapter 1 in page 35. The first-order

condition for the minimization of the squares of the residual (Euclidean-) norm is

alRWMIZ _aR(uM)
ah 20 ouh 'R(Uh)%: 0
Comparing to the weighted-residual stateméntR(uh)) = 0 , the weighting furvetion
_ 9R(u"
auh

For a non-linear problem, we define

hy = OR(UY ooy _o | _ @R LooniD, OR(UY OR(UM
|(U )_D auh 1R(U )Dand lT_ﬁ i =0 6uh2 ,R(U )D+|:| auh , 6uh 0
u

For the non-linear problem in the previous section, the resialuthk element level, is

d’u, dug?
= {1
R(ue)=uedx2 + B?TXD -1

and the first derivative of the residual, with respect to the nodal variablespi{. ), is

OR(UE) _ . du,  d2qh  deidug
~ = [(p('e > +ue—2+ ——}
aug dx dx dx dx

The second derivatives is

Ry _ e e dg, _ do,
aui2 T % Taxe - %t oux - dx

From Eq. 4+73, thelement tangent stiffness matrix and theslement residual vector are

EqQ. 4+71

Eq. 4¢72

Eq. 473

Eq. 4¢74

Eq. 475

Eq. 476
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N SN
ke_l_ {aR(Ue) 0 aREUe) + ) R,\(l;e)R(Ue)} _and
2, Oug OUg OJug
=—I{ R( e)}dx Eq. 477

The Program Listing 4+9 implements Eq. 4¢77. An immediate difficulty associates with the least squares formu-
lation is the presence of the second derivatives. As we have discussed in the irreducible formulation for beam
bending problem in page 306, th&-&ntinuity on node is required for the entire problem domain to be integra-
ble. Otherwise, if first derivative is not continuous on node, the second derivative on node will be infinite, and
the entire problem domain is not integrable. This means that we need tufdwim the set of nodal variables

to ensure the first derivative is continuous on the nodes. As in the irreducible formulation for beam bending
problem, a 2-node element can be used witiHelwenite cubics discussed previously. At the element level, we

have

1 doubleweight[3] ={1.0/3.0, 4.0/3.0, 1.0/3.0},

2 h_e = fabs( (louble)(xI[0] - XI[1])) );

3 Quadraturegp(weight, 0.0, h_e, 3);

4 Jd_I(h_e/2.0);

5 H2Z((double*)0, gp),

6 z=27h_e,

7 N = INTEGRABLE_VECTOR_OF_TANGENT_OF_TANGENT_BUNDLE(

8 "int, int, Quadrature”, 4/nen x ndf*/, 1/*nsd*/, qp); /I Hermite cubics
9 NI[O] = 1.0-3.0*z.pow(2)+2.0*z.pow(3); Ipu
10 N[1] = Z*(1.0-z).pow(2); Hug/dx
11 N[2] = 3.0*z.pow(2)-2.0*z.pow(3); hu
12 N[3] = Z*(z.pow(2)-2); 1Buy /dx

13 HONx = INTEGRABLE_VECTOR("int, Quadrature", 4, gp),

14 Nxx = INTEGRABLE_VECTOR("int, Quadrature", 4, gp);

15 Nx=d(N)(0);

16 for(inti=0;i<4;i++) { Nxx[i] = dd(N)()[O][C]; }

17 H2U = N*ul;

18 HOUx, Uxx; Il dugloix, dPug/dx®
19 Ux =d(U)(0);

20 Uxx = dd(U)[0][0];

21 HOUuR = (HO)U)*Uxx + Ux.pow(2) - 1.0, /I R(u)

22 Ru = (HON)*Uxx + ((HO)U)*Nxx + 2.0*Nx*Ux, /I dR/du

23 Ruu = ((HO)N)%Nxx) + (Nxx%(HO)N)) + 2.0 (Nx%6NX); IIPRIdU2

24 stiff &= ((Ru%Ru + Ruu*uR) ) | d_I; /l tangent stiffness
25 force &= -(Ru*uR) | d_I; Il residual

The Hermite cubics (lines 9-12) are the same as those in the irreducible formulation except that we have positive signs for
bothdug/dx anddu,/dx variables (which is taken as negative in bending problem conventionally to improve the symmetry
of the formulation).
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!#i nclude "include\fe.h"
static const int node_no=15;
static const int element_no = 4;
static const int spatial_dim_no = 1;
Omega_h::Omega_h() {
for(inti=0;i<node_no; i++) {
double v; v = ((double)i)/((double)(node_no-1));
Node* node = new Node(i, spatial_dim_no, &V); the_node_array.add(node);
}
for(inti=0;i<eement_no; i++) {
int ena[2]; eng[0] =i; ena[1] = ena[0]+1;
Omega_eh* elem = new Omega_eh(i, 0, 0, 2, ena); the_omega_eh_array.add(elem);
}
}
gh_on_Gamma_h::gh_on_Gamma_h( int df, Omega_h& omega_h) {
__initiaization(df, omega_h);
the_gh_array[node_order(0)](1) = gh_on_Gamma_h::Dirichlet;
the_gh_array[node_order(node_no-1)](0) = gh_on_Gamma_h::Dirichlet;
the_gh_array[node_order(node_no-1)][0] = sqrt(2.0);
}
static const int ndf = 2; static Omega_h oh;
static gh_on_Gamma_h gh(ndf, oh);
static U_h uh(ndf, oh);
static Global_Discretization gd(oh, gh, uh);
classNon_Linear_Least_Squares: public Element_Formulation {
COul; void __initialization(int);
public:
Non_Linear_Least_Squares(Element_Type Register a) : Element_Formulation(a) {}
Element_Formulation * make(int, Global_Discretization& );
Non_Linear_Least_Squares(int, Globa_Discretization&);
b
static int initial_newton_flag;
void Non_Linear_Least_Squares:;__initiaization(int en) {
ul &= gd.element_free_variable(en) + gd.element_fixed_variable(en);
if(tinitial_newton_flag) gl = 0.0;
}
Element_Formulation* Non_Linear_Least_Squares::make(int en,
Global_Discretization& gd) { return new Non_Linear_Least_Squares(en,gd); }
Non_Linear_Least_Squares::Non_Linear_Least_Squares(int en,
Global_Discretization& gd) : Element_Formulation(en, gd) {
__initialization(en);
double weight[3] = {1.0/3.0, 4.0/3.0, 1.0/3.0},
h_e = fabs( ((double)(xI[0] - xI[1])) );
Quadrature gp(weight, 0.0, h_e, 3);
Jd_l(h_e/2.0);
H2 Z((double*)0, gp),
z=2Z/h e,
N = INTEGRABLE_VECTOR_OF TANGENT_OF TANGENT_BUNDLE(
"int, int, Quadrature", 4/*nen x ndf*/, 1/*nsd*/, gp);
N[O] = 1.0-3.0* z.pow(2)+2.0* z.pow(3);
N[1] = Z*(1.0-z).pow(2);
N[2] = 3.0* z.pow(2)-2.0* z.pow(3);
N[3] = Z*(z.pow(2)-2);
HONx = INTEGRABLE_VECTOR("int, Quadrature", 4, qp),
Nxx = INTEGRABLE_VECTOR("int, Quadrature", 4, gp);
Nx = d(N)(0);
for(inti=0;i<4;i++) { Nxx[i] = dd(N)(i)[0][O]; }

Definte discretizaed global domain
define nodes

define elements

define boundary conditions
du _ _
ax(® =0 u() = 2

instantiate fixed and free variables and
Global_Discretization

Hermite cubics
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H2 U = N*ul;

HO Ux, Uxx;

Ux = d(U)(0);

Uxx = dd(U)[0][0];

HO uR = ((HO)U)* Uxx + Ux.pow(2) - 1.0,

Ru = ((HO)N)*Uxx + ((HO)U)* Nxx + 2.0* Nx* Ux,

Ruu = (((HO)N)%Nxx) + (Nxx%((HO)N)) + 2.0* (Nx%NX);

stiff &= ((Ru%Ru + Ruu*uR) ) | d_I;

force &=-(Ru*uR) | d_I ;
}
Element_Formulation* Element_Formulation::type_list = 0;
static Element_Type_Register element_type_register_instance;
static Non_Linear_Least_Squares

non_linear_least_squares instance(element_type register_instance);

static Matrix_Representation mr(gd);
static const double EPSILON = 1.e-12;
int main() {
COp, u, dy;
gd.u_h() = gd.gh_on_gamma_h();
CO unit(gd.u_h().total_node_no()* ndf, (double*)0);
unit = 1.0;
gd.u_h() = unit;
do{
mr.assembly();
p = ((CO)(mr.rhs())) / ((CO)(mr.Ihs()));
if(!(urep_ptr())) { u=p; u=1.0; }
doubleleft = 0.0, right = 1.0, length = right-left;
do{

Matrix_Representation::Assembly_Switch = Matrix_Representation::RHS;

du = (left + 0.618 * length) * p;

gd.u_h() =u+duy;

(CO)(mr.rhs()) = 0.0;

mr.assembly();

doubleresidual_golden_right = norm((CO)(mr.rhs()));
du = (left + 0.382 * length)* p;

gd.u_h() =u+dy;

(CO)(mr.rhs())=0.0;

mr.assembly();

double residual_golden_left = norm((CO)(mr.rhs()));

if(residual_golden_right < residual_golden_left) left = left + 0.382 * |ength;

elseright = left+0.618* length;
length = right - left;
} while(length > 1.e-2);
cout << "bracket: (" << left <<"," <<right <<")" << endl;
u+=du;
cout << "residua norm: " << norm((CO)(mr.rhs())) <<

" search direction norm: " << norm(p) << end| << “solution: “ << gd.u_h() <endl;
Matrix_Representation::Assembly_Switch = Matrix_Representation::ALL;

(CO)(mr.Ihs()) = 0.0;

(CO)(mr.rhs()) = 0.0;
} while((double)norm(p) > EPSILON);
cout << gd.u_h();
return O;

}
I

R(u) = U Efj_eD

I:IdX o~

Rl _r, Ple, | o0k dodle
[ ":‘d)(2 € dx2 dx dXi|

aul
92R (Ue) g dge
~ 2 = (pe 2 D (pe
OUe dx dx2
dge _ d9e
dx dx

er= [

Q

0R(Ue) aR(ue)
{ AU AUg

e

2
OR( e)R(ue)}dx

=_I{ R(ue)}dx

line search
golden section

uk* L= gko+ 3ok

Listing 4¢9 Solution of nonlinear ordinary differential equation using least squares formulation for finite
element (project: “nonlinear_least_squares_ode” in project workspace file “fe.dsw” under directory
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The nonlinear iterative algorithm with classical Newton’s method shows difficulty in getting convergence. A
quick fixed is to add line search algorithm, withlden section, on top of the classical Newton’s method, which
is implemented to tame the wild search path of the classical Newton’ method as introduced in Chapter 2 (s
page 125).

1 doubleleft = 0.0, right = 1.0, length = right-left;

2 do{

3 Matrix_Representation::Assembly Switch = Matrix_Representation::RHS;
4 du = (left + 0.618 * length) * p;

5 gd.u_h() =u + du;

6 (CO)(mr.rhs()) = 0.0;

7 mr.assembly();

8 doubleresidual_golden_right = norn@Q)(mr.rhs()));

9 du = (left + 0.382 * length)* p;

10 gd.u_h() =u + du;

11 (CO)(mr.rhs())=0.0;

12 mr.assembly();

13 doubleresidual_golden_left = norn@Q)(mr.rhs()));

14 if(residual_golden_right < residual_golden_left) left = left + 0.382 * length;
15 dseright = left+0.618*length;

16 length = right - left;
17 } whilg(length > 1.e-2);
18

19 Matrix_Representation::Assembly Switch = Matrix_Representation::ALL;

In place of evaluating the objective functional value in Chapter 2, the finite element method is to minimized the
residuals of the problem. In the loop for the golden section line search, the assembly flag is set to only assem
the right-hand-side vector (line 3). The norm of the right-hand-side vector is used as the criterion for the lini
search minimization. At outer loop where Newton’s formula is used to compute the next search girdotion
assembly flag is reset back to assembly both the left-hand-side matrix and the right-hand-side vector (line 1¢
The results are shown in Figure 4¢27.

1.4 0.7
0.6
1.3 0.5
u du/dy- 4
1.2
0.3
L1 0.2
Z
p 0.1
0.2 0.4 06 0.8 R 4 0.2 04 06 08 i X

Figure 4¢27 Nodal solutions (open squares) comparing to the exact solutions (solid
curves) for the nonlinear least squares formulation.
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4.2.4 Transent Problems

The transient problem is introduced in Section 3.3.4. We consider the parabolic equation for heat conduction
Cu+Ku+f=0 Eq. 478
whereC is theheat capacity matrix, K is theconductivity matrix, andf is heat source vector. The variable is
thetemperature andu is thdime derivative of temperature. And, the hyperbolic equation for structural dynam-
ics
MUu+Ku+f =0 Eq. 479

whereM is theconsistent mass matrix, K the stiffness matrix andf the force vector. The variableu is thedis
placement andu , the second time derivative of the displacement, givesdtder ation.

Parabolic Equation
From Eq. 3°191 of Chapter 3 (in page 253),

(C+AteK)u, ., = (C-At(1-8)K)u, —f Eq. 4+80

Considering the initial-boundary value problem in page 253

du 6 u _
i 0, 0< x< 1 subjectto u(0,t) = 0, ax(l t) =0, and u(x,0) =1 Eq. 4-81
The finite element formulation fa€ andK is
0@,
= I(peIZI @ dx, and k. I— 0 5 & Eq. 4-82
Q

0 is a scalar parameter aAdis the time step length. The Program Listing 410 implements Eg. 480 and Eq.
4+82. At the element level, the heat capacity majyyis the additional term to the static case as

mass &= (HO)N)%((HO)N) | dv;

The protected member functions of the base class, “Element _Formulation::__lhs()” and
“Element_Formulation::__rhs()”, need to be overwritten in the deiilasd Parabolic_Equation as

1 CO0& Parabolic_Equation::__lhs() {

2 the_lhs &= mass + theta_* dt_*stiff; & + AteK
3 return the_lhs;

4}
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!#i nclude "include\fe.h”
sotizle(;;o;ftol:qudsa?o =b5; static const int element_no = 4; static const int spatial_dim_no = 1; Definte discretizaed global domain
for(int i = 0; i < node_no; i++) { doublev;v=((double)i)/((double)element_no); define nodes
Node* node = new Node(i, spatial_dim_no, &v); the_node_array.add(node); }
for(inti=0;i<element_no;i++) { int ena[2]; eng[0] = i; ena[1] = ena[0] +1;
Omega_eh* elem = new Omega_eh(i, 0, 0, 2, ena); the_omega_eh_array.add(elem); } }
gh_on_Gamma_h::gh_on_Gamma_h(int df, Omega_h& omega_h) { __initialization(df, omega_h);
the_gh_array[node_order(0)](0) = gh_on_Gamma_h::Dirichlet; define boundary conditions
the_gh_array[node_order(node_no-1)](0) = gh_on_Gamma_h::Neumann; } instantiate fixed and free variables and
static const int ndf = 1; static Omega_h oh; static gh_on_Gamma_h gh(ndf, oh); X - .
static U_h uh(ndf, oh); static Global_Discretization gd(oh, gh, uh); Global_Discretization
class Parabolic_Equation : public Element_Formulation { CO mass, ul;
void __initialization(int, Global_Discretization&);
public:
Parabolic_Equation(Element_Type Register a) : Element_Formulation(a) {}
Element_Formulation * make(int, Global_Discretization& );
Parabolic_Equation(int, Global_Discretization&);
C0& __lhs(); CO& __rhs(); };
void Parabolic_Equation::__initialization(int en, Global_Discretization& gd) {
ul &= gd.element_free variable(en); }
Element_Formulation* Parabolic_Equation::make(int en, Global_Discretization& gd) {
return new Parabolic_Equation(en,gd); }

define elements

overwrite protected member functions

Parabolic_Equation::Parabolic_Equation(int en, Global_Discretization& gd) : heat capacitance Ce = I(Pe g (PedX
Element_Formulation(en, gd) { __initialization(en, gd); Q.
Quadrature gp(spatial_dim_no, 2);

H1Z(ap), 0@,

N = INTEGRABLE_VECTOR_OF_TANGENT_BUNDLE("int, int, Quadrature”, 2,1, gp); ~ conductivity k, I = D —d
N[0] = (1-Z)/2; N[1] = (1+Z)/2; H1 X = N*xI; HO Nx = d(N)(0)/d(X); J dv(d(X));
stiff &= (Nx % NXx) | dv; mass &= ( (HO)N)%((HO)N) ) | dv; }

Element_Formulation* Element_Formulation::type_list = 0;

static Element_Type_Register element_type_register_instance;

static Parabolic_Equation parabolic_equation_instance(element_type register_instance);

static Matrix_Representation mr(gd);

static doubletheta = 0.5; static double dt_ = 0.05;

CO0& Parabolic_Equation::__Ihs() { the_hs & = mass + theta * dt_*tiff; return the_lhs; } C + At6K

C0& Parabolic_Equation::__rhs() {
Element_Formulation::__rhs(); 2
the.rhs += (mass - (L.0-theta )*dit_* stiff)* ul; (C-At(1-0)K)u, —f

return the_rhs; }
int main() {
for(inti=0; i < node_no; i++) uh[i][0] = 1.0;

gd.u_h() = gd.gh_on_gamma_h(); initial conditions

mr.assembly();

CO decomposed_LHS = !((CO)(mr.Ihs())); .

for(inti=0; i< 28;i++){ _(C-At(1-0)K)u,—f
CO0 u = decomposed_LHS*((CO)(mr.rhs())); gd.u_h() = u; Ups1 = (C + AtBK)
doubleiptr;

if(modf( ((double)(i+1))/4.0, &iptr)==0) {
cout << "time: " << (((double)(i+1))*dt_) << ", at (0.5, 1.0), u= (" <<
gd.u_h()[(node_no-1)/2][0] <<"," << gd.u_h()[node_no-1][0] <<")" << endl; }
if(i <27) { (CO)(mr.rhs()) = 0.0; (CO)(mr.Ihs()) = 0.0; mr.assembly(); }
}
return 0;
}
I |

Listing 410 Solution of hyperbolic equation using center difference scheme in time dimension (project:
“hyperbolic_equation” in project workspace file “fe.dsw” under directory “vs\ex\fe”).
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5 CO0& Parabolic_Equation::__rhs() {

6 Element_Formulation::__rhs(); I

7 the_rhs += (mass - (1.0-theta )*dt_*stiff)*ul; Il (C-nt(1-8)K)u, —f
8 return the rhs;

9 }

In the main() function the decomposition of the left-hand-side matrix is done only once, which is outside of the
time integration loop. The results of this program are shown in Program Listing 4+10.

1 )
u 0.8 t0.2
0.6
toa
0.4}
tos
0.2 tos
tio
2
| A ; A . 14
0 0.2 0.4 0.6 0.8 1

X
Figure 4+28-inite element solutions for the hyperbolic equation for heat conduction.
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Hyperbolic Equation
From Eq. 3211 of Chapter 3 (see page 2!%11)n+ 1= Iin+ 1 is defined as

K = K+aM+a,C, and Rn+1 = —f,,;+(agu,+ayl, +aglin)M + (a,u, + a,l, + aglin)C Eq. 4-83

whereuy, 1 = ag(Up,, ;—U,) —au,—agl, andip+; = Up+agliy +a,un4 1 , thBlewmark coefficients g; are

. -y 1 _1 _Y_ ALY S0, At(1- = .
ag = BAtz,a1 = Bar® = Bar® T op l,a, = ] la; = 2B 285 = At(1-y),a; =yAt  EQ.484
Consider the initial boundary value problem in page 258,
92u d4u
W = _ﬁ' O<x<1, t>0
boundary conditions u(0,t) = u(1,t) = 6u(()())(, b - 6u((£(, b - 0
- . _ du(x,0) _
and initial conditions u(x, 0) = gjnx)-mx(1-x), and 5t -0 Eq. 485

The finite element formulation for consistent mass matrix and stiffness matrix is

mg = Iq)eD @0, and kg = I
Q

dx Eq. 486

e e

The damping matrik, is either in the form aing timesdamping parameter or in the form oRaleigh damping as

a linear combination ah, andke! Again, for two-node element the Hermite cubics are required for the stiffness
matrix as in the irreducible formulation of beam bending problem. The Program Listing 4¢11 implements the
hyperbolic equation. Now variableg, u, u, @abhdu,,,; ,un+1 ,Un+1 atfy; Need to be registered as

1 daticU_h u_old(ndf, oh)gatic U_h du_old(ndf, oh)static U_h ddu_old(ndf, oh);
2 daticU_h u_new(ndf, oh)tatic U_h du_new(ndf, ohgtatic U_h ddu_new(ndf, oh);

These variables are supplied to the element -constructor by a private member functior
Hyperbolic_Equation::__initialization(t, Global_Discretization&) as

1 void Hyperbolic_Equation::__initializatioim(t en, Global_Discretization& gd) {
2 Omega_h& oh = gd.omega_h();

1. p. 93 and p. 339 in K-J Bathe and E.L.Wilson, 1976, “Numerical methods in finite element analysis”, Prentice-Hall, inc.,
Englewood Cliffs, New Jersey.
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!#1' nclude "include\fe.h”
static const int node_no =5;
static const int element_no = node_no-1;
static const int spatial_dim_no = 1;
static const doubleL_ =1.0;
static const double h_e = L_/((double)(element_no));
Omega_h::Omega_h() {
for(inti =0; i <node_no; i++) {
doublev = ((double)i)*h_eg;
Node* node = new Node(i, spatial_dim_no, &V);
the_node_array.add(node);
}
for(inti=0; i <element_no; i++) {
int ena[2]; ena[0] = i; eng[1] = eng[0]+1;
Omega_eh* elem = new Omega_eh(i, 0, 0, 2, ena);
the_omega_eh_array.add(elem);
}
}
gh_on_Gamma_h::gh_on_Gamma_h(int df, Omega_h& omega h) {
__initialization(df, omega_h);
the_gh_array[node_order(0)](0) =
the_gh_array[node_order(0)](1) =
the_gh_array[node_order(node_no-1)](0) =
the_gh_array[node_order(node_no-1)](1) =
gh_on_Gamma_h::Dirichlet;
}
static const int ndf = 2;
static Omega_h oh;
static gh_on_Gamma_h gh(ndf, oh);
static U_h uh(ndf, oh);
static Global_Discretization gd(oh, gh, uh);
static U_h u_old(ndf, oh); static U_h du_old(ndf, oh); static U_h ddu_old(ndf, oh);
static U_h u_new(ndf, oh); static U_h du_new(ndf, oh); static U_h ddu_new(ndf, oh);
class Hyperbolic_Equation : public Element_Formulation {
CO0 mass, ul, dul, ddul;
void __initialization(int, Global_Discretization& );
public:
Hyperbolic_Equation(Element_Type Register a) : Element_Formulation(a) {}
Element_Formulation * make(int, Global_Discretization&);
Hyperbolic_Equation(int, Global_Discretization& );
C0& __Ihs();
CO0& __rhs();
b
void Hyperbolic_Equation::__initialization(int en, Global_Discretization& gd) {
Omega_h& oh = gd.omega_h();
gh_on_Gamma_h& gh = gd.gh_on_gamma_h();
Global_Discretization gd_u_old(oh, gh, u_old);
ul &=gd_u_old.element_free variable(en);
Global_Discretization gd_du_old(oh, gh, du_old);
dul &=gd_du_old.element_free variable(en);
Global_Discretization gd_ddu_old(oh,gh,ddu_old);
ddul &=gd_ddu_old.element_free variable(en);
}
Element_Formulation* Hyperbolic_Equation::make(int en, Global_Discretization& gd) {
return new Hyperbolic_Equation(en,gd);
}

Definte discretizaed global domain
define nodes

define e ements

define boundary conditions

instantiate fixed and free variables and
Global_Discretization

overwrite protected member functions
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Hyperbolic_Equation::Hyperbolic_Equation(int en, Global_Discretization& gd) :
Element_Formulation(en, gd) {
__initialization(en, gd);
double weight[3] = {1.0/3.0, 4.0/3.0, 1.0/3.0},
h_e = fabs( ((double)(xI[0] - xI[1])) );
Quadrature gp(weight, 0.0, h_e, 3);
Jd_I(h_el2.0);
H2 Z((double*)0, gp),
z=27Z/h e,
N = INTEGRABLE_VECTOR_OF TANGENT OF TANGENT BUNDLE(

"int, int, Quadrature”, 4/* nen x ndf*/, 1/*nsd*/, qp); Hermite cubics

N[O] = 1.0-3.0%z.pow(2)+2.0* Z.pow(3);
N[1] = -Z*(1.0-2).pow(2); m. = O @.dx
N[2] = 3.0%z.pow(2)-2.0* z.pow(3); e I P e
N[3] = -Z*(z.pow(2)-2); Q.
HO Nxx = INTEGRABLE_VECTOR("int, Quadrature", 4, qp); 32, 929
for(inti=0;i < 4; i++) Nxx[i] = dd(N)(i)[0][O]; K = [—[ €ax

! e _[ 2 2

stiff &= (Nxx % Nxx) | d_I; mass &= ( ((HO)N)%((HO)N) ) | d_I; a 0x 0x

} e

Element_Formulation* Element_Formulation::type_list = 0;
static Element_Type_Register element_type_register_instance;
static Hyperbolic_Equation hyperbolic_equation_instance(element_type_register_instance);
static Matrix_Representation mr(gd);
static const double gamma_= 0.5;
static const double beta_ = 0.25; K + aOM + alc
static const doubledt_ = 0.01;
static double g[8]; . B
CO0& Hyperbolic_Equation::__Ihs() { the lhs &= stiff + a[0]*mass; return the_lhs; } =fhe1+(@gu, +ayuy+aguy)M +
C0& Hyperbolic_Equation::__rhs() { Element_Formulation::__rhs(); : v
the rhs+= mass* (a[0]* ul+a[2]* dul+a[3]*ddul); return the rhs; } (auy + a4Un +a5n)C

int main() { .
for(inti=0; i < node_no; i++) { u(x, 0) = sin(tx)-Tx(1-x),
C1x( ((double)i)*h_e), w_0 = sin(PI*x)-PI*x*(1.0-x);
u_old[i][0] = ((CO)w_0); u_old[i][1] = -d(w_0); and ou(x,0) _
for(int j = 0; j < ndf; j++) du_old[i][j] = ddu_old[i][j] = 0.0; I
Ldu h() = gd.gh_on_gamma h(); -1 -y, -1
a[0] = L.0/(beta,*pow(dt_,2)); a[1] = gamma, /(beta_ *dt_); a[2] = 1.0/(beta *dt ); % BAt2' "1 T BAY T2 T BAt

a[3] =1.0/(2.0*beta )-1.0; 4] =gamma /beta -1.0; a[5] = dt_/2.0*(gamma_/beta_-2.0);
a[6] =dt_*(L.0-gamma );  a[7] = gamma *dt_; 1
mr.assembly(); CO decomposed_LHS = 1((CO)(mr.1hs())); az = 26~
for(inti=0;i<28;i++){

CO u = decomposed_LHS* ((CO)(mr.rhs()));

1a, = %—1,a5 = %t%—zg

ag = At(1-y),a; = yAt

gdu_h() =u;

u_new = ((CO)(gd.u_h()) ); - _ ) -
ddu_new = a[0]* (((CO)u_new)-((CO)u_old))-a[2]* ((CO)du_old)-a[3]*((CO)ddu_old); Un+1 = p(Uy4q—Up) — 85U, —a3Up
du_new = ((CO)du_old) + a[6]* ((C0O)ddu_old)+a[7]* ((CO)ddu_new); . . . .

u_old = ((CO)u_new); du_old = ((CO)du_new); ddu_old = ((CO)ddu_new); Un+1 = UptagUn+azln+g
doubleiptr;

if(modf( ((double)(i+1))/2.0, &iptr)==0) { cout << "time: " << (((double)(i+1))*dt_)
<<", u:" << u_new[(node_no-1)/2][0] << endl; }
if(i < 27) { (CO)(mr.rhs()) = 0.0; (CO)(mr.Ihs()) = 0.0; mr.assembly(); }
}

return O;
}
I

Listing 4+11 Newmark scheme for hyperbolic equation using finite element method.
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gh_on_Gamma_h& gh = gd.gh_on_gamma_h();
Global_Discretization gd_u_old(oh, gh, u_old);

ul &=gd_u_old.element_free variable(en);
Global_Discretization gd_du_old(oh, gh, du_old);
dul &=gd _du_old.element_free variable(en);
Global_Discretization gd_ddu_old(oh,gh,ddu_old);
ddul &=gd_ddu_old.element_free variable(en);

P O©o0O~NOObhW

0}

Basically, the time integration algorithm is to update variables u,,, up, U, atimet,to u,,,, Up+1, Up+q &
timet,,;. Atthebeginningof timety,; u,, un, U, aregiven, and u,, , issolved from back-substitution of glo-
bal stiffness matrix and global residual vector. The velocity and acceleration tp.; and Un+1 at time t,,4 are
computed at the global level in the main() program, when the variable “u_agw", , is available, such as

1 ddu_new = a[0]*((CO)u_new)-(CO)u_old))-a[2]*((C0O)du_old)-a[3]*({CO)ddu_old);
2 du_new = (CO)du_old) + a[6]*(C0)ddu_old)+a[7]*(CO)ddu_new);

This is implemented according to the formula for accelerafjpn, = ag(u,, ; —u,) —a,t,—aglin (line 1) and

velocity up+1 = Up+aglin+asUn+1 (line 2), respectively. The results of this computation are shown in Figure
4429,

initial conditiont=0

0.2
0.1
u u
4 « y
-0.1
-0.2 D12 ..
t=0.14 t=0.16

t=0.0t00.14 t=0.16t0 0.28

Figure 4¢29 Beam vibration using finite element method with Newmark scheme to solve the
hyperbolic equation. The finite element solutions of downward deflection are piece-wise cubic
functions of nodal deflectionu* " and nodal negative sloge=" du/dx” (i.e., u =f(u, ) for
two-node Hermite cubic element). Solutions of every four time steps are shown.
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425 TheMixed Formulation Revisited—M atrix Substructure Method

In the irreducible formulation for the beam bending problem (see page 306) the unwieldy piece-wise Hermi
cubic functions are used for thé-Eontinuity on the nodes since the second-order derivatives appeared in the
element stiffness matrix. The mixed formulation for the same problem (see page 312) reduces the element st
ness matrix to have the first-order derivatives and oftgddtinuity is required. However, this is achieved with
the expense of add nodal variabis  in additiowto . Recall Eq. 4+44 for the element formulation

o _pde e ol

Ddx dx ~ J’ QYfdx + (p""Vrh
EQ. 4+87
e df (pe M
dx Bd IIZI El ij e'Wr,
Assign symbols for submatrices and subvectors in Eq. 4+87, we have
0 & |we _ fe} Eq. 488
a(-ar be I\A/Ie e

where the stiffness matrix has the size of 4x4 and the solution and force vectors have the sizes of 4. Following t
finite element convention, we collect degree of freedoms watatether for each node. At the global level, the
matrix form is

0 ag 0 agy e e 0 ao(n-1) Wo [t |
ado Boo ag; bop o e ad(n-2) Bo(n-1) Mo o
0 aj 0 gy e e 0 Ay (n_1) W1 f,
aly b1g af; byp af(n- 2 B1n-1 Mi | =| "1 Eq. 489
0 an_0 0 ap_gyy - - 0 An-1(n-1| |[W(n_1 fn-1)
_a(Tn—l)o Bn-10 8h-n1 Popr - - al_ym-1) bn_1)(n-1) _M(n_l)_ " (n-1)

For large-size problem, the stiffness matrix size could be critical for limited computer memory space , and eve
more seriously for the computation time. One approach to reduce the number of degree of freedom in the glob
matrix solution process is to separate the variales Mand  in Eq. 489 at the global level. Rewriting the el
ment formulation of Eq. 4+89 iglobal submatrix form as

il
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Matrix Substructuring

We can solve the Eq. 490 withmétrix substructuring” (or static condensation). This is only possible
because of thepecial properties of the submatrices in Eq. 4+90 that (1) the diagonal subBagrsymmetric
positive definite (or negative definite) which is invertible, and (2) the off-diagonal matrices are transpose of each
other. Therefore, pre-and post- multiplication of the symmetric positive definitive rBatrsuch as ABA™
is asimilarity transformation which preserves the symmetric positive definitive property. Therefore, it can also
be inverted. Now, let’s proceed with the substructuring. From second equation of Eq. 4¢90, we have

ATW+BM = r Eq. 491
Therefore,
M = B-1(r —ATW) EQ. 4¢92
Note we have use the property tBais invertible. Observing that the first equation of Eq. 4+9QNE = f , we
pre-multiply Eq. 4¢92 withA, such that
f = AM = AB-L(r —ATW) = AB-lr —AB—IATW Eq. 493
Now we can solve fow as
w = (ABLAT)-L(AB-1r —f) Eq. 4494

We have relied on the property theBAT is invertible. Withw solvedM can be recovered according to Eq.
4492, if necessary. The solution using the substructuring technique has two major advantages. Fifstipcbnly

B need to be stored in memory space that is only half of the memory space comparing to the entire left-hand-side
matrix in Eq. 4+90. Secondly, the matrix solver in substructuring dealsBifitand ABAT which are smaller
matrices than the left-hand-side matrix in Eq. 4+90. The cost for a matrix solver can be a function of cubic power
of size. For the present case, each of the invereasfd the inverse oABAT requires about one-eighth of
computation time comparing to that of the solution of the left-hand-side matrix in Eq. 4¢90. That is only a quar-
ter of computation time is needed for the matrix solver using substructuring.

1. Note that the terrhincludes (1) the distributed load term, the term contdins ‘Eq. 4+87, (2) shear force

(\/), the “nodal loading boundary conditioW[-(treated as natural boundary condition specified corresponding to
w”-dof), and (3) essential boundary conditionMf by subtracting AM" out of f. The ternr includes (1)

negative slopeyf), the “nodal loading boundary conditiot’-(treated as natural boundary condmon specified

corresponding toM"-dof), and (2) the essential boundary conditions of, M-} by subtracting AT wr+BM”

out ofr .

1. Moreover, Eq. 4+89 has a lot of zero diagonals, which is not without trouble for the matrix solver. We either need to use

modified Cholesky decomposition with the diagonal pivoting or we need to ignore the symmetry and use LU decomposition
with complete pivoting.
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Object-Oriented Modeling for Matrix Substructuring

With the understanding that we want to implement finite element in terms of Eq. 4¢90, we may immediately
recognize that the “fe.lib” has no provision to define and to solve a problem described by Eq. 4¢90. The objec
oriented modeling of the finite element method in fe.lib has four strong components, (1) discretized globa
domainQ", (2) discretized variablag, (3) element formulation “EF”, and (4) matrix representation “MR”.

Firstly, instead of one set of nodal variables combined together in the irreducible formulatiof a{fsi}{
now we have two (separate) sets of variableg fnd {M }. The combination ofd" and & now yield two dif-
ferent Global_Discretizations witff", w'™ and {Q", M as their constituents.

1 congint ndf =1,

2 Omega_h oh; oh )

3 gh_on_Gamma_h_i wgh(0, ndf, oh); W/OT g and VOT,
4 U_h wh(ndf, oh); I

5 Global_Discretization wgd(oh, wgh, wh); B

6 gh_on_Gamma_h_i mgh(1, ndf, oh); WO Fgand wOT,
7 U_h mh(ndf, oh); mh

8 Global_Discretization mgd(oh, mgh, mh);

The two sets of boundary conditions “gh_on_Gamm_h_i” corresponding to two set of variat}end {I\A/I it
The new class “gh_on_Gamma_h_i" is derived from the"gh_on_Gamma_h" with a subscript index included
The constructor of this class is defined as

1 gh_on_Gamma_h_i:gh_on_Gamma_imti int df, Omega_h& omega_h) :
2 gh_on_Gamma_h() {
3 gh_on_Gamma_h::__initialization(df, omega_h);
4 if(i==0){
/I wr(0) = 0; deflection essential boundary condition

5 the_gh_array[node_order(0)](0) = gh_on_Gamma_h::Dirichlet;
6 the_gh_array[node_order(0)][0] = 0.0;
/' V(L) = d/dx M(L) = d/dx (EI d°w/dx?) = 0; shear force natural boundary condition
7 the_gh_array[node_order(node_no-1)](0) = gh_on_Gamma_h::Neumann;
8 the_gh_array[node_order(node_no-1)][0] = 0.0;
9 } dseif(i==1) {
/I M(L) = M_; bending moment essential boundary condition
10 the_gh_array[node_order(node_no-1)](0) = gh_on_Gamma_h::Dirichlet;
11 the_gh_array[node_order(node_no-1)][0] = M_;
1 -dw/dx(0) =W(0) = 0; rotation natural boundary condition
12 the_gh_array[node_order(0)](0) = gh_on_Gamma_h::Neumann;
13 the_gh_array[node_order(0)][0] = 0.0;
14 }
15 }

Secondly, for the definition of submatikwe need the “Global_Discretization” Witm{‘, M h} The rows
and columns of submatr& corresponding both to thed  -dof. However, for the definition of submatrixe
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need hoth “Global_Discretization” Witlﬂh, w h} and {Qh, M h} Since the row of submatri& corresponding

to theM -dof, and columns of submatfixcorresponding to the  -dof. Therefore, the definition of submBtrix
reference only to the single GIobaI_Discretization@'F,{M h} which is the same as what is already available in
felib. For the definition of submatrixA it needs to refer to a newly defined class of
“Global_Dsicretization_Couple” which is consists of “dual” Global_Discritization with b&f, {7vh} and
{Qh, M h} We have the declaration of the “deflection-and-bending moment” coupled global discretization as

datic Global_Discretization_Couple gdc(wgd, mgd);

Thirdly, in the element formulation “EF”, we not only need to define the diagonal subBaltrit also need
to define the off-diagonal submatx The newly defined class is the “Element_Formulation_Couple” to han-
dle this additional complexity. The wuser defined element formulation is derived from this
“Element_Formulation_Couple” instead of the “Element_Formulation” such as

1 cdassBeam_Mixed_Formulationpublic Element_Formulation_Couple {

2 public:

3 Beam_Mixed_Formulation(Element_Type Register a) : Element_Formulation_Couple(a) {}
/I diagonal block formulation; submati

4 Element_Formulation *makie¢, Global_Discretization&);
5 Beam_Mixed_Formulatioir{t, Global_Discretization&);
/I off-diagonal block formulation; submatrix
6 Element_Formulation_Couple *make( Global_Discretization_Couple&);
7 Beam_Mixed_Formulatioirt, Global_Discretization_Couple&);
8 %
9 Element_Formulation* Beam_Mixed_Formulation::makieén, Global_Discretization& gd) {
10 return new Beam_Mixed_Formulation(en,gd); }
11 Element_Formulation_Couple* Beam_Mixed_Formulation::niakeg,
12 Global_Discretization_Couple& gdcyfurn new Beam_Mixed_Formulation(en,gdc); }

For the diagonal submatrB, the constructor of element formulation is

Beam_Mixed_Formulation::Beam_Mixed_Formulatiohén, Global_Discretization& gd) :
Element_Formulation_Couple(en, gd) {
Quadrature gp(spatial_dim_no, 2); I/l 1-dimension, 2 Gaussian integration points
H1Z(ap),
N = INTEGRABLE_VECTOR_OF_TANGENT_BUNDLE(
"int, int, Quadrature”, 2/*nen*/, 1/*nsd*/, qp);
N[O] = (1-2)/2; N[1] = (1+2)/2;
H1 X = N*xl;
HO Nx = d(N)(0)/d(X);
10 J d_I(d(X)); M [ oM
11 stiff & -(LO/E_/I)* ( (HONY~(HON)) | d_I); /B = — g%%jx
12 } Q

e

O©CoOoO~NOOOUTDWNPE

For the off-diagonal submatri, the constructor of element formulation is

346  Workbook of Applicationsin VectorSpace C++ Library



One Dimensional Problems

1 Beam_Mixed Formulation::Beam Mixed Formulation(int en, Global_Discretization_Couple& gdc)

2 : Element_Formulation_Couple(en, gdc) {

3 Quadrature gp(spatial_dim_no, 2); /I 1-dimension, 2 integration points

4 H1Z(qgp),

5 N = INTEGRABLE_VECTOR_OF TANGENT_BUNDLE(

6 "int, int, Quadrature”, 2/* nen*/, 1/*nsd*/, qp);

7 N[Q] = (1-2)/2; N[1] = (1+2)/2;

8 H1X =N*xl;

9 HO Nx = d(N)(0)/d(X);

10 Jd_I(d(X)); W M

11 stiff &=-(Nx* (~Nx)) |d_I; /A= —IBC%D% X

12 force &= (((HO)N)*f_Q) |d_I);//f= I(pgvfdx Q.

13 } Q.

Finally, we recall the global submatrix formin Eq. 4¢90
0 A} Vﬂ = H Eq. 4495
AT B M r

The matrix representation, “MR”, for the diagonal submaBixand its corresponding right-hand-sidds
declared as standard class of “Matrix_Representation”

Matrix_Representation mr(mgd);

This matrix representation instance “mr” can be called to assemble and instantiate the s@bamatrilie sub-
vectorr. They can be retrieved by

1 mr.assembly();
2 COB = (CO)(mr.Inhs()), // diagonal submatrig
3 r = (Co(mr.rhs())); IIr

The rows of submatriA corresponding to “w”-dof, thprincipal discretization, and the columns of subma#tix
corresponding to M"-dof, the subordinate discretization. The class “Matrix_Representation_Couple” is
declared instead as

Matrix_Representation_Couple mrc(gdc, 0, 0, &(mr.rhs()) );

The second argument of this constructor is reserved for instantiation sparse matrix, the third and the fourth arc
ments of this constructor referencing to right-hand-side vectors corresponding to the principal and the suborc
nate discretization of submatux In the above example, tpeincipal right-hand-side is supplied with a “0”, the

null pointer. In this case, tharincipal right-hand-side vectdr will be instantiated. When the argument is not
null, such as theubordinate right-hand-side is reference to “mr.rhs()” in this case. The subordinate right-hand-
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side will not be instantiated but will be referring to “mr.rhs()”, which has already been instantiated. Now we can
solve Eqg. 4+90 with the matrix substructuring such as

int main() {
mrc.assembly();
COof = ((CO)(mrc.rhs())),
A = (CO)(mrc.Ihs()));
mr.assembly();
CO0B = ((CO)(mr.lhs())),
r = (CO)(mr.rhs()));
COB_inv = B.inverse(),
9 w = (A*B_inv*r - f)/(A*B_inv*(~A)), /I w = (AB1AT)-L(AB-1r —f)
10 M = B_inv*(r-(~A)*w); M = BL(r —ATW)
11 wh = w; wh = wgd.gh_on_gamma_h();
13 mh = M; mh = mgd.gh_on_gamma_h();

1
2
3
4
5
6
7
8

14 cout << "deflection:" <<endl << wh <<endl << "bending moment:" <endl << mh;
15 return O;
16 }

The complete listing of the substructure mixed formulation is in Program Listing 4¢12. The cases for nodal
loading and distributed loading, discussed in the mixed formulation of Section 4.2.2, can be turn on by setting
macro definitions “ _ TEST _NODAL_LOAD” and “__TEST DISTRIBUTED_LOAD” . The results of the
present computation are completely identical to those of the previous section on mixed formulation..

The nonlinear and transient problems bring only marginal changes to the “fe.lib”. We certainly can create
new classes of “Nonlinear_Element_Formulation” and “Transient_Element_Formulation” for a user defined ele-
ment to derived from. This is similar to the class “Element_Formulation_Couple” in the present example is cre-
ated for user to derived a user defined element formulation from it. We can even onelgitel @inheritance (an
advanced but controversial C++ feature) of class Nonlinear_Element Formulation and class
Transient_Element_Formulation to capture both the nonlinear and the transient capabilities. The object-oriented
programming provides the basic mechanisms for a snumohevolution of “fe.lib” to be extended to vastly
different area of problems. However, the problem of “mixed formulation with separate variables” brings the
greatest impact of change to fe.lib. We need to change all four strong components of the “fe.lib” to implement
this problem. With mechanisms of the object-oriented programming, we are not only able to reuse the code in
“fe.lib” by deriving from it, but also are able to keep the simplicity of the “fe.lib” intact. After the “fe.lib” has
been modified to deal with the new problem, the beginner of the fe.lib still only need to learn the unscrambled
basic set of “fe.lib” without to confront all kinds of more advanced problems in finite element at once. For For-
tran/C programmers who are already familiar with a couple of existing full-fledged finite element programs, this
advantage of using object-oriented programming to accommodate vastly different problems would be most
immediately apparent.
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I

#include "include\fe.h”

#include "include\omega_h_n.h" AT .
Matrix_Representation_Couple::assembly_switch initialize  static member of class

Matrix_Representation_Couple::Assembly_Switch = Matrix_Representation_Couple:ALL;  Matrix_Representation_Couple”

static const int node_no =5;
static const int element_no = 4;
static const int spatial_dim_no = 1;
static const doubleL_ =1.0;
static const double h_e = L_/((double)(element_no));
static const double E_=1.0;
static const doublel_=1.0;
static const doublef_0=1.0;
ga“c const doubleM_=1.0; Definte discretizaed global domain
mega_h::Omega_h() { X
for(int i = 0; i < node_no; i++) { define nodes
doublev = ((double)i)*h_e;
Node* node = new Node(i, spatial_dim_no, &V);
the_node_array.add(node);
}
for(inti=0;i < element_no; i++) { define elements
int ena[2];
end[0] =i;
eng[1] = endg[0]+1;
Omega_eh* elem = new Omega_eh(i, 0, 0, 2, ena);
the_omega_eh_array.add(elem);
}
}
gh_on_Gamma_h _i::gh_on_Gamma_h_i(int i, int df, Omega_h& omega_h) : gh_on_Gamma_h(){ define boundary conditions
gh_on_Gamma_h::__initialization(df, omega_h);
if(i==0){
the_gh_array[node_order(0)](0) = gh_on_Gamma_h::Dirichlet;
} elseif(i==1) {
the_gh_array[node_order(node_no-1)](0) = gh_on_Gamma_h::Dirichlet;
the_gh_array[node_order(node_no-1)][0] = M_;
}
} instantiate fixed and free variables and

static const int nef = 1; Global Discretization
static Omega_h oh; __

static gh_on_Gamma_h_i wgh(0, ndf, oh); { Qh. w h}
static U_h wh(ndf, oh);
static Global_Discretization wgd(oh, wgh, wh);
static gh_on_Gamma_h_i mgh(1, ndf, oh); ~
static U_h mh(ndf, oh); {Qh mmh
static Global_Discretization mgd(oh, mgh, mh);
static Global_Discretization_Couple gdc(wgd, mgd);
class Beam_Mixed Formulation : public Element_Formulation_Couple {
public:
Beam_Mixed_Formulation(Element_Type Register a) : Element_Formulation_Couple(a) {}
Element_Formulation * make(int, Global_Discretization&);
Beam_Mixed_Formulation(int, Global_Discretization& );
Element_Formulation_Couple * make(int, Global_Discretization_Couple&);
Beam_ Mixed Formulation(int, Global_Discretization_Couple&);

Global_Discretization_Couple

¥
Element_Formulation* Beam_Mixed_Formulation::make(int en, Global_Discretization& gd) {
return new Beam_Mixed_Formulation(en,gd);

}
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Beam_Mixed_Formulation::Beam_Mixed_Formulation(int en, Global_Discretization& gd) :
Element_Formulation_Couple(en, gd) {
Quadrature gp(spatial_dim_no, 2);

H1Z(qp),
N = INTEGRABLE_VECTOR_OF_TANGENT_BUNDLE(

"int, int, Quadrature", 2/* nen*/, 1/*nsd*/, qp);
N[O] = (1-2)/2;

N[1] = (1+2)/2;
H1 X = N*xl; M 0 M
HO Nx = d(N)(0)/d(X); B= _ e’ U Pe %x
J d_I(d(X)); I 0 El
stiff &= -(LOE_/1)* (((HON)*(~<(HO)N)) | d_I ); Q.
}

Element_Formulation_Couple* Beam_Mixed_Formulation::make(int en,
Global_Discretization_Couple& gdc) {
return new Beam_Mixed Formulation(en,gdc);

}
Beam_Mixed_Formulation::Beam_Mixed_Formulation(int en, Global _Discretization_Couple&

gdc) : Element_Formulation_Couple(en, gdc) {
Quadrature gp(spatia_dim_no, 2);
H1Z(gp),
N = INTEGRABLE_VECTOR_OF TANGENT_BUNDLE(
"int, int, Quadrature",2,1,gp);
N[Q] = (1-2)/2; Qv d(pM
N[1] = (1+2)/2; = _ € S
H[J_l( =(N*X)|; A J- DdX dx %X
HO Nx = d(N)(0)/d(X); o
3 dI(dX));
stiff &=-(Nx * (~Nx)) | d_l; f= I (pg"fdx
force&= (((HO)N)*f_0) |d_l); 5

Element_Formulation* Element_Formulation::type list = 0;
static Element_Type_Register element_type_register_instance;
static Beam_Mixed_Formulation
beam_mixed_formulation_instance(element_type_register_instance);
static Matrix_Representation mr(mgd);
static Matrix_Representation_Couple mrc(gdc, 0, 0, & (mr.rhs()), &mr);
int main() {
mrc.assembly();
COf =((Co)(mrc.rhs())),
A = ((CO)(mrc.lhs()));
mr.assembly();
COB =((CO)(mr.Ihs())),
r = ((Comrhs))); X

COB_inv = B.inverse(), w = (ABIAT)}(AB-1r —f)

>

w = (A*B_inv*r - f)/(A*B_inv*(~A)), ~
M = B_inv*(r-(~A)*w); M = B-1(r —ATw)

wh=w;

wh =wgd.gh_on_gamma_h();

mh=M;

mh= mgd.gh_on_gamma_h();

cout << "deflection:" << endl << wh<< endl << "bending moment:" << endl << mh;

return O;

}
I

Listing 4+12 Substructure solution for the mixed formulation of the beam bending problem.
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4.3 Two Dimensional Problems

We went through various 1-D proto-type problemsin finite element method. However, we may arguethat it is
somewhat un-necessary to use finite el ement method for the 1-D problems. We can solve these problems with the
classical variational method as in Chapter 3. However, for more complicated geometry with the dimension
greater than or equal 2-D, the finite element method offers a systematic treatment of the complicated geometry
where the use of the finite element method becomes essential.

4.3.1 Heat Conduction

Basic Physics and Element Formulation

For heat conduction problem the divergence of heat flux of a body is equal to the heat generated from the
source contained within the body as

Oeq = f Eq. 4+96
whereq is theheat flux andf is theheat source. This is subject to Dirichlet and Neumann boundary conditions
u=gon rg,and—q-n:hon M, Eq. 4¢97

respectively. We use “u” fatlemperature andn as theoutward unit surface normal. The Fourier law assumes
that the heat flux can be related to temperature gradient as

g = —k0Ou Eq. 4+98

wherek is thethermal diffusivity. The weighted residual statement of Eq. 496 with the Fourier law gives

[w(0+q-dQ = [w(-K[2u-f)dQ = 0 Eq. 499
Q Q

Integration by parts and applying divergence theorem of Gauss to transform the volume integral into a bounda
integral gives

J'I]W(KI]u)dQ +J'W(—KDu) . ndI'—J'WfdQ =0 Eq. 4100
o) r o)

Since the “w” is homogeneous &y, the boundaries with Dirchlet boundary conditions, the second term of the
boundary integral becomes

qu endl = —Iwhdr Eq. 4101
r .
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the element stiffness matrix, under finite element approximation, is

ke = a(e2 oB) = [ (DeaxkOoR)dx Eq. 4-102
Qe
and, theslement force vector is
fa = (3. 1) + (92 h)r —a(ed ed)ue Eq. 44103

The second terngeg, h)rh is the Neumann boundary conditions, which is most easily specified in the problem
definition as equivalent nodal load, and the third terafq2, ¢2)ud accounts for the Dirichlet boundary condi-
tions. Again, the default behaviors of “fe.lib” will deal with these two terms automatically.

For an isoparametric bilinear 4-nodes element, the bilinear shape functions are taken for both the variable
interpolation,ul = g2 02 , and the coordinate transformation nakepa xg , that is

1
PE=N,(&N) = Z7(1+E&8)(1+n,n) Eq. 4104

index “a” indicateselement node number, and §,, ng) , fora= 0, 1, 2, 3 are four nodal coordinates {(-1, -1), (1,
-1), (1, 1), (-1, 1)} of the referential element. The variable interpolation becomes

ul(&,n) =N (&, n)ug Eq. 4105
whereu2 is the nodal variables, and the coordinate transformation rule becomes

X0=N,(& n)xg Eq. 4106
wherex@ is the element nodal coordinates. The integration in Eq. 4102 and first term of Eq. 4103 gives

ke = [(ONDKON)dX = [(OND KDN)det%‘gjz Jandf, = [ (Nfdx = _I(Nf)det%’g%jz Eq. 4+107

Q. Qe Qe Q.

The Gaussian quadrature requires the integration domain to be transformed from the physical element domain
“Qg’ to the referential element domairf)y’ with the Jacobian of the coordinate transformation ag “
=det(dx/08) " (i.e., the determinant of the Jacobian matrix), where the Jacobian matrix of the coordinate trans-
formation rule, ‘9x/9& ", is computed from the definition of the coordinate transformation rule in Eq. 4+106.
The derivatives of the variables are taken from Eq. 4+105 as
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0

Yl |aNy ON; 0N, ONg||Ye
Ug| _ | Ox 0x 0x 0x ||Ue
02 |0Ng ON; ON, ONg| |2

o3 oy dy 9y 9y ||;3
e

Duf(€,n) = (ON,(&,n))T08 = [ONy ONy ON, 0Ny

;0
dNg ON; ON, AN, |Ue

08 on) %% 971 972 T ||
_ |ox ox|| 08 0 ot ot ||ue| _ [INarola Eq 4+108
= ol T [Daz E@xl:l} ve 9.
9 an| 0Ny ON; 0N, dNs| (2
oy 9y)|3n an an on |
e
The derivative of shape functions with respect to natural coordigatést , is computed from the definition o
the shape functions in Eq. 4¢104. The te&viox is computed from the inverse of the derivative of the coordi
nate transformation rule from Eq. 4106 as
08/0x = (0x/9&)L EQ. 4109

That is, Eq. 4+108 gives the formula to compute the derivatives of shape functions matxix (hnen xdof =4 2) fo
the element stiffness matrix in Eq. 4¢107

—1
ON = %%’E‘B Eq. 4+110

An Example with Bilinear 4-Node Element

We now consider an example of 8 3 3 unit square insulated from the two sides with the top boundary and t
bottom boundary set at 8Q and (°C, respectively. The thermal diffusivity is assumed to be isotropickwitii
(see Figure 4¢30). Combinding Eq. 4+96 and Eq. 4+98, we have

Oe(—KOu) = —KO2u = f Eq. 4111

Since there is no heat source in the square &re@™ and due to symmetry of the boundary conditions no tem-
perature gradient can be generated in x-direction, Eq. 4111 reduces to
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U= 30°C

Upottom= 0°C
Figure 4¢30 Conduction in a square insulated from two sides.

d2u du (Uop = Upottom)
—_— = — = Conaant: M

vl 0 dy 3 =10 Eq. 4112

That is the temperature gradient in y-direction is®@er unit length). In other words, the nodal solutions at

the row next to the bottom is u = 90, and the row next to the top is u = ZD. The Program Listing 4+13

implements element formulation for the stiffness matrix and force vector in Eq. 4¢107 for this simple problem.

The nodes and elements can be generated as

int row_node_no =4,
row_element_no =row_node_no - 1;
double v[2];
for(inti=0; i <row_node_no; i++)
for(intj = 0; j < row_node_no; j++) {
int nn = i*row_node_no+;j;
v[0] = (double)j; v[1] = (double)i;
Node* node =new Node(nn, 2, v);
the_node_array.add(node);

©oo~NOULE, WNPE

10 }

11 int enal4];

12 for(inti=0;i<row_element_no; i++)
13 for(intj = 0; j < row_element_no; j++) {

14 int nn = i*row_node_no+;j;

15 ena[0] = nn; ena[l] = ena[0]+1; ena[3] = nn + row_node_no; ena[2] = ena[3]+1;
16 int en = i*row_element_no+j;

17 Omega_eh* elem rew Omega_eh(en, 0, 0, 4, ena);

18 the_omega_eh_array.add(elem);

19 }
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!#i nclude "include\fe.h”
Omega_h::Omega._h() {
int row_node_no = 4, row_element_no = row_node _no - 1;
for(inti =0; i <row_node_no; i++)
for(intj = 0; j < row_node_no; j++) {
int nn = i*row_node_no+j; double v[2]; v[0] = (double)j; v[1] = (double)i;
Node* node = new Node(nn, 2, v); the_node_array.add(node);
}
for(inti =0; i <row_element_no; i++) define e ements
for(intj = 0; j < row_element_no; j++) {
int nn = i*row_node_no+j, en = i*row_element_no+j;
int ena[4]; eng[0] = nn; eng[1] = ena[0]+1; ena[3] = nn + row_node_no; ena[2] = ena[3]+1;
Omega_eh* elem = new Omega_eh(en, 0, 0, 4, ena); the_omega._eh_array.add(elem);
}
} .
gh_on_Gamma_h::gh_on_Gamma_h(int df, Omega_h& omega h) { define B.C.
__initialization(df, omega_h);
int row_node_no = 4, first_top_node_no = row_node_no* (row_node_no-1);
for(inti =0; i <row_node_no; i++) {
the_gh_array[node_order(i)](0) = gh_on_Gamma_h::Dirichlet; top boundary u = 0°C
the_gh_array[node_order(first_top_node_no+i)](0) = gh_on_Gamma_h::Dirichlet; bottom boundary u= 300C
the_gh_array[node_order(first_top_node_no+i)][0] = 30.0;
}
}
class HeatQ4 : public Element_Formulation { public: define e ement
HeatQ4(Element_Type_Register a) : Element_Formulation(a) {}
Element_Formulation * make(int, Global_Discretization& );
HeatQ4(int, Global_Discretization& );
b
Element_Formulation* HeatQ4::make(int en, Global_Discretization& gd) {
return new HeatQ4(en,gd);
}
HeatQ4::HeatQ4(int en, Global _Discretization& gd) : Element_Formulation(en, gd) { 1
Quadrature qp(2, 4); _
H1 Z(2, (double*)0, qp), Zai, Eta, Na(& n) = 2(1+&,8)(1+n,n)
N = INTEGRABLE_VECTOR_OF TANGENT_BUNDLE( "int, int, Quadrature’, 4, 2, qp);
Zai &=Z[0]; Eta&=Z[1];

define nodes

N[O] = (1-Zai)* (1-Eta)/4;  N[1] = (1+Zai)* (1-Eta)/4; ON = ONoxT?

N[2] = (1+Zai)* (1+Eta)/4; N[3] = (1-Zai)* (1+Eta)/4; ~ oeMee0

H1 X = N*xl; HO Nx = d(N) * d(X).inverse(); J dv(d(X).det()); double k = 1.0; B.;,_X
}suff&:(Nx*k*(~Nx))|dv; K = I(DN 0 KDN)detmE%jE
Element_Formulation* Element_Formulation::type_list = 0; Ele

Element_Type Register element_type register_instance;

static HeatQ4 heatg4_instance(element_type register_instance);

void output(Global_Discretization&);

int main() {
int ndf = 1; Omega_h oh; gh_on_Gamma_h gh(ndf, oh); U_h uh(ndf, oh);
Global_Discretization gd(oh, gh, uh); Matrix_Representation mr(gd); assembly
mr.assembly();

matrix solver
CO u = ((CO)(mr.rhs())) / ((CO)(mr.1hs())); .
gd.u_h() = u; gd.u_h() = gd.gh_on_gamma_h(); update free and fixed dof
cout << gd.u_h(); output
return 0;
}

I |
Listing 4+13 Two-dimensional heat conduction problem (project workspace file “fe.dsw”, project
“2d_heat_conduction”.
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This code generates 16 nodes and 9 bilinear 4-node elements in the constructor “Omega_h::Omega_h()". After
node and element are created by their own constructors (i.e., “Node:Node(int, int, double*)” and
“Omega_eh::Omega_eh(int, int, int, int, int*)”), we use the member functions “Node::add(Node*)" and
“Omega_eh::add(Omega_eh*)” to add to the “database” the information on nodes and elements, respectively.
We observe that defining the nodes and the elements for a two dimensional problem may become a very compli-
cated task. We will discussed this issue later with a simple 2-D tool—"block()” function that has already been
introduced in Chapter 3 (see page 192) to enhance the capability to handle increasingly complicated geometry.

At the heart of the code is the element constructor “HeatQ4::HeatQ4()” which implements a 4-nodes bilinear
quadrilateral element

1 HeatQ4::HeatQ4it en, Global_Discretization& gd) : Element_Formulation(en, gd) {

2 Quadrature qp(2, 4);

3 H1Z(2, ([double¥)0, gp), Zai, Eta,

4 N = INTEGRABLE_VECTOR_OF_TANGENT_BUNDLE( "int, int, Quadrature", 4, 2, gp);
5 Zai &= Z|[0]; Eta &= Z[1];

6 N[O] = (1-Zai)*(1-Eta)/4; N[1] = (1+Zai)*(1-Eta)/4;

7 N[2] = (1+Zai)*(1+Eta)/4; N[3] = (1-Zai)*(1+Eta)/4;

8 H1 X = N*xI;

9 HO Nx = d(N) * d(X).inverse();

10 J dv(d(X).det());

11 doublek = 1.0;

12 stiff &= (Nx * k * (~Nx)) | dv;
13 }

We use a 2-D 2 2 Gaussian quadrature for all integrable objects (line 2). In line 6 and 7, the shape functions
“N” is defined according to Eq. 4¢104. The coordinate transformation rule in line 8 is from Eq. 4¢106. The deriv-
ative of shape function are calculated according to Eqg. 4109 and Eq. 4+110. Line 10 on “the Jacobian” and line
12 on stiffness matrix is the first part of the Eq. 4¢107. The rest of the code is not very different from that of a 1-
D problem.

A 2-D Geometrical Tool — “block()”

Even with the above extremely simple problem, the increasing difficulty in specifying geometry is exposed.
We use a few examples to demonstrate the tool “block()” function that facilitates the definition of 2-D geometry.
The first example constructs a set of nodes and elements with a single “block()” function call as (see Figure
4+31)

1 doublecoord[4][2] = {{0.0, 0.0}, {3.0, 0.0}, {3.0, 3.0}, {0.0, 3.0}};
2 int control_node_flag[4] = {TRUE, TRUE, TRUE, TRUE};
3 Dblockthis, 4, 4, 4, control_node_flag, coord[0]);

The first integer argument specifies in “block()” the number of nodes generated row-wise, which is “4”. The sec-
ond integer argument specifies the number of nodes generated column-wise. The following integer is the number
of control nodes. In this example, the four control nodes are located at node numbers “0”, “3", “15”, and “12”
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Figure 4¢31 16 nodes and 9 elements generated by a single “block()” function call.

ordered counter-clockwise starting from the lower-left corner. The components in the int array of the
“control_node_flag” are all set as TRUE (=1). This is followed by the pointtoutde array “coord[0]”. Notice

that in the semantics of C language (“pointer arithmatics”), the expression of the symbol “coord” with “[]” means
casting thalouble** to double*, while the index “0” means with an off-set of zero from the first memory address
of thedouble*.

An example with two “block()” function calls has the potential of being more adaptive to deal with compli-
cated geometry (see Figure 4+32)

1 doublecoord1[4][2] = {{0.0, 0.0}, {3.0, 0.0}, {3.0, 3.0}, {0.0, 3.0}},
2 coord2[4][2] = {{3.0, 0.0}, {6.0, 0.0}, {6.0, 3.0}, {3.0, 3.0}};
3 int control_node_flag[4] = {1, 1, 1, 1};

4 blockghis, 4, 4, 4, control_node_flag, coord1[0], 0, O, 3,
5 blockghis, 4, 4, 4, control_node_flag, coord2[0], 3, 3, 3

3);
3);

In this example, the coordinates of the control nodes are given as rectangles for simplicity. iFit@rfysment

after the coordinates of tygieuble* is the first node number generated, the metxargument is the first element
generated. The last twint arguments are “row-wise node number skip” and “row-wise element number skip”.
For example, in line 5 the second block definition has both its first node and first element numbered as “3”. Th
row-wise node number and element number both skip “3". Therefore, the first node number of the second row
“10” and the first element number of the second row is “9”. When we define the first block in line 4 the node:s
numbered “3”, “10”, “17" and “24” has been defined. On line 5, when the “block()” function is called again,
these four nodes will be defined again. In “fe.lib”, the “block()” function use “Omega_h::set()” instead of
“Omega_h::add()”, in which thdatabase integrity is accomplished by checking the uniqueness of the node
number. Using the terminology of relational database, the node numbekéy tifehe database tabulae in this
case. If a node number exist, it will not be added to the database again.

A third example shows a cylinder consists of eight blocks (see Figure 4¢33) which is even much more cha
lenging. The code for generating these eight blocks is

1 cong double Pl = 3.141592653509,
2 c4 = cos(PI1/4.0), s4 = sin(P1/4.0),
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Figure 4¢32 A contiguous block generated by two “block()” function calls.

2 132 133
9 /100
4 66 67
3 |
o O l
tie nodes

Figure 4¢33 A cylinder consists of eight blocks. Open circlesin the left-hand-side are
control nodes. Tie nodes 164-132, 131-99, 98-66, 65-33, and 32-0 are shown in the right-
hand-side.
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Five tie nodes “164-132", “131-99”, “98-66", “65-33", and “32-0” (see right-hand-side of Eq. 4+33) are gener-

ated when the “tail” of the eighth block comes back to meet the “head” of the first block. The tie nodes are ger
erated when different node number with same coordinates occurs. In fe.lib the nodes that are generated late
“tied” to the nodes that are generated earlier. In this example nodes “0”, “33”, “66”, “99”, and “132” are gener-
ated when the first “block()” function call is made. When the eighth “block()” function call is made later, nodes
“32”, “65”, “98”, “131", and “164” will be generated. The tie nodes are formed when the coordinates are found

Two Dimensiona Problems

c8 = cos(P1/8.0), s8 = sin(P1/8.0),
€83 = c0s(3.0* P1/8.0), s83 = sin(3.0* P1/8.0),
r1=0.5,r2=10;
double coord1[7][2] = {{0.0, r1} {c4*r1, sA4*r1} {c4, 4} ,{0.0, r2},
{c83*r1, s83*r1},{0.0, 0.0} ,{c83*r2, s83*r2} },
coord?[7][2] = {{c4*rl, s4*r1},{r1, 0.0} {r2, 0.0} {c4, 4},
{c8*r1, s8*r1},{0.0, 0.0} {c8*r2, s8*r2}},
coord3[7][2] = {{r1, 0.0} {c4*r1, -s4*r1} {c4, -4} {r2, 0.0},
{c8*rl, -s8*r1} {0.0, 0.0} {c8*r2, -s8*r2}},
coord4[7][2] = {{c4*rl, -s4*r1} {0.0, -r1} { 0.0, -r2} { c4, -4},
{c83*r1, -s83*r1} ,{0.0, 0.0} {c83*r2, -s83*r2}},
coord5[7][2] = {{0.0, -r1} {-c4*r1, -s4*r1} {-c4, -4} ,{0.0, -r2},
{-c83*r1, -s83*r1} {0.0, 0.0} {-c83*r2, -s83*r2} },
coord6[7][2] = {{-c4*rd, -s4*r1} {-r1, 0.0} {-r2, 0.0} {-c4, -4},
{-c8*r1, -s8*r1} {0.0, 0.0} {-c8*r2, -s8*r2} },
coord7[7][2] = {{-r1, 0.0} {-c4*r1, sA*r1} {-c4, 4} {-r2, 0.0},
{-c8*r1, s8*r1},{0.0, 0.0} {-c8*r2, s8*r2} },
coord8[7][2] = {{-c4*r1, sA4*r1} {0.0, r1},{0.0, r2} {-c4, 4},
{-c83*r1, s83*r1} {0.0, 0.0} {-c83*r2, s83*r2}};
intflag[7] ={1,1,1,1,1,0, 1};
block(this, 5, 5, 7, flag, coord1[0], O, O, 28, 28);
block(this, 5, 5, 7, flag, coord2[0], 4, 4, 28, 28);
block(this, 5, 5, 7, flag, coord3[0], 8, 8, 28, 28);
block(this, 5, 5, 7, flag, coord4[0], 12, 12, 28, 28);
block(this, 5, 5, 7, flag, coord5[0], 16, 16, 28, 28);
block(this, 5, 5, 7, flag, coord6[0], 20, 20, 28, 28);
block(this, 5, 5, 7, flag, coord7[0], 24, 24, 28, 28);
block(this, 5, 5, 7, flag, coord8[0], 28, 28, 28, 28);

to be the same as that of any node generated previously.

For heat conduction problem, if the boundary condition is symmetrical with respect to the center axis, it ca
well be written with axisymmetrical formulation and solve as an one dimension problem such as in the subse
tion under the title of “Cylindrical Coordinates For Axisymmetrical Problem” on page 302. For the present case

of the hollow cylinder made of one material, the Eq. 4111 expressed in cylindrical coordihates is

1. p. 189 in Carslaw, H.S., and J.C. Jaeger, 1959, “Conduction of heat in solids”, 2nd ed. Oxford University Press, Oxford,
UK.
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Figure 434 Finite element nodal solutionsin theradial direction comparing to the
analytical solution in Eq. 4+114 for the heat conduction of the cylinder.

dgdug_ .
Gqn=0 Eq. 4113
The general solution is u = A+B In r. The constants A and B are determined by imposing the boundary condi-
tions. For example, if at inner side of the cylinder; tifie temperature is kept gt and at outer side of the cylin-

der of g the temperature is kept g}, we have the solution as

u; Ind—oD+ u In%g
= —'— Eq. 4+114
uexact Inl%’_og q

The finite element computation can be turned on using the same project “2d_heat_conduction” in project
workspace “fe.dsw” by setting macro definition *__TEST_CYLINDER” at compile time. The finite element
solution in the radial direction is compared to the analytical solution of Eq. 4¢114 and shown in Figure 4¢34.For
an additional exercise for function “block()”, we proceed with the fourth example of using three blocks to
approximate a quarter of a circle. In Chapter 3 on page 195, we approximate a quarter of a circle with three
“block()” function calls. In that case we do not have provision of repeated definitions of nodes. In the present
case, we try to minimize the number of the tie nodes by the following code

congt double Pl = 3.141592653509, ¢ = cos(P1/4.0), s = sin(P1/4.0), c2 = ¢/2, s2 = s/2;
double coord1[4][2] = {{0.0,0.0},{0.5, 0.0},{c2, s2}, {0.0, 0.5}},

coord?[6][2] = {{0.5,0.0},{1.0,0.0},{c, s},{c2, s2}, {0.0,0.0},{cos(P1/8.0),sin(P1/8.0)}},

coord3[7][2] = {{0.0, 0.5}{c2, s2}{c, s},{0.0,1.0},

{0.0, 0.0},{0.0, 0.0}, {cos(3.0*P1/8.0), sin(3.0*P1/8.0)}};

int flag1[4] = {1, 1, 1, 1}, flag2[6] = {1, 1, 1, 1, O, 1}, flag3[7] = {1, 1, 1, 1, 0, O, 1}
blockthis, 5, 5, 4, flag1, coord1]0], 0, O, 4, 4);
block(this, 5, 5, 6, flag2, coord2[0], 4, 4, 4, 4);
blockthis, 5, 5, 7, flag3, coord3[0], 45, 32, 0, 0);

O©CoO~NOOOTA~WNPE
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element numbering

node numbering

Figure 435 Three block function calls to approximate a quarter of a circle. The right-hand-
side shows the element numbering scheme and the | eft-hand-side shows the node numbering
scheme.

The numbering of the elements and nodes for the first two blocks are similar to that of the second example. After
the third block has been generated, 9 tie-nodes will be generated including “45-36", “46-37", “47-38", “48-39”,
“49-40", “54-41", “59-42", “64-43", and “69-44".

L agrange 9-nodes Element for Heat Conduction

The element formulation “HeatQ4” implemented the bilinear 4-node element for heat conduction. We intro-
duce a Lagrangian 9-node element “HeatQ9" as follows

1 dassHeatQ9 public Element_Formulation {

2 public:

3 HeatQ9(Element_Type_Register a) : Element_Formulation(a) {}

4 Element_Formulation *makigt, Global Discretization&);

5 HeatQ9int, Global_Discretization&);

6 k

7 Element_Formulation* HeatQ9::maket(en, Global_Discretization& gd) {

8 return new HeatQ9(en,gd);

9 }

10 HeatQ9::HeatQ®ft en, Global_Discretization& gd) : Element_Formulation(en, gd) {
11 Quadratureqp(2, 9); /I 2-d ¥ 3 Gaussain quadrature
12 H1Z(2, (double*)0, gp),

13 N = INTEGRABLE_VECTOR_OF_TANGENT_BUNDLE(
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14 "int, int, Quadrature”, 9/*nen*/, 2/*nsd*/, qp),

15 Zai, Eta;

16 Zai &=2Z[0]; Eta&=Z[1];

17 N[O] = (1-Zai)*(1-Eta)/4; N[1] = (1+Zai)* (1-Eta)/4; /I 4-9 node shape functions

18 N[2] = (1+Zai)* (1+Eta)/4; N[3] = (1-Zai)* (1+Eta)/4;

19 N[8] = (1-Zai.pow(2))* (1-Eta.pow(2));

20 N[O] -= N[8]/4; N[1] -= N[8]/4; N[2] -= N[8]/4; N[3] -= N[8]/4;

21 N[4] = ((1-Zai.pow(2))* (1-Eta)-N[8])/2; N[5] = ((1-Eta.pow(2))* (1+Zai)-N[8])/2;
22 N[6] = ((1-Zai.pow(2))* (1+Eta)-N[8])/2; N[7] = ((1-Eta.pow(2))* (1-Zai)-N[8])/2;
23 N[O] -= (N[4]+N[7])/2; N[1] -= (N[4]+N[5])/2;

24 N[2] -= (N[5]+N[6])/2; N[3] -= (N[6]+N[7])/2;

25 H1X = N*xl;

26 HONx =d(N) * d(X).inverse();

27 J dv(d(X).det());

28 doublek =1.0;

29 stiff &= (Nx * k_* (~=Nx)) | dv; 11 {9%2}*{2x9}={9x 9}
30 }

31 Element_Formulation* Element_Formulation::type list = 0;

32 Element_Type Register element_type register_instance;

33 datic HeatQ9 heatq9_instance(element_type register_instance); // element type# 1
34 datic HeatQ4 heatgd_instance(element_type register_instance);  // element type# 0

Lines 17-24 are shape function definition for Lagragian 4-to-9-node element that we have already used in Chap-

ter 3. Lines 33, and 34 register the element formulations. The last element formulation register has the element

type number “0”. This number increases backwards to element(s) registered earlier. We can also use the
“block()” function call to define Lagrangian 9-node element as (see Figure 4+36)

1 EP:element_pattern EP::ep = EP::LAGRANGIAN_9 NODES;
2 Omega_h::Omega_h() {

3 block(this, 5, 5, 7, flag, coord1[0], O, O, 28, 14, 1);

4 block(this, 5, 5, 7, flag, coord2[0], 4, 2, 28, 14, 1),

5 block(this, 5, 5, 7, flag, coord3[0], 8, 4, 28, 14, 1);

6 block(this, 5, 5, 7, flag, coord4[0], 12, 6, 28, 14, 1),
7 block(this, 5, 5, 7, flag, coord5[0], 16, 8, 28, 14, 1),
8 block(this, 5, 5, 7, flag, coord6[0], 20, 10, 28, 14, 1);
9 block(this, 5, 5, 7, flag, coord7[0], 24, 12, 28, 14, 1);
10 block(this, 5, 5, 7, flag, coord8[0], 28, 14, 28, 14, 1);
11 }

Line 1 specified the elements generated are Lagragian 9-nodes elements. The last integer argument in line 3 to
line 10 indicate the element type number is 1, which corresponding to the “HeatQ9” element that we just regis-
tered. The computation of the Lagragian 9-node elements can be activated by setting macro definition
“ TEST_QUADRATIC_CYLINDER” for the same project “2d_heat_conduction” in the project workspace

file “fe.dsw”.
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Figure 4¢36 9-node Lagrangian quadrilateral elements generated by eight “block()” function
calls.

Post-Processing—Heat Flux on Gauss Points

After the solutions on temperature distribution is obtained, heat flux can be computed from Fourier law of
heat conduction of Eq. 4+98; i.e.,

q = —-K0Ou

This step is often referred to pest-processing in finite element method. The derivatives of shape function,

ON,(&. n) , onGaussian integration points are available at the constructor of class “Element_Formulation”. The
gradients of temperature distribution are approximated by

Oul(€, n) = ON,(E, n) 2

Eq. 4115
Therefore,

qh = —K(ON,(&, n)ug)

Therefore, after the solutions of nodal values, , are obtained, we can loop over each element to calculate t
heat flux on its Gaussian integration points, such as,

Eq. 4116
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1 HeatQ4::HeatQ4(int en, Global_Discretization& gd) : Element_Formulation(en, gd) {
2

3 if(Matrix_Representation::Assembly_Switch == Matrix_Representation::FLUX) {
4 HOflux = INTEGRABLE_VECTOR("int, Quadrature", 2, qp);

5 flux = 0.0;

6 for(inti =0; i <nen;i++){

7 flux[0] += - k* Nx[i][O]* (ul[i]+gl[i]); Il g =—«0Ou
8 flux[1] +=- k* Nx[i][1]* (ul[i]+gl[i]);

9 }

10 int ngp = gp.no_of _quadrature_point(); cout.flush();

11 for(inti =0; i< ngp; i++) {

12 cout << setw(9) <<en

13 << setw(14) << ((HO)X[0Q]).quadrature_point_value(i)

14 << setw(14) << ((HO)X[1]).quadrature_point_value(i)

15 << setw(14) << (flux[O].quadrature_point_value(i))

16 << setw(14) << (flux[1].quadrature_point_value(i)) << endl;

17 }

18 } deedtiff &= ...

19 }

20 int main() {

21

22 Matrix_Representation::Assembly_Switch = Matrix_Representation::FLUX;

23 cout << "Heat flux on gauss integration points: " << end|;

24 cout.setf(ios::left,ios::adjustfiel d);

25 cout << setw(9) << " elem #, " << satw/(14) << "x-coor.," << setw(14) <<"y-coor.,"
26 << satw(l4) << g X, " <<setw(14) <<" qy, " << setw(14) << endl;

27 mr.assembly(FALSE);

28 }

Line 27 in the main() program is to call “Matrix_Representation::assembly()” with an argument “FALSE” to
indicate that th@odal loading on the right-hand-side is not to be performed. This function invokes element for-
mulation with a flag inclass “Matrix_Representation” set to “Matrix_Representation::Assembly_Switch =
Matrix_Representation::FLUX". The real computation is done at lines 7-8, where these two lines simply imple-
mented the Fourier law of heat conduction. The rest of lines is just the run-of-the-mill C++ output formatting.
The information on the coordinates of the Gauss points and their corresponding heat flux values are reported ele-
ment-by-element.

Post-Processing—Heat Flux Nodal Projection Method

Since the solutions of finite element computation are the temperatures on nodes, we may also interested in
having the heat flux to be reported on nodes. However, nodal heat flux, &, requires much more el aborated post-
processing. The heat flux on an element can be interpolated from the nodal heat flux as

q8=N,(&,n)ad Eq. 4+117
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Since the shape function is an integrable object, its value is actually evaluated and stored only at the Gauss inte-

gration points. Now we can define error as the differenaglof ~ of Eq. 4+117vith of Eq. 4+116. This error is
then distributed over the element domain by making a weighted-residual statement (as Eq. 3+105 of Chapter 3
page 352) with Galerkin weighting that= N,

[Na(G8-af)dQ = 0 Eq. 4118
Q
Substituting Eq. 4117 and Eq. 4¢116 into Eq. 4¢118, we have

O 0. .
%NaNbdQqu = I(Na(—KDNbug))dQ Eq. 44119
Q

We identify, in Eq. 4¢119, theonsistent mass matrix (with unit density)M, as

M = [N N,dQ Eq. 44120
Q

The nodal heat fluxg2 , can be solved from Eq. 4¢119. This nodal solution procedure is descritmethasy
or projection in finite element: An approximation on Eq. 4¢120 which alleviates the need for matrix solver is to
definelumped mass matrix as

ML Eq. 44121

1l
o

J'NaNbdQ, a=b
b Q
0, azb

This is the row-sum method among many other ways of defining a lumped mass?matrix.

An alternative thinking on Eq. 4¢118 of Galerkin weighting of the weighted-residual statement is that we car
write least-squares approximation of error as

I(dQ—qQ)ZdQ =0 Eq. 4122
Q

1. p. 346 in Zienkiewicz, O.C., and R.L. Taylor, 1989, “The finite element method: basic formulation and linear problems”,
4the ed., vol. 1, McGraw-Hill, London, UK,

see also p. 226 in Hughes, T. J.R., “The finite element method: linear static and dynamic finite element analysis”, Prentice-
Hall, Inc., Englewood Cliffs, New Jersey.

2. see appendix 8 in Zienkiewicz, O.C., and R.L. Taylor, 1989, “The finite element method: basic formulation and linear
problems”, 4the ed., vol. 1, McGraw-Hill, London, UK.
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Minimization by taking derivative with respect to the nodal heat flux, g2, and using its interpolation relation of
Eqg. 4+117, gives back to Eq. 4¢118. Therefore, the nodal flux can be considered as obtained through least squares
approximation too.

Eqg. 4+119 can be solved with a full-scale finite element method, direct or iterative. However, as post-process-
ing procedure, it will be more desirable to have a simplified approximation that can be performed element-by-
element without even to assemble the global mass matrix, or to invoke matrix solver to solve for Eq. 4¢119, such
as,

HeatQ4::HeatQ4ft en, Global_Discretization& gd) : Element_Formulation(en, gd) {

1

2

3 if(Matrix_Representation::Assembly Switch == Matrix_Representation::NODAL_FLUX) {

4 int flux_no = 2;

5 the_element_nodal_value &9(nen*flux_no, fouble*)0);

6 CO projected_nodal_flux = SUBVECTOR("int, CO&", flux_no, the_element_nodal_value);
7 HO flux = INTEGRABLE_VECTOR("int, Quadrature”, flux_no, qp);

8

flux = 0.0;
9 for(inti=0;i<nen,;i++){
10 flux[0] += - k * Nx[i][O]*(ul[i]+gl[i]);
11 flux[1] += - k * Nx[i][1]*(ul[i]+gl[i]);
12 }
13 for(inti=0;i<nen;i++){
14 COlumped_mass(0.0);
15 for(int k = 0; k < nen; k++)
16 lumped_mass += @O)N[i))*(( HON[K])) | dv;
17 projected_nodal_flux(i) = (KO)N][i])*flux | dv ) /lumped_mass;
18 }
19 } dsestiff &= (Nx * k * (~Nx)) | dv;
20 }

21 int main() {

22

23 Matrix_Representation::Assembly Switch = Matrix_Representation::NODAL_FLUX;
24 mr.assembly(FALSE);

25 cout << "nodal heat flux:" <<endl;

26 for(int i = 0; i < oh.total_node_no(); i++) {

27 int node_no = oh.node_array()[i].node_no();

28 cout << "{" << node_no <<"| "

29 << (mr.global_nodal_value()[i][0]) << ", "

30 << (mr.global_nodal_value()[i][1]) << "}" <endl;
31 }

32 .

33}
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Lines 14-16 are the row-sum lumped mass matrix (in Eq. 4¢121). Line 17 is the element-by-element solution of
approximated Eq. 4¢119. In the main() program “NODAL_FLUX” switch is set (line 23) and assembly() invokes
the nodal projection procedure through Element_Formulation. Nodal values are shared by various number of el
ments. The assembly() function keeps and internal count on how many evaluations are performed on a particu
node, and it will compute an average nodal value from these nodal values for the node. The computation is do
with macro definitions “ _ TEST_CYLINDER” and “__TEST_FLUX". The results of nodal heat flux are shown
in Figure 437 The projected nodal heat flux values are obviously less accurate than the temperature solutio
shown in Figure 4+37a. The projected nodal heat fluxes on the boundaries are significantly less accurate th
those in the interior. The reason can be easily deduce by studying Figure 4+37b, since the nodal heat fluxes (o
squares) are just least squares fit of a set of piece-wise line segments of the Gauss point heat fluxes (open

cles).

[l

;. & i
. 2 4
2 Ok 4 N
= i &
S
"sbd S 4 &
3 Ll I o' l L3
Th gt Tl
oy o .-| 1 -
a o
" S
Ot s D e
L2
Iy _3"'.1- . q
-
|.:‘ - T ] Tw
Faa.gd ™
.Fillr';‘:-l.vﬁ i
r _;I ¢ 1? 1T 4 J ‘ i
2 ¥ = "‘:" =, L " R ) LI
q 0.5 0.6 0.7 0.8 0.9
b i L r
(a) (b)

Figure 437 (&) Nodal heat flux shown in vectors, (b) projected radial heat flux on nodes are
shown in open sguares. Heat flux on Gauss points are shown in open circles. The solid curveisthe
analytical solution g, = du/dr = 100/(r In 2), which is obtained from differentiation with respect to
ron Eq. 4+114.
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4.3.2 Potential Flow

Basic Physics and Element Formulation

We consider incompressible, inviscid fluid which gives the potential flow. The conditions of incompressible
(asolenoidal field) and irrotationa (atoroial- free field) give

div u=sOeu=0, and curl u=s0Oxu = 0, Eq. 4+123

respectively. In 2-D, Eq. 4123 reduces to¢betinuity equation

ou ov _ .
&+E_o, Eq. 4124

and an equation with zexorticity component perpendicular to the x-y plane

ou ov _ .
a,—& =0 Eq. 4+125

From the continuity equation Eq. 4¢124, it follows thalyu v dx is an total derivative, defined as

dy = udy - vdx Eq. 4126
wherey is a scalar function, and
_ oy _ 3y .
u= 3y’ and v = M Eq. 4+127

Substituting Eq. 4¢127 back to Eq. 4¢124 gives the identity of cross derivatipe® dfe equal. This is the con-

dition thaty to be a potential function in calculus. Integration of Eq. 4126 along an arbitrary path, as shown in
Figure 438a, gives the volume flux across the path. Along a stream line the volume flux across it is zero by def-
inition. That is along a streamlingis constant. Therefore, the scalar functiprs known as thetream func-

tion.

Substituting Eq. 4¢127 into the condition of irrotationality, Eq. 4+125, gives
0%u  0%v _

div (grad @) =0-(0Y)=02Y = —;

5 oy Eq. 4128

We identify that 02y = 0 is the Laplace equation.

Similarly starting from Eq. 4125 of condition of irrotationalityr| v = 0 at all point of the fluid. According
to Stokes’s theorem circulation along any closed loop is zero, as
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volume flux across path

- d\i( - =udy-vadx » B
Y <
u dy Cz
A A
» X -
(a (b)

Figure 438 (a) The volume flux across an arbitrary integration path isequal to u dy - v dx.
If the integration path coincides with the streamline, the volume flux across the integration
path should become zero by definition. (b) The circulation of aloop is zero for irrotational

flow. Therefore, a potential function ¢ can be defined which only depends on position.

fu edx =0 Eq. 4129
C

From Figure 4+38b, we have two different integration pathsir@ G, along any two points form a closed cir-
cle.

J'u-dx+J'u-dx:0, or J'u-dx=—J'u'dx Eq. 4130
cl CZ cl CZ

Therefore, any two paths of integration give the same result; i.e., the integration depends only on end-point
Therefore, we can define a potential functigme.,

dop(x) = —uedx, or Oo(x) = —-u(x) Eq. 4-131

@is known as theelocity potential, and the components of velocity as
_ 0 _ 09 .
u= - and v= 3y Eq. 44132

Again, substituting Eq. 4132 back to Eq. 4+125 of condition of irrotationality, we have the cross derivagives of
which is identical to assert the exact differential naturg. &ubstituting Eq. 4¢132 into the continuity equation
of Eq. 4¢124, we have another Laplace equation that

—2p =0 Eq. 4133

Furthermore, from Eq. 4+127 and Eqg. 4¢132, we have
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00 _ 0u _ 0y .
—ox =y’ and — = -3 Eq. 4134

2|
<s

This relation ensures that the gradients of stream function and velocity potential are orthogonal to each other,
since

Oy = 2909, 09dy _ .
O Dlp_0x0x+0y0y_o Eqg. 4+135

The gradients are the normals to the equipotential lingsaofl the streamlines gf Therefore, the “contours”
of @ andW are orthogonal to each others.

An example of finite element problérta confined flow around a cylinder is shown in Figure 4+39) in both
stream function— formulation and velocity potential—@ formulation are solved using VectorSpace C++
Library and “fe.lib” in the followings.

Stream Function—p Formulation
Recall Eq. 4+127,

_oy - oy
u—ay, andv-—aX

At the right-boundary 5g (Figure 4+39b), since u é/dd, we can integratg as
W(y) -Wo=Upy. Eq. 4136

At the bottom-boundarly ,g we choose the arbitrary reference valugg@f 0. Therefore, along the left-bound-
ary ' ag, EQ. 4136 simplified tap(y) = Uy y. The streamline at boundaryc follows from the boundary 5
which hasp =y, (= 0). On the top-boundafyp, y = 2, we havep(2) = 24,. Notice that the corner E is shared
by the boundarieB g andlgp. At the right-boundary ¢ the horizontal velocity, u, is unknown, but the verti-
cal velocity v = 0; i.e., v =0y/ox = 0.

The Program Listing 4+14 implements the Eq. 4+128 with the above boundary conditions. The only differ-
ence to the 2-D heat conduction problem is the post-processing of the derivative information.

1 if(Matrix_Representation::Assembly Switch == Matrix_Representation::NODAL_FLUX) {

2 int velocity_no = 2;

3 the_element_nodal_value &9(nen*velocity no, (double*)0);

4 CO projected_nodal_velocity = SUBVECTOR("int, C0&", velocity no, the_element_nodal_value);
5 HO Velocity = INTEGRABLE_VECTOR("int, Quadrature", velocity _no, gp);

6 Velocity = 0.0;

7 for(inti=0; i< nen; i++) {

1. p. 360-365 in Reddy, J.N., “An introduction to the finite element method”, 2nd ed., McGraw-Hill, Inc., New York.
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Velocity[0] += Nx[i][2]* (ul[i]+gl[i]);
Velocity[1] += - Nx[i][O]* (ul[i]+gl[i]);
}
for(inti=0; i <nen;i++){
CO lumped_mass(0.0);
for(int k = 0; k < nen; k++)
lumped_mass += (((HO)N[i])*((HON[K])) | dv;
projected nodal_velocity(i) = ( (HO)N[i])*Velocity |dv ) /lumped mass;

}
17 } deetiff &= (Nx * (~NX)) | dv;

From Eq. 4127, the velocity is interpolated at the element formulation level as

YYVYVYYY

@
W=yUp E W =2U, D E  0@dy=0 D
op/ox =0 5 ©=0
C -0@/ox = Uy c
w=0 dgian =0
A =0 B A dg@oy=0 B
(b) stream function B.C. (c) velocity potentia B.C.

Figure 4¢39a) A confined flow around acircular cylinder. Only the upper left quadrant is
model due to symmetries of geometry, boundary conditions, and PDE. (b) stream
function B.C., and (c) velocity potential B.C.
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!#1' nclude "include\fe.n”
EP::element_pattern EP::ep = EP:QUADRILATERALS 4 NODES;
Omega_h::Omega_h() { const double Pl = 3.141592653509, ¢ = cos(PI/4.0), s = sin(PI/4.0), .
cl = cos(PI/8.0), s = sin(P1/8.0), c2 = cos(3.0* PI/8.0), s2 = sin(3.0*P1/8.0); define nodes and elements
double coord0[4][2] = {{0.0, 0.0}, {3.0, 0.0}, {1.0, 2.0}, {0.0, 2.0} },
coord1[5][2] = {{3.0, 0.0}, {4.0-c, 5}, {3.0, 2.0}, { 1.0, 2.0}, {4.0-c1, s1}},
coord2[5][2] = {{4.0-c, s}, {4.0,1.0},{4.0,2.0},{3.0, 2.0}, {4.0-c2, 2} };
int control_node flag[5] = { TRUE, TRUE, TRUE, TRUE, TRUE};
block(this, 5, 5, 4, control_node flag, coord0[0], 0, O, 8, 8);
block(this, 5, 5, 5, control_node_flag, coord1[0], 4, 4, 8, 8);
block(this, 5, 5, 5, control_node flag, coord2[0], 8, 8, 8, 8); } .
gh_on_Gamma_h::gh_on_Gamma_h(int df, Omega_h& omega h) { define B.C.
__initialization(df, omega_h); const double U0 = 1.0; const doubleh_y = 0.5;
for(inti = 0; i <= 12; i++) the_gh_array[node_order(i)](0) = gh_on_Gamma_h::Dirichlet;
for(inti =52; i <= 64; i++) { the_gh_array[node_order(i)](0) = gh_on_Gamma_h::Dirichlet;
the_gh_array[node_order(i)][0] = 2.0*UO0; }
for(inti=1;i<=4;i++) { the_gh_array[node _order(i*13)](0) = gh_on_Gamma_h::Dirichlet;
the_gh_array[node_order(i*13)][0] = (((double)i)*h_y)*U0; } }
class Irrotationa_Flow_Q4 : public Element_Formulation { public:
Irrotational_Flow_Q4(Element_Type_Register a) : Element_Formulation(a) {}
Element_Formulation * make(int, Global_Discretization&);
Irrotational_Flow_Q4(int, Global_Discretization&); };
Element_Formulation* Irrotationa_Flow_Q4::make(int en, Global_Discretization& gd) {
return new Irrotational_Flow_Q4(en,gd); }
Irrotational_Flow_Q4::Irrotational_Flow_Q4(int en, Global _Discretization& gd) :
Element_Formulation(en, gd) { Quadrature qp(2, 4);
H1Z(2, (double*)0, gp), Zai, Eta, 1
N = INTEGRABLE_VECTOR_OF_TANGENT_BUNDLE("int, int, Quadrature”, 4, 2, gp); ~ Na(&,n) = Z(l +&,8)(1+nyn)
Zai &=7[0]; Eta&=Z[1]; N[0] = (1-Zai)* (1-Eta)/4; N[1] = (1+Zai)* (1-Eta)/4;
N[2] = (1+Zai)* (1+Eta)/4;  N[3] = (1-Zai)* (1+Eta)/4;

define e ement formulation

HL1X =N*xl; HONx = d(N)* d(X).inverse(); J dv(d(X).det());

if(Matrix_Representation::Assembly_Switch == Matrix_Representation::NODAL_FLUX) { ON. ON. T
int v_no = 2; the element_nodal_value &= CO(nen*velocity_no, (double*)0); GQ = [_awa’ __E‘Lpa:|
CO projected_noda_velocity = SUBVECTOR("int, CO&", v_no, the_element_nodal_value); ay ox

HO Velocity = INTEGRABLE_VECTOR("int, Quadrature", v_no, gp); Velocity = 0.0;
for(inti =0;i <nen; i++) { Velocity[0] += Nx[i][1]* (ul[i]+gl[i]);

Velocity[1] += - Nx[i][0]* (ul[i] +gl[i]); } Ug = (ML)-L _[(N uhyda
for(inti =0; i < nen; i++) { CO lumped_mass(0.0); Q

for(int k = 0; k < nen; k++) lumped_mass += (((HO)N[i])* ((HO)N[K])) | dv;

projected_nodal_velocity(i) = ( ((HO)N[i])*Velocity |dv) /lumped_mass; }

} else stiff &= (Nx * (~Nx)) | dv; } K. = I(DN 0 DN)det[Q(EpE
Element_Formulation* Element_Formulation::type_list = 0; e J mE
Element_Type Register element_type_register_instance; Qe
static Irrotational_Flow_Q4 flowg4_instance(element_type register_instance);
int main() { int ndf = 1; Omega_h oh; gh_on_Gamma_h gh(ndf, oh); U_h uh(ndf, oh);

Global_Discretization gd(oh, gh, uh); Matrix_Representation mr(gd);

mr.assembly(); CO u = ((CO)(mr.rhs())) / ((CO)(mr.Ihs())); Mbly and matrix solver

gd.u_h() = u; gd.u_h() = gd.gh_on_gamma_h(); cout << gd.u_h(); updatefree and fixed dof
Matrix_Representation::Assembly_Switch = Matrix_Representation::NODAL_FLUX; post- pI’OC ng for nodal veloci ty

mr.assembly(FALSE); cout << "noda velocity:" << endl;
for(inti=0; i < uh.total_node_no(); i++)
cout <<"{ " << oh.node_array()[i].node_no() <<"|" <<
(mr.global _nodal_value()[i]) << "}" << endl;
return 0;
i |

Listing 4¢14 Stream function formulation potential flow problem(project “fe.ide”, project “potential_flow”
with macro definition *__ TEST_STREAM_FUNCTION” set).
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oN oN T
oh — |_285ja ___2aja R
ue—[aylp, 6xl“] Eq. 4137
The least squares nodal projection can be calculated accordingly as
Ue = (ML) [(NUZ)dQ Eq. 4138
Q

whereMU is the lumped mass matrix. The results of this computation with element discretization, streamlines
and nodal velocity vectors are shown in Figure 4+40.
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Figure 4¢40 Finite element discretization (open circles are nodes), streamlines () = 0-2.0 at 0.25
intervals), and nodal velocity vectors shown as arrows.

Velocity Potential—p Formulation

The velocity potential formulation has the boundary conditions shown in Figure 4¢39(c). Recall Eq. 44132

_ 09 _ 09 .
u= - and v= 3y Eq. 4+139

At the left-boundary g of Figure 4¢39c, from u =3@/0x, we haved@/dx = - U,. At the top and bottom-bound-
ariesl ng andl'gp we haved@/dy = 0. On the cylinder surfadgsc, 0@/on = 0, where n is its outward normal. At
the left-boundary - a reference value gfis set to zero.

The code is implemented in the same project filithout the macro definition
“ TEST_STREAM_FUNCTION" set at compile time. The results of this computation with element discretiza-
tion, velocity equipotential lines, and nodal velocity vectors are shown in Figure 4+41.

Inspecting Figure 4«40 and Figure 441, we see that the contours lines of the stream quaatiovelocity
potentialg is orthogonal to each others at every point. This is consistent with the orthogonality condition provec
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Figure 441 Finite element discretization (open circles are nodes), velocity equi-potential lines
(o= 0-5.0 at 0.5 intervals), and nodal velocity vectors shown as arrows.

in Eq. 4¢135. The contours of stream functipand velocity potentiap make a smoothed mesh. Actually, this
is a popular method to generate a finite element mesh automatically.

1. p.99-106 in George, P.L., 1991, “Automatic mesh generation: application to finite element methods”, John Wiley & Sons,

Masson, Paris, France.
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4.3.3 PlaneElasticity

We introduce three commonly used formulations for plane elasticity (1) the coordinate-free tensorial formula-
tion, (2) the indicial notation formulation, and (3) the B-matrix (strain-displacement Matrix) formulation. We begin
from Cauchy’s equation of equilibriutwhich is the continuum version of Newton’s second law of motion. In
static state, the summation of surface force (= divergence of the stress tensor; aes,[div) and external
force ) equals zero. We expressed this balance of forces in botdttnate free tensorial notation and the
indicial notation as

div O+f = 0,o0r oij’j+fi =0 Eq. 4+140
This is subject to displacement boundary conditions and traction boundary conditions
u=gonrlg andt=0<n=¢t=0;n=honTl, Eq. 4141

wheret is the traction and is the outward unit surface normal. The weighted-residual statement of the Eq. 4¢140
is

+f) =0 Eq. 4+142

Iw(div O+f) =0,0r IWi(O'i]-’J
Q Q

Integration by parts and then applying thdivergence theorem of Gauss, we have
—I(grad w) . 0dQ +IW(O'- n)dr +wadQ =0 ,or
Q r Q

~[w;,j0;;dQ + fw;gynydl + [w;fidQ =0 Eq. 4143
Q r Q

where thegradient operator, frad”, and its relation talivergence operator, “div”, are
grad w = Ow = 00w = w; anddiv w = Oew = tr(grad w) = w;; , Eq. 4144

respectively. Thérace operator, “tr”, is the summation of all diagonal entries. The operdtan“Eq. 4143, is
the double contraction. Considering the variation of¥” is chosen to be homogeneouslg the second term of
the boundary integral, in Eq. 4143, can be restrictéq, tas

~[(grad w) : GdQ + [whdr,+ [widQ =0 o

Q T Q

—[w;,;0;;dQ + [whdly + [wifidQ =0 Eq. 4145
Q Fi Q

We first develop in tensorial notation for its clarity in physical meaning. Jdehy stress tensor, O, in Eq.
4145 can be decomposed as

O=-pl+T Eq. 4+146
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where p isthe pressure, | is the unit tensor, and T is the deviatoric stress tensor. For isotropic material, the con-
stitutive equations are

p=-Adivu,and T =2u def u Eq. 4147

whereA andp are theLamé constantqu is often denoted as G for the shear modulusThe operator def u is
defined as the symmetriqoart of grad u; i.e,,

def u=0su= %(grad u+(grad u)T)=¢ Eq. 4+148

where the superscript “s” denotes #yenmetrical part ofgrad (= O), and€ is the (infiniteismal)train tensor,
and theskew-symmetric part ofgrad u is defined as

rot UE%(grad u—(grad u)T) Eq. 4149

def u androt u areorthogonal to each other. From Eq. 4¢148 and Eq. 4¢149, we havedthiative decomposi-
tionof grad u as

grad u = def u+rot u Eq. 4150

Recall the first term in Eq. 4¢145, and substituting the constitutive equations Eq. 4146 and Eq. 4147

I(grad w) : 0dQ = I(grad w) . (Aldiv u+2u def u)dQ Eq. 4-151
Q Q

Note that,
grad w: I =tr(grad w) = divw Eq. 4152

The last identity is from the second part of the Eq. 4+144. With the Eq. 4+150 and the orthogonal redafion of
u androt u, we can verify that

grad w: (2udef u) = (def u +rot u) : (2udef u) = 2 (def u : def u) Eq. 4153
where thedouble contraction of def u can be written as
def u: def u = tr((def u) "def u) Eq. 4+154
With Eq. 4152 and Eq. 4+153, the Eq. 4151 becomes

I(grad w) : 0dQ = I[)\(div we div u)+2u(def w: def u)]dQ Eq. 4+155
Q Q

With the element shape function defined, e.g., as Eq. 4¢10dethent stiffness matrix is
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|. Coordinate-Free Tensorial Forumlation:
k= a(@d, ¢9) = J'[)\(div N, div Np)+2u(def N, :def N.)]dQ Eg. 4156
Q

where indices{a, b} in superscripts and subscripts are the el ement node numbers.

Inthe indicial notation, we have the infinitesimal strain tensor &;(u) = def u = u;;) (with the parenthesis in
the subscript denotes the symmetric part), and the generalized Hooke’s laas

Ojj = Gijki & Eq. 4+157
Gijii IS theelastic coefficients. For isotropic material, it is well-known that
Cijki = A & O +H (Bik i+ By Gy Eq. 4158
whereg; is the Kronecker delta{ = 1 if i = j, otherwis&); =0). The equivalence of Eq. 4¢155 is

Q Q Q

The last identity is due to theinor symmetry of ¢;. Theelement stiffness matrix for theindicial notation for-
mulation is

kpa = kiab = _[Na,k [A(3;01) + K(J;; 0y + 0;0;)] Ny, 1dQ Eq. 4-160
Q

Il. Indicial Notation Forumlation:

- 0 O
KE” = M Ng i N, A0+ OB [N Ny 02+ [Nq j Ny, 00 Eq. 4161
Q Q Q

where the indices {i, j} are the degree of freedom numbees (0 ndf,<wherendf is the “number degree of
freedoms” which equals to tmad the “number of spatial dimension” in the present case; i<., 0 nsi)<and
the indices &, b} are element node numbers<£Qa, b < nen, wherenen is the “element node number”). The rela-
tion of indices {p, q} and {ia, j, b} are defined as

p =ndf (a-1) + i, and q =ndf (b-1)+j Eq. 4¢163
In theengineering convention, the strain tensog, and stress tensad, are flatten out as vectors (e.g., in 2-D)

u | [a
&, X 0X o,
- - ov - dl|u -
€= =| Z | = =||"],and O = Eq. 4+164
& ay 0 oy M % a
Yof  fou av] |8 @ Ty
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The constitutive equation is
o=D¢

In plane strain case, we can show that the fourth-order teBsbecomes a matrix as

A+20 A O
D=| X A+2p0
0 0

in plane stress caseD can be defined by replaciigby A, according to

2\

A= A+2u

Eq. 4165

Eq. 4166

Eq. 4+167

In engineering applications, thoung’s modulysE, and Poisson’s ratiqv, are often given instead of the Lamé

constants. They can be related as

VE

A= aTnasay

du = ——

and =317

rewritten Eq. 4¢105 foa=0, 1, ...,fen- 1), and i =0, ...,ndf - 1)
ud(€,n) =N,(E,n)0g e, (no sum on i)

whereg is the Euclidean basis vector. We can write

g(uf) =By ug' §

B,=| o 22, ad B=[B;B; B, ... B,_,]

The element stiffness matrix of the B-matrix (strain-displacement matrix) formulation is

ke = IS(éu)TO'(u)dQ = IS(BU)TDS(u)dQ
Q Q

[11. B-matrix Formulation:
kBa = kil = [€(5u) DE(u)dQ = €T [BIDB,dQe
Q Q

Eq. 4+168

Eq. 4+169

Eq. 4170

Eq. 44171

Eq. 4172

Eq. 4173
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In Eq. 4173, the relation of indices {p, q} and 4i,j, b} are defined in Eq. 4+163.

Consider an example of a cantilever béamith Young's modulus E = 30 x£(si,v = 0.25 subject to a

uniformly distributed shear stress: 150 psi at the end (see Figure 4+42). The shear stress at the,endi50

psi. For boundaries of a 4-node quadrilateral element, we use trapezoidal rule to compute the nodal load, beca
the element boundary is linear. In the trapezoidal rule (Eq. 3+1 of Chapter 3 on page 166), the weighting for tt
end-points of a line segment is {0.5, 0.5}. To element “0”, we add -75 psi to nodes “0”, and “5”, and for the ele-
ment “4”, we also add -75 psi to nodes “5”, and “10”. Adding the nodal loading on the two element together, thi
yields nodal load specification of -75, -150, and -75 psi to nodes “0”, “5”, and “10”, respectively. Similarly, for a
9-nodes Lagrangian element, the boundary is quadratic, we use Simpson’s rule with weightings of {1/3, 4/3, 1/-
to compute the three nodes on the boundary. This yields -50, -200, and -50 psi on nodes “0”, “5”, and “10’
respectively. The analytical solution on the tip deflection is

- _PLr 30+ .
V=g EQ. 4+175

With the given parameters, this value is “-0.51875".

We proceed to implement this problem in C++ with the aid of VectorSpace C++ Library and “fe.lib”. In most
finite element text, thd&-matrix formulation is the carnonical formula provided. Therefore, we discuss the
implementation of the three formulations in reverse order.

T,=150psi
i IZ in.
| _»
= 10in. »
(.= 10 11 12 13 14 Ui =0
y,10=-75 6] x,14
fys =-150¢g o © 7 2 8 3 9 Uxo=0,andtyg=0
fuo=-75 U 4=0
Y 0 1 2 3 4 ;
10 11 12 13 14 -0
fy10=-50 ° Uy 14 =
fy5=-2005 6o [0 7 go[1 9] Uo=0,andUyg=0
fy0=-50 : 3 3 ¥ Wa=0

Figure 442 Discretization of eight 4-nodes quadrilateral elements or two 9-nodes
Lagrangian elements for a cantilever beam.

1. p. 473 in Reddy, J.N. 1993, “ An introduction to the finite element method”, 2nd ed., McGraw-Hill, Inc., New York.
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Implementationsfor B-Matrix Formulation:
The Program Listing 4+15 implements Eq. 4¢173. The Element_Formulation of “ElasticQ4” is

1 staticconst doublea_ = E_/ (1-pow(v_,2)); /I plane stress D matrix

2 daticconst double Dv[3][3]={{a_, a _*v_, 0.0 }

4 {a_*v_,a, 0.0 1

5 {0.0, 0.0, a_*(1-v_)/2.0}};

6 COD = MATRIX("int, int, const double*", 3, 3, Dv[0]);

7 ElasticQ4::ElasticQ4ft en, Global_Discretization& gd) : Element_Formulation(en, gd) {
8 Quadratureqp(2, 4); /I 2-dimension, 2x2 integration points
9 H1Z(2, ([doubleX)0, gp), /I Natrual Coordinates

10 N = INTEGRABLE_VECTOR_OF_TANGENT_BUNDLE(

11 "int, int, Quadrature", 4/*nen*/, 2/*nsd*/, qp),

12 Zai, Eta;

13 Zai &= Z[0]; Eta &= Z[1];

14 N[O] = (1-Zai)*(1-Eta)/4; N[1] = (1+Zai)*(1-Eta)/4;

15 N[2] = (1+Zai)*(1+Eta)/4; N[3] = (1-Zai)*(1+Eta)/4;

16 H1 X = N*xI;

17 HO Nx = d(N) * d(X).inverse();
18 J dv(d(X).det());
19 HOw_x = INTEGRABLE_SUBMATRIX("int, int, HO&", 1, nsd, NXx),

20 wXx, wy, B;

21 wx &= w_x[0][0]; wy &= w_x[O][1]; / aliase submatrices; 1x2

22 B &= (~wx  ]|C0(0.0)) & /I dimB = {3x8}, where dim wx[i] = {1x4}
23 COo0.0) [|~wy )&

24 Cwy f[~wx )

25 stiff &= ((~B) * (D * B)) | dv; I {8x3}*{3x3}*{3x8}={8x8}

26 }

Line 17 is the computation of the derivatives of the shape function “Nx” (see Figure 4¢43). The “Nx” is then par-
titioned into submatrix “w_x". Theegular increment submatrices wx &= w_x[0][0] and wy &= w_Xx[0][1] are

W_X WX &= wy &= B &= (~wx C0(0.0)) &
node w_Xx[0][0] w_Xx[O][1] C0(0.0) || ~wy )&
number ~Wy ~WX )’
Nox| Noy Nox Noyy
Nq x Ny N1y N1y Nox] O INix 0 Noxf O INax 0
N2,X N2’y l N2,X N2’y 0 NO,y 0 Nl,y 0 N2,y 0 N3’y
N3x| Nay N3 Ny NoyINox] N1y N1 N2,y f N2, N3y I N
spatial dim. aliase submatrices B-matrix lay-out

Figure 443 Construction of B-matrix using one-by-one concatenation operation.
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!#i nclude "include\fe.h”
static const double L_ = 10.0; gtatic const doublec_ = 1.0; staticconst doubleh_e_=L_/2.0;
static const double E_ = 30.0e6; static const doublev_ = 0.25; . .
dtatic congt doublelambda_ = v_*E_/((1+v_)*(1-2*v )); Young’s modulus and Poisson ratio
static const doublemu_ = E_/(2*(1+v)); plane stres& modification
static const double lambda_bar = 2*lambda_*mu_/(lambda_+2*mu_);
EP::element_pattern EP::ep = EP::QUADRILATERALS 4 _NODES;
Omega_h::Omega._h() {
double x[4][2] = {{0.0, 0.0}, {10.0, 0.0}, {10.0, 2.0}, {0.0, 2.0} } ; int flag[4] ={1, 1, 1, 1};
block(this, 3, 5, 4, flag, X[0]);

) generate nodes and elements
gh_on_Gamma_h::gh_on_Gamma_h(int df, Omega_h& omega_h) { __initialization(df, omega_h); B.C.
the_gh_array[node_order(4)](0) = the_gh_array[node_order(9)](0) = Ug=Ug=Vg=lhy = 0

the_gh_array[node_order(9)](0)=the_gh_array[node_order(14)](0)=gh_on_Gamma_h::Dirichlet;
the_gh_array[node_order(0)](1) = the_gh_array[node_order(5)](1) =
the_gh_array[node_order(10)](1) = gh_on_Gamma_h::Neumann;
the_gh_array[node_order(0)][1] = the_gh_array[node_order(10)][1] = -75.0; TyO = Tle = -75"[y5 =-150
the_gh_array[node_order(5)][1] = -150.0;
}
class ElasticQ4 : public Element_Formulation { public:
ElasticQ4(Element_Type Register a) : Element_Formulation(a) {}
Element_Formulation *make(int, Global_Discretization&);
ElasticQ4(int, Global _Discretization&);
¥
Element_Formulation* ElasticQ4::make(int en, Global_Discretization& gd) {
return new ElasticQ4(en,gd);

}

static const doublea_=E_/ (1-pow(v_,2)); N, (&, n) = %1(1 +&,8)(1+nyn)
static const double Dv[3][3] ={{a_,a *v_, 0.0}, {a *v_,a, 0.0}, {0.0,0.0, a *(1-v_)/2.0} };

CO D = MATRIX("int, int, const double*", 3, 3, Dv[0]); ON = ONox 7t
ElasticQ4::ElasticQ4(int en, Global_Discretization& gd) : Element_Formulation(en, gd) { ~ heMae0

Quadratureqp(2, 4);
H1Z(2, (double*)0, gp), Zai, Eta,

N =INTEGRABLE_VECTOR_OF_TANGENT_BUNDLE("int, int, Quadrature", 4, 2, qp); aNa
Zai &=Z[0]; Eta&=Z[1]; —
N[O] = (1-Zai)* (1-Eta)/4;  N[1] = (1+Zai)* (1-Eta)/4; ox
N[2] = (1+Zai)* (1+Eta)/4; N[3] = (1-Zai)* (1+Eta)/4; B = oN a
H1 X = N*xl; a "~ W
HOw_x = INTEGRABLE_SUBMATRIX("int, int, HO&", 1, nsd, Nx), wx, wy, B;
wx &=w_x[0][0]; wy &=w_x[0][1]; ON, N,
B&=(~wx | C0(0.0)) & W W
(CO0.0) [|~wy )& - -
(wy fl~wx )
stiff &= ((~B) * (D * B)) | dv;
} _ _ _ ke = e [BIDB,dQe,
Element_Formulation* Element_Formulation::type_list = 0; 5

Element_Type Register element_type register_instance;

static ElasticQ4 elasticqd_instance(element_type register_instance);

int main() { int ndf = 2; Omega_h oh; gh_on_Gamma_h gh(ndf, oh); U_h uh(ndf, oh);
Global_Discretization gd(oh, gh, uh); Matrix_Representation mr(gd); mr.assembly();
CO u = ((CO)(mr.rhs())) / ((CO)(mr.Ihs()));
gd.u_h() = u; gd.u_h() = gd.gh_on_gamma_h();
cout << gd.u_h();
return O;

i |

Listing 4+15 Plane elastiticity (project workspace file “fe.dsw”, project “2d_beam” with Macro definition
“ _TEST_B_MATRIX_CONCATENATE_EXPRESSION_SUBMATRIX" set at compile time).
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also shown. The B-matrix, according to Eq. 4¢171, is defined with one-by-one column-wise concatenation oper-
ation "HO::operator || const HO&)". When the argument of the concatenation operation is of @pét will be
promote toHO type object before concatenation occurred. Line 25 is the element stiffness matrix definition of
the Eq. 4-173.

A complete parallel algorithm, without the use of the one-by-one concatenation operation, results in C++
statements closer tinear algebraic expression with basis

1 HOw_x =INTEGRABLE_SUBMATRIX("int, int, HO&", 1, nsd, NXx),
2 WX, WY;

3 wx &=w_x[0][0]; wy &= w_x[0][1];

4 HOzero = ~wx; zero = 0.0;

5 C0e3(3), e(ndf), E(nen),

6 U = (e3%e)*(~E);

7 HOB =+((~wx) *UJ[0][0] + zero * U[O][1] +

8 zero  * U[1][0] + (~wy) * U[1][1] +

9 (~wy) *U[2][0] + (~wx) * U[2][1]) ;

10 stiff &= ((~B) * (D * B)) | dv;

Line 4 takes the size and type of the transpose of “wx”, then re-assigns its values to zero. Line 7 uses unary pos-
itive operator “+” to convert a Integrable_Nominal_Submatrix (of objecti@ednto a plain Integrable_Matrix

(also of object typ#10). We note that the expression “U[2][1]” can be written as “(e3[2] % e[1]) * (~E)” without
having to define the additional symbol “U = (e3%e)*(~E)". One needs to set both macro definitions of

“_ TEST_B_MATRIX_CONCATENATE_EXPRESSION_SUBMATRIX” and “_TEST_ BASIS" for this
implementation at compile time

The semantics in the constructionBymatrix in the above is bottom-up process. We first define the com-
ponents of thé-matrix than built theB-matrix with these pre-constructed components. The semantics of the
program code can be constructed in a reversed ordetppelown process. We may want to construct Bie
matrix first, giving its size and initialized with default values (“*0.0”). Then, we can assign each components of
the B-matrix with its intended values.

epsilon[1][0]
epsilon[2][0] = ~wy; epsilon[2][1]
stiff &= ((~B) * (D * B)) | dv;

0.0; epsilon[1][1] = ~wy; 8, =ovldy
= ~WX; Nyy = 0uldy + dv/ox

1 HOw_x=INTEGRABLE_SUBMATRIX("int, int, HO&", 1, nsd, Nx),

2 B = INTEGRABLE_MATRIX("int, int, Quadrature", 3, nsd*nen, qp),

3 epsilon = INTEGRABLE_SUBMATRIX("int, int, HO&", 3, nsd, B),

4 WX, WY; /I aliases of w_x components
5 wx&=w_x[0][0]; wy &=w_x[O][1];

6 epsilon[0][0] = ~wx; epsilon[0][1] = 0.0; H, =0ulox

7

8

9

TheB-matrix is constructed first, then, its componergs §,, yxy}T are assign according to the definition in the

first part of Eq. 4¢164 and Eq. 4+170, where the strain “epsilon” is a submatrix referring to “B” matrix. For this
implementation the same project “2d_beam?” in project workspace file “fe.dsw” can be used with only the macro
definition “__TEST_B_MATRIX_CONCATENATE_EXPRESSION_TOP_DOWN" set.

382  Workbook of Applicationsin VectorSpace C++ Library



Two Dimensiona Problems

The above two methods of programming depend heavily on the submatrix facility in the VectorSpace C++
Library. This dependency can be removed, if we flatten the submatrix into plain matrix with concatenation oper-
ations as (by setting only macro definition “©  TEST B _MATRIX_CONCATENATE_EXPRESSION" in the

same project)

HO NxO, Nx1, Nx2, Nx3;

Nx0 &= Nx[0]; Nx1 &= Nx[1]; Nx2 &= Nx[2];

U WNPE

stiff &= ((~B) * (D * B)) | dv;

/Il aliases

Nx3 &= Nx[3];

HO B = (NxO[0] |C0(0.0) | Nx1[0] |C0(0.0) | Nx2[0] |C0(0.0) | Nx3[0] |C0(0.0) ) &
(C0(0.0) | NxO[1] |CO0(0.0) | Nx1[1] |CO0(0.0) | Nx2[1] |C0(0.0) | Nx3[1] ) &
(NxO[1] | NxO[0] | Nx1[1] | Nx1[0] | Nx2[1] | Nx2[0] | Nx3[1] | Nx3[0] );

We see that this implementation takes direct image of the right-hand-side block in the Figure 4+43. In the abo
code, no submatrix facility is used only the concatenate operator “|” is used to bBHtthix from ground-up.
Comparing the bottom-up with the top-down algorithms, the only difference is the semantics. In the last algo
rithm, we have flatten out the submatrix into simple matrix. In doing so, we can avoid using the requirement o
submatrix features supported by the VectorSpace C++ Library. We may want to optimize the rapid-proto-typin
code by eliminating the features supported in VectorSpace C++ Library step-by-step, such that the overhe
caused by the use of VectorSpace C++ Library can be alleviated.

A even more Fortran-like equivalent implementation is as the followiisgs the macro definition to noth-

ing)

1 HOK(8, 8, @ouble®)0, qp), DB(3, nsd,doubleX)0, qp), B1, B2;

2 for(int b =0; b <nen; b++) {
3 B1 &= Nx[b][0];

4 DB[0][0] = Dv[0][0]*B1;
5 DB[1][0] = Dv[0][1]*B1;
6 DB[2][0] = Dv[2][2]*B2;
7
8
9

B2 &= Nx[b][1];
DBJ0][1] = Dv[0][1]*B2;
DBJ[1][1] = Dv[1][1]*B2;
DBJ[2][1] = Dv[2][2]*B1;
for(inta=0; a<=b; at++){

B1 &= Nx[a][0];

B2 &= Nx[a][1];

9 k[2*a ][2*b ]=B1*DB[0][0] + B2*DB[2][0];
10 k[2*a ][2*b+1] = B1*DB[0][1] + B2*DB[2][1];
11 k[2*a+1 J[2*b ] = B2*DB[1][0] + B1*DB[2][0];
12 k[2*a+1 J[2*b+1] = B2*DB[1][1] + B1*DB[2][1];
13}

14 }

15 for(int b = 0; b < nen; b++)

16 for(int a = b+1; a < nen; a++) {

17 k[2*a J[2*b ]=k[2*b ]J2*a ;
18 k[2*a ][2*b+1 ]=k[2*b+1 ]J[2*a ];

/I D*B takes care of zeros

/I BT DB takes care of zeros

I/l determined by minor symmetry

1. p. 153 in Thomas J.R. Hughes, 1987, “ The finite element method: Linear and dynamic finite element analysis.”, Prentic

Hall, Englewood Cliffs, New Jersey.
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19  K2*a*l][2*b  ]=K[2*b ][2*a+l ];
20 K[2*arl][2*b+1 ] =K[2*b+1 ][2*a+l ];
21 }

22 tiff &=k | dv;

In lines 2-14, provision is taken to eliminate the multiplication with “0” componengmB Only the “nodal
submatrices”—ke in the diagonal and upper triangular matrixk@fis computed. The lower triangular part

matrix is then determined by symmetry V\Mﬁb = (keba) (lines 15-21). We recognize that this is the idiom of

using the low-level language expression with indices in accessing the submatrices of thie,mstigndf a +

ij[ndf b + j]". By this way, we may avoid using the submatrix facility in VlectorSpace C++ Library entirely. Cer-
tainly the optimized low-level code is much longer, less readable, and harder to maintain for programmers.
Nonetheless, this last version can be easily optimized even more aggressively in plain C language without using
the VectorSpace C++ Library at all. The last step is to have an numerical integration at the most outer loop where
we evaluate all values at Gaussian quadrature points and multiply these values with their corresponding weights.

Implementationsfor Indicial Notation Formulation:
Recall Eq. 4-161

. g a
kiab = MNg i NpjdQ + U8 [Ny e Np dQ + [Ny j Ny, ;dQ0
The integrand of the nodal submatrikgg (ndfx ndf submatrices) has the first term(the volumetric part) as

PN Nop NN,

N Oox ax O0ay ax

NNy PN,

Oox oy O0oay ay

AM(Ngi Ny ) = Eq. 4+176

Note that A may replace\ for the plane stress case in Eq. 4¢167. The rest of the integrands of Eq. 4161 is its
deviatoric part

H(3;;(Ng i Np i) + (Ngj Ny i)

i a6NbD ﬂ aaNbD 0 ﬂ aDmeﬂ aaNb
u Oox ox O Oay oy O fu Hox DXDDay ox
I]ax 6xD Day ay IZIax ayDDay ay
LﬂaNbD LaaNbD La%m
_ Dax axlil Loy oy O Uoy ox O Eq. 4+177
[f aﬂ)m [f aaNbD [f aaNb
Oox oy O Uox 6x|:| Day 6y

Eq. 4176 and Eq. 4177 are implemented as (by setting, at compile time, the macro definition of
“ _TEST_INDICIAL_NOTATION_FORMULATION")
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1 COe(ndf), E(nen), U = (e%e)* (EY%E);

2 HOw_x=INTEGRABLE_SUBMATRIX("int, int, HO&", 1, nsd, nx), wx, wy;

3 wx&=w x[0][0]; wy &=w_x[O][1]; I

4 COsiff_vol = lambda bar* /1| (fNaONor (ON2ON,

5 ( 1\ Oox ox OOay ax

6 +( wxr=wx*U[O][0]+wx* ~wy*U[0][1]+ // | PNaONor (PNaON,

7 wy*~wx* U[1][0]+wy*~wy*U[1][1] ) // [Hox oy UDoy oy

8 |d v);

11 COstiff_ dev=mu_*

12 ( " N,ON N,ON N,ON

13 +( (2"wox ~wxhwy* ~wy)* (0] %efO])(EeE) ) |poeten, R0y (IMaTMey

14 (wy-wx) (0] %e[1)* (E%E)+ N ox oxt Loy ay dy ox

15 (wx-wy)  *(([2%e0)* (E%E)+ U PNa9Nyy PNaONoy  (PNaON,
16 (WX* ~wx+2*wy* ~wy)* (e[ 1] %e[ 1])* (E%E))// Oox oy O Oox ox U “Hoy ay
17 )

18 | dv);

19 stiff &= tiff_vol + stiff_dev;

Line 4-8 implements the integrand of the volumetric element stiffness by Eq. 4176 and line 11-18 implement
the integrand of the deviatoric element stiffness by Eq. 4¢177. Note that the unary positive operator in front c
both line 6 and line 13 are conversion operation to convert an Integrable_Nominal_Submatrix (of object typ
HO) into an Integrable_Matrix (of tyge0). An Integrable_Submatrix version of this implementation will be

HOvol = INTEGRABLE_MATRIX("int, int, Quadrature", nsd*nen, nsd*nen, gp),
vol_sub = INTEGRABLE_SUBMATRIX("int, int, HO&", nsd, nsd, vol);

vol_sub[0][0] = wx*~wXx; vol_sub[0][1] = wx*~wy;

vol_sub[1][0] = wy*~wX; vol_sub[1][1] = wy*~wy;

CO stiff_vol = lambda_bar * (vol | dv);

HO dev = INTEGRABLE_MATRIX("int, int, Quadrature”, nsd*nen, nsd*nen, gp),
dev_sub = INTEGRABLE_SUBMATRIX("int, int, HO&", nsd, nsd, dev);

dev_sub[0][0] = 2*wx*~wx+wy*~wy; dev_sub[0][1] = wy*~wX;

dev_sub[1][0] = wx*~wy; dev_sub[1][1] = 2*wy*~wy+wxX*~wWX;

10 COstiff_dev =mu_ * (dev | dv);

11 stiff &= stiff_vol + stiff_dev;

©CoOoO~NOULD, WNBE

The same implementation with one-by-one concatenation operations “||” and “&&” will be

1 COstiff_dev = mu_ *( ( ((2*Wx*~Wx+Wy*~Wy) || (Wy*~Wx) ) &&
2 (Wx*~Wy) [ (Z*Wy*~Wy+Wx*~Wx))

3 ) [ adv);

4 COstiff_vol = lambda_bar *( ( (Wx*~WX) || (Wx*~Wy)) &&

5 (Wy*~Wx) || (Wy*~Wy))

6 ) [adv);

7 stiff &= stiff_vol + stiff_dev;
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The flatten-out coding using concatenation operations “|” and “&” is not recommended, sinee the 8 8 stiff-
ness matrix is just too much for either write it all out, or be read easily. An aggressively optimized counterpart

using less VectorSpace C++ library features is shown in the foIIo?Nings

1 doublecl =lambda_bar + mu_, c2 = mu_, c3 = lambda_barrdplaces\ for plane stress

2 HOk(nen*ndf, nen*ndf, double*)0, qp);

3 for(intb =0; b < nen; b++) [/l upper triangular nodal submatrices +
4 for(int j = 0; j < ndf; j++) /I diagonal nodal submatrices only

5 for(inta=0;a<=b;at+) 1 ﬂ%m ﬂl%

6 for(inti=0;i<ndf; i++) /) Hox ox U0y ox O o

7 if((@!=b) |l (a==b&&i<=])) IKetermp) = 3 | ON_ON,-, NN

8 ramndrbmd] = NNl 0 E%a—ybg Eﬁa—ya_yb

9 for(inti=1;i< nen*ndf; i++) 1

10 for(intj=0;j<i;j++) 1

11 K101 = K[IM; /I get lower triangualr part by symmetry
12 COK=Kk|dyv; ke

13 for(int b =0; b < nen; b++) //0n|y the upper triangular of nodal submatrlkgég’

14 for(inta =0; a <=b; a++) {

15 COtemp = 0.0;

16 for(int k = 0; k < ndf; k++)

17 temp += K[k+a*ndf][k+b*ndf];
18 for(intj = 0; j < ndf; j++)

19 for(inti=0;i<=j; i++) {

20 if(i ==) Il diagonal components of nodal submatricd!@@
21 Kli+a*ndf][i+b*ndf] = c1*K[i+a*ndf][i+b*ndf]+ c2*temp;

22 dse if(a==b) /I off-diagonal components of diagonal nodal submat-
23 K[i+a*ndf][j+a*ndf] *= c1; Il rices—ko3%(those in upper triangular &f; i<j)
24 e /I off-diagonals components

25 double Kij = K[i+a*ndf][j+b*ndf], /I of off- dlagonal nodal submatrlcesk—'alb (az b)
26 Kji = K[j+a*ndf][i+b*ndf]; /I % rONaONy Ef:ﬁ b%m

27 K[i+a*ndf][j+b*ndf] = c3*Kij + c2*Kji;// -[ Oox 9y 0" HOay ax

28 K[j+a*ndf][i+b*ndf] = c3*K|i + c2*Kij;// D3:1(3me d’_aaNb

29 } I %Day o 0" Milax 3y TP

30 }

31}

32 for(inti=1;i< nen*ndf; i++) I get lower triangular partlaf by symmetry

33 for(intj=0;j<i; j++) I

34 K[iI0] = KEI0T;

35 stiff &= K;

1. p. 155in Thomas J.R. Hughes, 1987, “ The finite element method: Linear and dynamic finite element analysis.”,

Hall, Englewood Cliffs, New Jersey.
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All integration operations are done with between lines 3-12. Data of the derivatives of shape function are stored
in matrix ke temporarily as

ANy NN,

b Oox ax O0ay ax

e = v, on,on

Uox ay O0gy ay

do Eq. 4178

Then,k. is overwritten by the rest of the codes. Lines 13-34 will have no integrable objects involved. In both of
these two parts, the symmetry consideration is taken, and only the components of the diagonal nodal submat
and upper-triangular nodal submatrices belonging to the upper triangular pagrefcalculated, to reduce the
number of calculation. Firstly, line 17 calculates the following quantity and store in the variable “temp”

I[D‘:la'\‘bu d’:ﬂ‘mbm} o Eq. 44179
J Oax ax O Ooy ay O

Lines 20-21 gets diagonal components of the nodal submatrices according to

(A+2 )d)_aaNbD ﬂ‘%lﬂ 0

Oox ox 0" Mgy ay O

Q 0 ()\ Zu)da_a Nb|:| ﬂ‘%m

Doy oy O HOax ox O

do Eq. 4+180

where the null symbol™ " denotes the corresponding components in the matrix are not calculated. Lines 22-2
and 25-30 get the off-diagonal components of nodal submatrices

; PNy, NN,

Dax 6yIZI Day 0x

0[5 PNaONory ELaaNbD 0

Day 6x|:| HOax oy U

do Eq. 4181

Special care is taken in lines 22-23, when the nodal submatrices are diagonal nodal submatrices. In the case
node number index isa”, we haveNyy Nay = Ny Ny, That is the off-diagonal components in the diagonals
nodal submatrices in Eq. 4+181 is reduced to

ON,ON,
R+ D ax By |dQ EQ. 44182
Q0 a

For these diagonal nodal submatrices the off-diagonal components calculation is therefore further simplified t
lines 22-23. Notice that components in lower-left corner of Eq. 4¢182 are not calculated, because these compg
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nents belong to the lower triangular part of ke, and they can be obtained by symmetry asin lines 32-34. Lines 24-

29 take care of the rest by Eq. 4+181; i.e., the off-diagonal components in off-diagonal nodal submatrices, they
all lie in the upper triangular part & This implementation is probably the most efficient of all. However, the
code is quite abstruse without study its comments and explanations carefully. Lots of programming merits are all
compromised in the name of efficiency.

Implementation for Coordinate-Free Tensorial Formulation:

Now we turn away from the goal of optimization for efficiency completely to the goal of obtaining a most
physically and mathematically comprehensive implementation. For research scientists and engineers, it is most
likely to have a formula available that is derived from physical principles such as the development of elasticity
in the beginning of this section. The finite element formula may not be available. VectorSpace C++ Library
together with object-oriented features in C++ language may serve agitth@roto-typing tools. A high-level
code can be quickly implemented with VectorSpace C++ Library because it provides capability of making com-
puter code very close to its mathematical counterparts. If it turns out further optimization is necessary for either
saving computation time or memory space, the numerical results of the high-level prototype code can be used to
debug the optimized code which is often quite un-readable and error-prone.

First we recall Eq. 4¢155 fov={v OH} , we have the inner product defined by a symmetrical bilinear form

a(v,v) = I[)\div ve div v+2u(def v :def v)]dQ Eq. 4+183
Q

The inner product givessgalar. The implementation for the coordinate free tensorial formulation will be based
on Eq. 4+156 which is

ke = a(Ny Np) = [IA(div Ny» div Np) +2u(def N, : def Ny)]dQ Eq. 4+184
Q

where N, O V" , and superscripts and subscriptsb} are the element node numbers. The element variables,
e.g., in 2-D elasticity for bilinear 4-nodes element, are arranged in the otder{of, Vo, Uy, Vy, Wy, Vs, Ug, Va} .
The variable vectan has the size of (ndf nen) =<2 4 =8. Therefore, we identify thdtritie element space—
Vh(QQ has its inner product operation producing @ement stiffness matrix, ke , of size (ndk nerny (ndf nen)
= 8x 8. We also observed that the differential operators “ddéf”; and thedouble contraction “:” on the finite
element space(h(Qp), all need to be defined. The closest thing to the finite element s\ﬁaﬁg) in Vector-
Space C++ Library is the typ¢l which is an integrable type differentiable up to the first order. HowkNeis
certainly not a finite element space. The inner product of objects definedlbwill not generate a
(ndfxnenk (ndk nen) element stiffness matrix, neither does it has the knowledge of & ot “:” opera-
tors. We may implement a customized, not intended for code reuse,ltla$s in ad hoc manner for the finite
element spaceM(Q,) as

1 dassHO h; /l forward declaration
2 dassH1 h{ /I finite element space\,@(QQ), whereV ={v 0OH1}
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3 Hln, x;

4  public:

5 H1 h(H1&, H1&);

6 HO_hdiv_();

7 HO_hgrad ();

8 HO _hgrad t ();

9 HO_h def_();

10 };

11 dassHO_h: publicHO{ Il return type for the differential operators div, grad, def
12 public:

13 HO_h(cong HO& @) : HO(a) {}

14 HO operator ~(const HO_h&); // double contraction:”
15 }

16 HO_h div(H1 _h& n) {return n.div_(); }

17 HO_h grad(H1_h& n) feturn n.grad_(); }

18 HO _hgrad _t(H1 hé& n){eturnn.grad_t ();}
19 HO_h def(H1_h& n) feturn n.def (); }

20 H1_h:H1_hA1& N, H1& X) {n=N; x = X; }

The differential operators “div” andd&f” are applied to the finite element spacvﬁéﬂg which can be imple-
mented as an abstract data type “H1_h". The return values of these differential operators are of yet anott
abstract data type “HO_h". In the terminology of object-oriented analysis, HO_h “I0Aype. The “IS-A”
relationship between HO_h ahi is manifested by the definition of class HO_h as publicly derived fromHtass

(line 11). We can view class “HO_h" as an extension of El@s® define the double contraction operatioh “

The double contraction operator is defined as a public member binary operator tp@ator ~ (const
HO_h&)" (line 14). We emphasize that with the public derived relationstégs HO _h inherits all the public
interfaces and implementations of clels Moreover, we design to have H1_h used indement formulation

as close to the mathematical expression as possible. Lines 16-20 are afugdifumyctions defined to provide

better expressiveness, such that, we may write in element formulation as simple as

HL1 h N_(N, X); /P_\(div N,
COK_vol = lambda_bar*(((~div(N_))*div(N_)) | dv), /fa

K_dev = (2"mu_) * ((def(N_) ~ def(N)) [ dv);  f2u(def N,:def N,)dQ
stiff &= K_vol + K_deyv; Q

< div N)dQ

A WNPF

which is almost an exact translation of high-flown mathematical expression of Eq. 4¢184. The constructor ¢
class H1_h take two arguments of tyjhe The first argument is the shape functions—"“N", and the second argu-
ment is the physical coordinates— “X”. The derivatives of the shape function can be computed from these tw
objects as

HO Nx = d(N) * d(X).inverse();

These two objects have been defined earlier in the element formulation. Now we get to the definition of th
divergence operator “div” according to Eq. 4144
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divu=u;=2 +g—§ Eq. 4185

Or in the form of the nodal subvector (row-wise) for filnéte element space—Vh(QQ) as

{% "ﬁa} Eq. 4+186
ox oy

of size Ix 8. EQ. 4+186 can be implemented as

HO_h H1_h:div_() {
HO Nx = n.d() * x.d().inverse();
HOw_x = INTEGRABLE_SUBMATRIX("int, int, HO&", 1, 2, Nx);
HOwx = (+w_x[0][0]), wy = (+w_x[O][1]);
COu = BASIS("int", 2), E = BASIS("int", 4);
HOret_val = wx(0)*(u[O]*E) + wy(0)*(u[1]*E); I EQ. 4186
return ~(+ret_val);

coO~NO UL WDNBE

}

This divergence operation will return an Integrable_Matrix of size 1 8. Therefore, the inner product,
“dive div”, not with respect to node number, will return an element stiffness matrix object (an
Integrable_Matrix of typ#10) of size & 8. The gradient operatar &d” is defined (also in Eq. 4¢144)

ou dv
grad u=00u=uy; = gx gx Eq. 4-187
' u av

ay dy

Notice that we arrange “u”, “v” in row-wise order to be compatible with the order of the variable vector in ele-
ment formulation. This special ordering makes the gradient tensor in Eq. 4¢187 as the transpose of the ordinary
mathematical definition ograd u. The nodal submatrices of the return valuegpbtl” operator are

N, AN,

ox ox Eq. 4+188
N, aN,

dy oy
Eq. 4+188, for grad” operator oV, should return a2 8 Integrable_Matrix, and it is implemented as
1 HO_hH1 h:grad ()

2 HO Nx = n.d() * x.d().inverse();
3 HOw_x = INTEGRABLE_SUBMATRIX("int, int, HO&", 1, 2, Nx), wx, wy;
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4 wx &= ~(+w_x[0][0]); wy &= ~(+w_x[0][1]);

5 COeu=BASIS("int", 4),

6 e=BASIS("int", 2),

7 E1=BASIS("int", 1),

8 E2 = BASIS("int", 4),

9 a= (eY%eu)* (E1%E2);

10 HOret_val = wx*g[0][0] + wx*a[Q][3] + /l EQ. 4188
11 wy*a[1][0] + wy*a[1][3];

12 return ret_val,

13 }

The operatorgrad ™ is defined independently frongtad” for the finite element spaceV—h(QQ, which can not
be obtained by the transpose of the resulting matrixgidd”. This is because that the transpose operation on
grad is with respect to its spatial derivatives only not with respect to element node numberaingett-differ-
ential operatorsdrad” and “grad "™ have return value, with the size ok2 8, of type HO_h which is derive from

Integrable_Matrix of typ&i0. The operator grdchas its nodal submatrices
N, ON,
ox ay
ON, ON,
ox dy

which is implemented as

1 HO_hH1 h:grad_t (){

2 HO Nx = n.d() * x.d().inverse();

3 HOw_x = INTEGRABLE_SUBMATRIX("int, int, HO&", 1, 2, NXx), wx, wy;
4 wx &= ~(+w_x[0][0]); wy &= ~(+w_x[0][1]);

5 C0 eu = BASIS("int", 4),

6 e = BASIS("int", 2),

7 E1 = BASIS("int", 1),

8 E2 = BASIS("int", 4),

9 a = (e%eu)*(E1%E?2);

10 HO ret_val = wx*a[0][0] + wy*a[0][2] + //EQ. 4189
11 wx*a[1][1] + wy*a[1][3];

12 return ret_val,

13 }

The operatordef”, for the finite element space%Lh(Qe), is defined according to Eq. 4+148

def UE%(grad u+(grad u)T)

With both ‘grad” and “grad ™ already defined, def” can be implemented simply as

Eq. 4+189

Eq. 4190
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1 HO _hH1 h:def () {

2 HOret_val = (+(grad_t(*this) + grad(*this))/2); / EQ. 4190
3 return ret_val,

4}

The differential operatadef also return a2 8 HO_h type object. The double contraction is defined in Eq. 4¢154
def u : def u = tr((def u) "def u) Eq. 4+191

The implementation of the binary operator “*" as double contraction operator is comptetely. Under the
discretion of the programmer, it has assumed that the two operands of the binary operator are the return values of
thedef operator. The return value has the size>of 8 8. This is evident from the left-hand-side of Eq. 4191.

1 HOHO_h:operator™(const HO_hé& a) {

2 HOret_val(8, 8, double*)0, a.quadrature_point());

3 HO ret_sub = INTEGRABLE_SUBMATRIX("int, int, HO&", 2, 2, ret_val);

4 HO def_w = INTEGRABLE_SUBMATRIX("int, int, HO&", 2, 4, a);

5 for(inta=0;a<4; at++)

6 for(intb =0; b < 4; b++) {

7 HO def wa = +def_w(0,a), def_wb = +def_w(0,b);

8 HO def_def = (~def_wa)*def_wb; J6Ef )T, (def u),,
9 HO dds = INTEGRABLE_SUBMATRIX("int, int, HO&", 2, 2, def_def);

10 ret_sub(a,b) = +(dds(0,0)+dds(1,1)); /I trace dér‘(J)Ta (def u)y’
11 }

12 return ret_val,

13 }

Line 3 is the nodal submatrices that we calculated according to Eq. 4¢191, and upon which we loop over all
nodes. This implementation can be activated by setting, at compile time, the macro definition
“ TEST_COORDINATE_FREE_TENSORIAL_FORMULATION” for the same project “2d_beam” in project
workspace file “fe.dsw”.

The extension ofil class in VectorSpace C++ Library to finite element spaeﬁ*é(QQ as H1 hclass in the
above is an example of the so-qalbgramming by specification in the object-oriented method.
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Post-Processing—Nodal Reactions

The reaction on each node can be computed after the displacement is known, accoijjg’ tdHe actual
computation is done at the constructor of class “ElasticQ4”, and is invoked in the main() program as the follow
ings.

ElasticQ4::ElasticQ4t en, Global_Discretization& gd) : Element_Formulation(en, gd) {

1

2

3 if(Matrix_Representation::Assembly Switch == Matrix_Representation::REACTION) {
4 stiff &= K | dv;

5 the_element_nodal_value &= stiff * (ul+gl);

6 } dsestiff &=K | dv;

7}

8 intmain() {

9

10 Matrix_Representation::Assembly_Switch = Matrix_Representation::REACTION;
11 mr.assembly(FALSE);

12 cout << "Reaction:" <<endl << (mr.global_nodal_value()) <endl;

13 }

The class “Matrix_Representation” has the member function “assembly()” which maps

“the_element_nodal_value” to the “mr.global_nodal_value()” used in the “main()” function. The reaction is not
computed in the present example of project “beam_2d”. The next project “patch_test”, in the next section, wil
compute this quantity.

Post-Processing—Stresses on Gauss Points

After the displacement solution is obtained, stresses can be computed from stress-strain relation, e.g., in B-
matrix form of Eq. 4¢173, the stress is

oh = DB(2 Eq. 4192

After the nodal displacements? , are obtained, we can loop over each element to calculate the stresses on €
Gaussian integration point as,

HeatQ4::HeatQ4ft en, Global_Discretization& gd) : Element_Formulation(en, gd) {

1

2

3 if(Matrix_Representation::Assembly Switch == Matrix_Representation::STRESS) {
4 HO Sigma = INTEGRABLE_VECTOR("int, Quadrature", 3, gp);

5 Sigma = 0.0;

6 for(inti=0; i< nen; i++) {

7 B1 &= NXx[i][0]; B2 &= NXx[i][1];

8 DBI0][0] = Dv[0][0]*B1; DB[0][1] = Dv[0][1]*B2;

9 DB[1][0] = Dv[O][1]*B1; DB[1][1] = Dv[1][1]*B2;

10 DBJ[2][0] = Dv[2][2]*B2; DB[2][1] = Dv[2][2]*B1;
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11 Sigma += DB(0)* (ul[i* ndf]+gl[i* ndf]) + DB(1)* (ul[i* ndf+1]+gI[i* ndf+1]); // oh = DB(2
12 }

13 int ngp = gp.no_of _quadrature_point();

14 for(inti =0; i< ngp; i++) {

15 cout << setw(9) <<en

16 << setw(14) << ((HO)X[0]).quadrature_point_value(i)

18 << setw(14) << ((HO)X[1]).quadrature_point_value(i)

19 << setw(14) << (Sigma[0].quadrature_point_value(i))

20 << setw(14) << (Sigma[1].quadrature_point_value(i))

21 << setw(14) << (Sigma[2].quadrature_point_value(i)) << endl;
22 }

23 } dediff &= ...

24}

25 int main() {

26

27 Matrix_Representation::Assembly_Switch = Matrix_Representation:: STRESS;
28 cout << << "gauss point stresses. " << endl;

29 cout.setf(ios::left,ios::adjustfiel d);

30 cout << setw(9) << " elem #, " << satw/(14) << "x-coor.," << setw(14) <<"y-coor.,"

31 << setw(14) << "sigmar1l,” << setw(14) << "sigma-22," << setw(14) << "sigma-12" << endl;
32 mr.assembly(FALSE);

33}

Post-Processing—Stress Nodal Projection Method
Stress projection for nodal stress, O . , issimilar to the heat flux projection on node gg, the element stresses

are interpolated from the nodal stresses as

O0=N,(% )00 Eq. 44193

The weighted-residual statement with Galerkin weightingwhaiN,
INa(GQ—GQ)dQ =0 Eq. 4+194
Q
Substituting Eq. 4¢192 and Eq. 4117 into Eq. 4118, we have
ad U~ b N
%NaNbdQ%Ue = J’(Na(DBug))dQ EQ. 4195
Q

The nodal stresse@:}1 can be solved for from Eq. 4¢195. Following the same procedure for the heat flux projec-
tion on node, in the previous section, Eq. 4195 can be approximated similarly for the stress nodal projection by
implementing the following codes.
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ElasticQ4::ElasticQ4(int en, Global _Discretization& gd) : Element_Formulation(en, gd) {

1

2

3 if(Matrix_Representation::Assembly Switch == Matrix_Representation::NODAL_STRESS) {

4 int stress_no = (ndf+1)*ndf/2;

5 the_element_nodal_value &= CO(nen*stress _no, (double*)0);

6 CO projected_noda_stress = SUBVECTOR("int, CO&", stress no, the_element_nodal_value);
7 HO Sigma= INTEGRABLE_VECTOR("int, Quadrature", 3, gp);

8

9

Sigma= 0.0;
for(inti =0; i <nen;i++) {
10 B1 &= Nx[i][0]; B2 &= Nx[i][1];
11 DB[0][0] = Dv[0][0]*B1; DB[0O][1] = Dv[Q][1]*B2;
12 DB[1][0] = Dv[0][1]*B1; DB[1][1] = Dv[1][1]*B2;
13 DB[2][0] = Dv[2][2]*B2; DB[2][1] = DV[2][2]*B1,;
14 Sigma += DB(0)* (ul[i* ndf]+gl[i* ndf]) + DB(1)* (ul[i* ndf+1]+gl[i* ndf+1]);
15 }
16 for(inti =0;i <nen;i++) {
17 CO lumped_mass = ((HO)N[i]) | dv;
18 projected nodal_stress(i) = ( (HO)NJ[i])*Sigma | dv ) / lumped_mass;
19 }
20 } deedtiff &=K | dv;
21}
22 int main() {
23

24 Matrix_Representation::Assembly_Switch = Matrix_Representation::NODAL_STRESS;
25 mr.assembly(FALSE);

26 cout << "nodal stresses: " << endl;

27 for(inti = 0; i < oh.total_node_no(); i++) {

28 int node_no = oh.node_array()[i].node_no();

29 cout << "{ " <<node no<<"|"

30 << (mr.globa_nodal_value()[i][0]) << ", "

31 << (mr.globa_nodal_value()[i][1]) << ", "

32 << (mr.global_nodal_vaue()[i][2]) << "}" << endl;
33 }

34

35}

The computation of strains on Gaussian integration points and nodes is similar to the computation of stresses. In

place of Eq. 4192 for stresses, we have strains computed according! toBug . The flag
“Matrix_Representation::Assembly_Switch” is now set to “Matrix_Representation::STRAIN” and
“Matrix_Representation::NODAL_STRAIN” for Gauss point stresses and nodal stresses, respectively. Th
results of relative magnitudes of displacements, nodal stresses and nodal strains of the 4-node quadrilateral
ment are shown in Figure 4«44,

We introduce the notorious pathology of the finite element method by demonstrating (1) shear locking an
(2) dilatational locking for the bilinear four-node element in plane elasticity.
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Figure 4«4Displacement (arrows), nodal stresses (crossed-hairs, solid line for compression, dashed
linefor tension), and nodal strain (ellipsoidals) of the beam bending problem. The magnitudes of these

three quantities have all been re-scaled.
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Shear Locking of Bilinear 4-Node Element

The bilinear 4-node element has shape functions as

1
Na(zvn) = Z(1+Ea€)(l+nan) Eq 4196

We considered a special case of a rectangle (Eq. 4+45a), for simplicity, under applied bending moment as sho
in Figure 4+45. Therefore, the finite element space is spanned by the bRse§lof, n, &n}. Since referential
coordinates- andn- axes of the rectangle is assumed to coincide with the physical coordinates x- and y- axes
the finite element space is also spanned by {1, x, y, xy}. The solution to the displacemantfeldv]" for the
bending problem, in plane stress, is

—_ Ul Z Xy
u= =1, s, Eq. 44197
2%y

This analytical solution is shown in Figure 4«45b witl O for simplicity. The horizontal displacement compo-
nent, u = xy, will be represented correctly by the bilinear four-node element, since the basis “xy” is included. Th
gquadratic terms,and )? in the solution of vertical displacement “v” will not be captured by the element. These
quadratic forms of solution will be “substituting” or “aliasing” to the linear combination of baded-ior the

bilinear four-node element the shape functions Eq. 4196 can be expressed in its generic fifm REL” 2
Therefore, from Eq. 4¢196, we have
1111
ul(&,n) =N ué = P(£,n)C-1ug where C1 = 1-111- Eq. 4+198
e ’n - a(zlrl)ue ’rl € 4 1-11 1 '
1-11-1
n
<\ . 4
1 -
N
\ /
- . . ani A 1 = -
A ‘ in-plane bending key-stoning; u = xy, v = const.
@ (b) (©)

Figure 445 Rectangular element shear locking analysis.

1. p.218 in MacNeal, R.H., 1994, “Finite elements: their design and performance”, Marcel Dekker, Inc., New York.

2. p. 116 in Zienkiewicz, O.C. and R.L. Taylor, 1989, “The finite element method: basic formulation and linear problems”,
vol. 1, McGraw-Hill book company, UK.
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Let's exam the “aliasing” of a quadratic solution &Zinto a bilinear four-node element. The corresponding
nodal valuesid  and discretized variabfe  are

&l [y
2
ag = (Ea)2 = El = 1 , Eq 4199
&l |1
ZI
and,
U1 11101
uh = pc0g = -1 1 1-10Y - Eq. 4+200
O[1-11-101
That is we have the alias 20 1 . By symmetry of the element we can also obtain the afds of . The

vertical displacement solution in the bending problem in Eqg. 4197 will then be aliased, considering the aspect
ratio “/\” in the transformation of natural to physical coordinates in a rectangular element, into

A2 v
u=xy, and v=———5=

5 —5 = condant Eq. 4-201

With vertical displacement “v” as constant through out the element domain, the deformation becomes a “key-
stoning” or “x-hourglass” mode (see Figure 4+45c, where the constant “v” is set to zero for comparing to the
original configuration). That is the lower-order element, such as the bilinear 4-node element, bdhkibigs
phenomenon, when a boundary value problem corresponding to a higher-order solution is imposed.

The analytical strain, derived from Eq. 4¢197, corresponding to the bending problem is

ou
EX 0X y
e =] N =y Eq. 4202
Yol lov, o 1O

ox ady

where u and v are solutions in Eq. 4¢197. The bilinear 4-node element under the same bending condition
responds with the solution in Eq. 4¢201, and we have the corresponding strains as
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Eq. 4203

™
1l
X o

yxy

Comparing Eq. 42202 and Eq. 4+203, baffandy,, are in error. With Poisson’s ratio in the range ef[0, 0.5],

Yxy Will be more serious thag). The source of error is theterpolating failure of the bilinear four node element
WhICh leads to the aliasing of? and )? terms in Eq. 4+197 into constants in Eq. 4¢201. A partial solution to this
locking problem is to evaluatg, at& = 0, andh = 0. That is one Gauss point integration of in-plane shear strain
at the center of the element, an:d 2 2 integration for the remaining direct strain compglmutq, A more
satisfactory treatment is to add back bctland )? to the set of shape functions which is the subject of “non-con-
forming element” in page 502 of Chapter 5. We introduce the treatment by selective reduced integiiation on
plane shear strain yyy(atg = 0,n = 0) in the followings.

EqQ. 4¢176 and Eq. 4177 are re-written as

PNeMNor NN,

Oox ax O0ox oay Eq. 4+204

ANy N0,

Ooy ox O0oay ay

A(Ng Nb,j) =A

and
H(S;j(Ng i« Ny i) +(Ngj Np i)

NN | NN NN

_ u IZlax ox O u Hox DXDDay X Eq. 44205
Day oy IZIax ayDDay oy

Notice that the positions in the stiffness matrix corresponding to variables u and v and their variations u’ and \
as

{(u’u) (u’v)} Eq. 4206
(V'u) (v'v)

The components in Eq. 4¢204 and the first term in Eq. 4.205 only involve the direct si(sng) andey(=v,y).

These terms are evaluated with 2 2 points Gauss integration (the full-integration). The components in the se
ond term of Eq. 4+205 involve the in-plane shear sygjfru,+v,,), and these are to be evaluated at the center
of the element wher&= 0,n = 0. This term is applied with 1-point Gauss integration (the reduced integration.)

In retrospect, had we apply 1-point integration to all terms, spurious modes (x-hourglass and y-hourglas
will arise. That is the two hourglass modes become eigenvectors for the stiffness matrix that is evaluated at t
center of the element. This is evident from Figure 4+45c. The cross-hairs which paralld],tq thess are dis-
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torted at 2x2 Gauss integration points, while it is totally undisturbed at the center of the hourglass deformation
mode. That is the hourglass modes give zero energy if 1-point Gauss integration is used. An alternative view is
reveal by the rank of the element stiffness matrix. The bilinear four-node element has 4(nen) x 2(ndf) = 8 d.o.f. If
the three rigid body modes have been properly constrained for the problem, we are left with 8-3 =5 d.of. The
rank of the stiffness matrix is provided by number of integration points (1) times the number of stress-strain rela-
tions (3); i.e., 1x3 = 3. Therefore, the rank deficiency for the 1-point integration element stiffness matrix is 5-3
= 2, which corresponding to the x-hourglass and y-hourglass modes. Therefore, in the selective reduced integra-
tion, the 2x2 integration on the terms involving the direct strains €, and €, provides afinite stiffness for the x-
hourglass and y-hourglass modes to prevent them from becoming spurious. The selective reduced integration on
the offending in-plane shear term isimplemented in Program Listing 4+16 (project: “invariance_formulation” in
project workspace file “fe.dsw”).

However, the selective reduced integration for curing the in-plane shear locking has a side effect. For an iso-
parametric element such as the bilinear 4-node element, we expect spatial isotropy; i.e., the element is invariant
with respect to rotation sincecamplete order of polynomial has been used; i.e., the so-caltedpleteness
requirement. This is true only if the element stiffness matrix is fully integrated. When the selective reduced inte-
gration is applied to the second term in Eq. 4205 that involves in-plane shearygfraithe spatial isotropy
will be lost. Therefore the orientation of an element does matter.

A first-order approximation can be proposed to correct the frame dependent problem for the sheahéerm.
idea is the shear term presented in Eq. 4205 is not symmetrical. We can symmetrize the two off-diagonal terms
by choosing a local preferred coordinate system x’ as shown in Figure 4¢46. The origin is at the centroid of the
element (computed as the intersections of two opposing mid-side line segments). The x’ and y’ axes are to make
angles withé andn axes in natural coordinates such that

08, _on .
aydy = axdx Eq. 4+207

This approximation is possible to make the shear term nearly invariant if we deal only with element shapes that
are very close to a square element. At the limit of infinitesimal coordinate transformation, Eq. 4207 is to assume
the “spin” at the centroid vanishes, which is adopted in the “co-rotational” formulation in finite element method.
The invariance formulation, discussed in the above, can be activated by setting macro definition
“ TEST_HUGHES” at compile time.

Unfortunately, for an arbitrary element shape, the mapping from the reference elenden? tim physical
element (in x, y) is unlikely to be infinitesimal as can be approximated in Eq. 4207. For an arbitrary element
shape, we can decomposed the shape distortion into eigenvectors as rectangular, parallelogram, and trapezoid
shapes (see Figure 4+48b). There is no practical invariance formulation that can renshapelsensitivity if
the trapezoid component for a particular element shape is $tiong.finite element program, which often
implemented with sparse matrix technique, the node-ordering can be changed, for example, in order to minimize
the bandwidth of the global stiffness matrix. Sudden change of the node-ordering can therefore inadversarily
change the value of the global stiffness matrix dramatically. A practical fixed to remedy the frame dependent in-

1. see projectin p. 261-262 from Hughes, T.J.R., 1987, “ The finite element method: linear static and dynamic finite element
analysis”, Prentice-Hall, Inc., Englewood Cliffs, New Jersey.

2. see p.241-248 in MacNeal, R.H., 1994, “Finite elements: their design and performance”, Marcel Dekker, Inc., New York.
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[ I
#include "include\fe.h”
static const double L_ = 10.0; static const doublec_ = 1.0; static const doubleh_e_=L_/4.0;
static const double E_ = 30.0e6; static const doublev_ = 0.25;
static const doublelambda_=v_*E_/((1+v_)*(1-2*v_));
static const double mu_ = E_/(2*(1+v.));
static const double lambda_bar = 2*lambda_* mu_/(lambda_+2*mu_); p|ane stresd modification
static const double K_ =lambda_bar+2.0/3.0*mu_;
static const doublee_=0.0;
Omega_h::Omega._h() {
Node * node; double v[2]; int ena[4]; Omega_eh *elem; define nodes
v[0] = 0.0; v[1] = 0.0; node = new Node(0, 2, v); node_array().add(node);
v[0] = h_e -e_; node = new Node(1, 2, v); node_array().add(node);
v[0] =2.0*h_e _-2.0*e_; node = new Node(2, 2, v); node_array().add(node);

Young’s modulus and Poisson ratio

v[0] =3.0*h_e -e_; node = new Node(3, 2, v); node_array().add(node);
v[0] =4.0*h_e_; node = new Node(4, 2, v); node_array().add(node);
v[0] =0.0; v[1] = 1.0*c_; node = new Node(5, 2, v); node_array().add(node);
v[0] = 1.0*h_e_; node = new Node(6, 2, v); node_array().add(node);
v[0] =2.0*h_e_; node = new Node(7, 2, v); node_array().add(node);
v[0] =3.0*h_e_; node = new Node(8, 2, v); node_array().add(node);
v[0] =4.0*h_e_; node = new Node(9, 2, v); node_array().add(node);
v[0] =0.0; v[1] = 2.0*c_; node = new Node(10, 2, v); node_array().add(node);
v[0] =h_e +e ; node=new Node(11, 2, v); node_array().add(node);
[a
[
[

eng[0] = 0; ena[1] = 1; enaf2] = 6; ena[3] = 5; define elements
elem = new Omega_eh(0, 0, 0, 4, ena); omega._eh_array().add(elem);
ena[0] = 1; ena[1] = 2; ena[2] = 7; end[3] = 6;
elem = new Omega_eh(1, O, 0, 4, ena); omega._eh_array().add(elem);
ena[0] = 2; ena[1] = 3; ena[2] = 8; end[3] = 7;
elem = new Omega_eh(2, 0, 0, 4, ena); omega._eh_array().add(elem);
eng[0] = 3; eng[1] = 4; ena[2] = 9; end 3] = §;
elem = new Omega_eh(3, 0, 0, 4, ena); omega._eh_array().add(elem);
ena[0] = 5; ena[1] = 6; ena[2] = 11; ena[ 3] = 10;
elem = new Omega_eh(4, 0, 0, 4, ena); omega._eh_array().add(elem);
ena[0] = 6; ena[1] = 7; eng[2] = 12; end3] = 11;
elem = new Omega_eh(5, 0, 0, 4, ena); omega._eh_array().add(elem);
ena[0] = 7; ena[1] = 8; eng[2] = 13; eng[3] = 12;
elem = new Omega_eh(6, O, 0, 4, ena); omega._eh_array().add(elem);
ena[0] = 8; ena[1] = 9; eng[2] = 14; eng[3] = 13;
elem = new Omega_eh(7, 0, 0, 4, ena); omega._eh_array().add(elem);
} B.C.
gh_on_Gamma_h::gh_on_Gamma_h(int df, Omega_h& omega h) { U, = = Vo= -0
__initialization(df, omega_h); int row_node _no =5, col_node_no = 3; 4= Ug 9= Uiy
the_gh_array[node_order(4)](0) = the_gh_array[node_order(14)](0) =
the_gh_array[node_order(4)](1) = the_gh_array[node_order(9)](1) =
gh_on_Gamma_h::Dirichlet; _ _ _
for(int i = 0; i < col_node _no; i++) { Tyo=Ty10= -75’Ty5 =-150
the_gh_array[node_order(i*row_node no)](1) = gh_on_Gamma_h::Neumann;
if(i == 0] i == (col_node_no-1)) the_gh_array[node_order(i*row_node no)][1] = -75.0;
elsethe_gh_array[node_order(i* row_node_no)][1] = -150.0;
}
}
class Elastic_Invariant_Formulation_Q4 : public Element_Formulation { public:
Elastic_Invariant_Formulation_Q4(Element_Type Register a) : Element_Formulation(a) {}
Element_Formulation * make(int, Global_Discretization&);
Elastic_Invariant_Formulation_Q4(int, Global _Discretization& );
b
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Element_Formulation* Elastic_Invariant_Formulation_Q4::make(int en,

Global_Discretization& gd) { return new Elastic_Invariant_Formulation_Q4(en,gd); }

Elastic_Invariant_Formulation_Q4::Elastic_Invariant_Formulation_Q4(
int en, Global_Discretization& gd) : Element_Formulation(en, gd) {
Quadratureqp(2, 4);

H1 Z(2, (double*)0, gp), Zai, Eta,

N = INTEGRABLE_VECTOR_OF TANGENT_BUNDLE("int, int, Quadrature", 4, 2, qp);

Zai &=Z[0]; Eta&=Z[1];
N[O] = (1-Zai)* (1-Eta)/4; N[1] = (1+Zai)* (1-Eta)/4;
N[2] = (1+Zai)* (1+Eta)/4; N[3] = (1-Zai)* (1+Eta)/4;
H1 X =N*xl; HONx = d(N) * d(X).inverse(); J dV (d(X).det());
HOW_x = INTEGRABLE_SUBMATRIX("int, int, HO&", 1, nsd, Nx), Wx, Wy;
Wx &=W_x[0][0]; Wy &=W_x[0][1];
C0 e=BASIS("int", ndf), E = BASIS("int", nen),
u=e*E, U = (e%e)* (E%E);
CO stiff_vol = (lambda_bar* ( +((Wx*~Wx)* U[0][ 0] +(Wx*~Wy)* U[O][1]+

(Wy*~Wx)*U[1][0]+(Wy*~Wy)*U[1][1] ) ) ) | dV;

Quadrature qpl(2, 1);
H1 z(2, (double*)0, gpl), zai, eta,

n=INTEGRABLE_VECTOR_OF TANGENT_BUNDLE("int, int, Quadrature", 4, 2, qp1);

zai &=27[0]; eta &= 7[1];

n[0] = (1.0-zai)* (1.0-eta)/4.0; n[1] = (1.0+zai)* (1.0-eta)/4.0;

n[2] = (1.0+zai)* (1.0+eta)/4.0; n[3] = (1.0-zai)* (1.0+eta)/4.0;

H1x=n*xl; HO nx = d(n) * d(x).inverse(); J dv(d(x).det());

HOw_x = INTEGRABLE_SUBMATRIX("int, int, HO& ", 1, nsd, nx), wx, wy;

wx &=w_x[0][0]; wy &=w_Xx[0][1];

CO stiff_dev_shear = mu_* (+( (wy*~wy)*U[0][0] +(wy*~wx)*U[0][1]+
(wx*~wy)*U[1][0] +(wx*~wx)*U[1][1] ) )| dv;

H1x1=N*xI; HO nx1 = d(n) * d(x1).inverse(); J dv1(d(x1).det());
HOw_x1=INTEGRABLE_SUBMATRIX("int, int, HO&", 1, nsd, nx1), wx1, wy1;
wx1 &=w_x1[0][0]; wyl &=w_x1[0][1];
CO stiff_dev_direct_strain = (2.0¥mu_)*
(+( (wxT*~wx1)*U[0][0] +(wy1*~wy1)*U[1][1] ) )| dv1;
CO stiff_dev = stiff_dev_shear + stiff_dev_direct_strain;
stiff &= tiff_vol + stiff_dev;
}
Element_Formulation* Element_Formulation::type list = 0;
Element_Type Register element_type_register_instance;
static Elastic_Invariant_Formulation_Q4
elastic_invariant_formulation_g4_instance(element_type_register_instance);
int main() {
int ndf =2;
Omega_h oh;
gh_on_Gamma_h gh(ndf, oh);
U_h uh(ndf, oh);
Global_Discretization gd(oh, gh, uh);
Matrix_Representation mr(gd);
mr.assembly();
CO u = ((COy(mr.rhs())) / ((CO)(mr.Ihs()));
gd.u_h() = y;
gd.u_h() = gd.gh_on_gamma_h();
cout << gd.u_h() << endl;
return O;

2x2 integration

volumetric terms

My IO,

A Oax ax O0ox ay

ANy OO,

Oay ox OOoay ay

1 point integration(deviatoric stiffness
which only involve shear strainy,y)

NN, PN
Oox ox OOoy ax

U
MMy OO,

Oox oy OOoy ay

2x2 integration (deviatoric stiffness
which only involve direct strains €, &
gy, notice that if the coordinates has
been rotated the local preferred coordi-
nates is the same as the pure shear term
in the above not the volumetric term.)

zﬁﬂjﬂ

Oox ox O
T
Loy oy

Listing 4¢16 Seletive reduce integration on the offending shear term (project workspace file “fe.dsw”,

project “invariance_formulation”.)
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y
y
‘%- 0, X
X &

Figure 4¢47 MacNeal's local preferred coordinate system for selective reduced
integration on shear term.

plane shear (after reduced integration) is to implement an algorithm to select, for example, the longest edge of

the elements to begin element node numbering.! Then transform the global coordinate system, for computing the
stiffness matrix, under a preferred local coordinate system. After the stiffness is computed at the element level, it

is transformed back to the global coordinate system then assembled to the global stiffness matrix. The origin of

the local coordinate system is chosen as center at the intersection of the two diagonals of the quadrilateral. The x-

axis is chosen to be the bisector of the diagonal angle as shown in Figure 4+47. This implementation can be a
vated by setting macro definition “__TEST_MACNEAL". Note that for simplicity we do not implements the
part of algorithm that choose the longest edge. We only implemented the more mathematical part of the alg
rithm that demonstrates how to translate to the center of the intersection of the two diagonals and then rotate
the local coordinate x’-axis, which is the bisector of the diagonals.

Figure 4¢46 Hughes’s local preferred coordinate system for the invariance formulation of the
shear term under selective reduced integra@ipifily|| = 6, ||dx||, or simply 8, =85 if [|dy]| ~ [ldx]|
which is consistent with the infinitesimal mapping assumption.

1. p.292 in MacNedl, R.H., 1994, same asthe above.

Workbook of Applicationsin Vector Space C++ Library 403



Chapter | 4 Finite Element Method Primer

The solutions of the selective reduced integration with invariance formulation is listed in TABLE 42. The
invariance formulation are performed on a distorted meshes as shown in Figure 4+48.

Full Integration | SelectiveReduced | Hughes’ local coord. | MacNeal's local coord. Analytical
-0.00311871 -0.0061448 -0.00535423 -0.00565686 -0.00518750

TABLE 4-2. Tip-deflections for selective reduced integration to prevent shear locking and
choices of local preferred coordinate system for invariance of the formulation.

—P
0.0625 0.125 0.0625

1 /v‘f) (76

X-stretching & y-stretching X- tapering & y-tapering

rectangulars parallelogram trapezoids

(b)
Figure 448 (a) Distorted element mesh for testing invariance formulation in the

selective reduced integration for shear terms. (b) 5 eigenvectors for an arbitary shape
distortion (x-, y- translation and rotation are not included).
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Quadratic Element: The Lagrangian 9-Node Element

The Lagrangian 9-node element is implemented as class “ElasticQ9” derived from class
Element_Formulation. The shape function is implemented based on a 4-t0-9 nodes algorithm (see page 190
Chapter 3)

1 Quadratureqp(2, 9); /I 2-dimension,»3 3 integration points;
2 H1Z(2, double)0, gp), /I Natrual Coordinates
3 N =INTEGRABLE_VECTOR_OF_TANGENT_BUNDLE("int, int, Quadrature", 9, 2, qp), Zai, Eta;
4  Zai &= Z[0]; Eta &= Z[1];

/l initial four corner nodes
5 N[0] = (1-Zai)*(1-Eta)/4; N[1] = (1+Zai)*(1-Eta)/4;

6 N[2] = (1+Zai)*(1+Eta)/4; N[3] = (1-Zai)*(1+Eta)/4;
// add ceter node
7 N[8] = (1-Zai.pow(2))*(1-Eta.pow(2));
/I modification to four corner nodes due to the presence of the center node
8 N[0] -= N[8)/4; N[1] -= N[8]/4; N[2] -= N[8]/4; N[3] -= N[8]/4;
I/l add four edge nodes
9 N[4] = ((1-Zai.pow(2))*(1-Eta)-N[8])/2; N[5] = ((1-Eta.pow(2))*(1+Zai)-N[8])/2;
10 N[6] = ((1-Zai.pow(2))*(1+Eta)-N[8])/2; N[7] = ((1-Eta.pow(2))*(1-Zai)-N[8])/2;
/I modification to four corner nodes due to the presence of the four edge nodes
11 N[O] -= (N[4]+N[7])/2; N[1] -= (N[4]+N[5])/2;
12 N[2] -= (N[5]+N[6])/2; N[3] -= (N[6]+N[7])/2;

The element is registered with element type number “1” in project “2d_beam”. When define element in the
constructor of the discretized domain “Omega_h” this is the number to be referred to the “ElasticQ9” elemen
For using this example, we set macro definition to “  LAGRANGIAN_9 NODES". The results of tip deflection
of the problem in this section are listed in TABLE 4¢3.We observe that the shear locking problem in bilinear four
node element is easily removed by using higher-order interpolation functions.

Element Type Tip Deflection
ElasticQ9 -0.00503098
Analytical -0.00518750

TABLE 4-3. Tip deflection of Lagrangian 9-node element
comparing to the analytical solution of Eq. 4+175.

Workbook of Applicationsin Vector Space C++ Library 405



Chapter | 4 Finite Element Method Primer

Dilatation L ocking of Nearly Incompressible Elasticity in Plane Strain

Considerable attention has been paid to the condition of incompressibility (with Poisson ratio v = 0.5) or
nearly incompressibility (v - 0.5). We will show examples that standard element formulation, in plain strain
case, with v - 0.5 will have its solution “locked” severely. A more systematic study is the main subject of
Chapter 5 on the “Mixed and hybrid finite element methods”. In this section, we introduce the popular engineer-
ing approach, theelective reduced integration for dilatational locking, which has been shown to be both very
simple and very successful. Let's first resume the analysis for bending problem in the bilinear 4-node element in
plane strain. Forv = 0.5 in elasticity the condition is equivalent to imposing a kinentatistraint that the
material is incompressible. The analytical solutidn is

u=xy, and v = —%xz—ﬁyz Eq. 4208
The corresponding analytical strains are
€y y
y| = _(1iv)y Eq. 4:209
Yxy 0
The volumetric strain is
g, =&t = %11__—2\)\)%/ and p= Kg, = % Eqg. 4-210
where the bulk modulug and Young’s modulug, Poisson’s ratie are related as
K= 5tss Eq. 4211
(1-2v)
Notice that even wherv - 0.5 , we hate- « (Eq. 4-211), gnd 0 (Eq. 4¢210), while the pressure “p”

(Eq. 4+210) remains finite. For a 4-node rectangular element, the aliasing of solution in Eq. 4+208 leads to

\

— — l 2 o
u=xy, and v ——2/\ ~20-v) Eq. 4+212
The corresponding strains manifested in the bilinear 4-node element are
EX y
g | = (0 Eq. 4213
X

1. p.216-217 in MacNeal, R.H., 1994 “Finite elements: their design and performance”, Marcel Dekker, Inc., New York.
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Now the volumetric strain g, = y, which is a finite value. When - 05 K, - «» amd- o  from Eq. 4210. This

is the dilatation locking at the incompressible limitof. 0.5 . Comparing Eq. 4+209 and Eq. 4218, both

y>éy are in error. The error is caused by ithter polating failure of the bilinear four-node element in representing
and Y. The situation is exactly the same as in the shear locking problem. Therefore, the non-conforming ele

ment (page 502 in Chapter 5), which adds b&cand ¥ to the set of the interpolation functions, will have the

capability to remedy both the shear locking and dilation locking problems for the bilinear four-node element.

A quick fix to solve this “dilatation locking” problem is that we can divide the stiffness matrix into volumet-
ric and deviatoric part. Then, the volumetric part is applied the reduced integration. With this selective reduce
integration scheme, the condition of constant volume constraint can be relaxed.

It is not immediately clear that how we can perform selective reduced integration Bxmétex formula-
tion, that is

kga = k(b = [£(5u)TDe(u)dQ = e [BIDB,dQe Eq. 4214
Q Q

A volumetric-deviatoric split! is applied to the stiffness of Eq. 4+214 into the volumetric part and deviatoric part.
Define the volumetric straig, as

g, =€ +tg, =meE Eq. 4+215
In vector form of plane elasticityp = [1, 1, O] and€ = &y, &y, yXy]T. The mean stress or pressure is
pE%(ox+oy+oz) =Keg, =K meE€ Eq. 4+216

K is the bulk modulus of the material. We define the devioatric sygis

£z v o f-mem Eq. 4217
The deviatoric stresgy is (in vector formo = [o,, 0, Txy]T)
Gy = WDgEg = uDo-5m 0 mE Eq. 4218
where
200
Dp=1020 Eq. 44219
001

1. p.334-352 in Zienkiewicz, O.C., and R.L. Taylor, 1989, “The finite element method: basic formulation and linear prob-
lems”, 4th ed., vol. 1, McGraw-Hill, London, UK.
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From Eg. 4216 and Eqg. 4+218 the volumetric-deviatoric split version d@-thatrix formulation (Eq. 4214)
becomes

kpa = kiaib = Is({)u)TO'(u)dQ = Is(w)T[Gd(u)+m|O(U)]0|Q
Q Q
= eTB Bl BD —ZmomdB,do + BIK(m O m)B dQEE Eq. 4220
—id;a[u 073 D}b Ia b7 Q.
Q

We may define the volumetric stiffness and deviatoric stiffness separately as

\¢]

= eiTIBaTK(m 0 m)B,dQe,
Q

Kaev = & IBJ[MBDo—ém - mH}Bbder Eq. 4221
Q

Therefore, the selective reduced integration can be applied to these two separate terms accordingly. The follow-
ing codes implemented Eq. 4+221 as

H1 X = N*xI; // Physical Coordinates

HO Nx = d(N) * d(X).inverse();

10 J dv(d(X).det());

11 Quadratureqpl(2, 1); /I 1-point reduced integration

12 H1z(2, doubleX)0, qpl),

13 n = INTEGRABLE_VECTOR_OF_TANGENT_BUNDLE( "int, int, Quadrature", 4, 2, qpl),
14 zai, eta;

15 zai &= z[0]; eta &= z[1];

1 Quadratureqp(2, 4); /I % 2 points standard integration

2 H1Z(2, double)O, gp),

3 N = INTEGRABLE_VECTOR_OF_TANGENT_BUNDLE( "int, int, Quadrature", 4, 2, gp),
4 Zai, Eta;

5 Zai &= Z|[0]; Eta &= Z[1];

6 N[0] = (1-Zai)*(1-Eta)/4; N[1] = (1+Zai)*(1-Eta)/4;

7 N[2] = (1+Zai)*(1+Eta)/4; N[3] = (1-Zai)*(1+Eta)/4;

8

9

16 n[0] = (1-zai)*(1-eta)/4; n[1] = (1+zai)*(1-eta)/4;
17 n[2] = (1+zai)*(1+eta)/4; n[3] = (1-zai)*(1+eta)/4;
18 H1x = n*xl;

19 HO nx = d(n) * d(x).inverse();

20 Jd_v(d(x).det()); 200

21 doubled_0[3][3] = {{2.0, 0.0, 0.0}, Dy =1020

22 {0.0, 2.0, 0.0}, 001

23 {0.0, 0.0, 1.0}};

24 COD_0 = MATRIX("int, int, const double*", 3, 3, d_0[0]);
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25 doublem 0[3] ={1.0, 1.0, 0.0};

26 COm=VECTOR("int, const double*", 3, m 0); // m=[1,1,0]"

27 HOW_x = INTEGRABLE_SUBMATRIX("int, int, HO&", 1, nsd, Nx),

28 Wx, Wy, B;

29 Wx &=W _x[0][0]; Wy &=W_x[0][1];

30 B&= (~Wx | C0(0.0) &

3 (CO.0) [|~Wy )&

32 Wy [[~Wx ); 9

33 COstiff_dev = ((~B) * (mu_*(D_0-2.0/3.0(m%m)) * B)) | dv; // ko, = € Isg[ugpo_ém 0 mg]sbdgej
34 HOw_x = INTEGRABLE_SUBMATRIX("int, int, HO&", 1, nsd, nx), Q

35 WX, wy, b;

36 wx &=w_Xx[0][0]; wy &=w_x[O][1];

37 b&= (~wx [ C0(0.0)) &

38 (CO(0.0) [[~wy )&

39 (~wy fl~wx )

40 COtiff vol = ((~b) * ((K_*(m%m)) * b)) | d_v: Il Ky = €] [BIK(m 0 m)BydQe,
41 iff &= stiff_dev + tiff_vol: o

Lines 1-10 define 2x 2 points integration, and lines 11-20 define 1-point integration. The deviatoric stiffnessis
implemented in line 33, and the volumetric stiffness in line 40. This computation can be done with macros

“ TEST_PLAIN_STRAIN",“__NEARLY_INCOMPRESSIBLE"," _TEST_B_MATRIX_VOLUMETRIC_D
EVIATORIC_SPLIT”, and “__TEST_SELECTIVE_REDUCED_INTEGRATION" defined at compile time.
The result of tip deflection with standard integration scheme is “-0.000149628" (i.e., sever locking compared t
tip deflection of ElasticQ4 element with= 0.25 in TABLE 4¢2.). With the selective reduced integration on the
volumetric termunder B-matrix formulation, the tip-deflection is “-0.00305825".

For thecoordinate-free tensorial formulation of Eq. 4¢156,

ke a(ed ¢9) = I[)\(div Nye div Np)+2u(def N, :def N,)]dQ Eq. 44222
Q
and thendicial notation formulation of Eq. 4¢161,
kiab = ANg i Ny ;dQ +uE5ijJ'Na k NoxdQ+ [Ny N, idQB Eq. 4223
Q ’ U7 ’ Q - O

We notice that in Eq. 4¢221, the bulk moddliss

K = A+ 3p Eq. 4+224

1. see p.129-130 in Fung, C.Y., 1965, “ Foundations of solid mechanics”, Prentice-Hall, Inc., Englewood Cliffs, N.J.
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At the nearly incompressible limit (v - 0.5), A >> 1. We haveK =\ . The two first terms of Eq. 4222 and Eq.
44223 areapproximately equivalent to thé,q in Eqg. 4¢221. We can simply choose these two terms for reduced
integration and the implementation is straight forward. The implementation can be activated, in project
“2d_beam”, by setting the macro definitions “__ TEST_PLAIN_STRAIN", “ _NEARLY_INCOMPRES

SIBLE”, and“__TEST_SELECTIVE_REDUCED_INTEGRATION” together with corresponding macro defini-
tions for the above two formulations, * TEST COORDINATE_FREE_TENSORIAL FORMULATION” and

“ TEST_INDICIAL_NOTATION_FORMULATION", respectively. These two alternative formulations,
involve g andA, give the same results. With standard integration scheme, the tip-deflection is “-0.000149995",
and with the reduced integration scheme, the tip-deflection is “-0.00311641".
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4.3.4 Patch Tests—Finite Element Test Suitesfor Software Quality Assurance (SQA)

Finite element is such a complicated method thasdfte/are quality assurance (SQA) can be quite a chal-
lenging task. As a framework based library, not a caned-program, fe.lib requires user’s participation in progran
ming to complete the application programs. Therefore, a well-thought-out plan for debugging and testing is c
primary importance for hands-on finite element practitioners. This section gives many examples of how t
develop propetest suites for finite element method. These test suites are based on a well tesbpianst.

Patch Tests—Consistency and Sability

Consider an element patch shows in Figure 449 in plane stress with material properties of Young's modult
E = 1x1C@, and Poisson’s ratio = 0.3. A simple constant stress (strain) solution over entire problem domain is
assumed. In this case, the only non-zero stress is a constant stress in x-digest®nandoy, = 1y, = 0. The
strain-stress relation for the plane stress assumption gives solutions of constant strain, and displacement (u, v

o, Vo, O
€y E E E 0.002 0 u=0.002x
vo, o Vo
gy E + E E 0.0006] v 0.0006/
2(1+v)t
yxy = TXY =0 Eq 4225

We observe that the imposing displacement field for the patch test is therefore linear. This gives a simple exe
solution the nodal displacements, nodal stresses, and nodal reactions shown in TABLE 4+4.

Node # u v Oy oy Tyy I ry
0 0.0000 0.0000 2 0 0 2 0
1 0.0040 0.0000 2 0 0 -3 0
2 0.0040 -0.00180 2 0 0 -2 0
3 0.0000 -0.00120 2 0 0 3 0
4 0.0008 -0.00024 2 0 0 0 0
5 0.0028 -0.00036 2 0 0 0 0
6 0.0030 -0.00120 2 0 0 0 0
7 0.0006 -0.00096 2 0 0 0 0

TABLE 4+4. Nodal displacement, nodal stresses and nodal reactions of the element patch.

1. Taylor, R.L., O.C. Zienkiewicz, J.C. Simo, and A.H.C. Chan, 1986, “The patch test--a condition for assessing f.e.m. con-
vergence”, International Journal of Numerical Methods in Engineering, vol., 22, pp. 39-62, or, for more availability, an abbre-
viated representation as Chapter 11 in Zienkiewicz, O.C., and R.L. Taylor, 1989, “The finite element method: basic

formulation and linear problems”, McGraw-Hill, London., UK.
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E=1x10% v =03 , Congistency ‘ Stability
DA ) (Test B) (TestC)  f. =2
P2 NI % ' ' %y
0,2
0.2 6 .
(1.5, 2.0) 1 %}C
0.3, 16)7
5/(1.4,0.6
04,04 L4 ( )
- O —_‘»
(0(?0) 2.0) u = 0.002x v = -0.0006y fy, =3

o freed.ofs e fixeddo.f.s
Figure 4¢49 Patch of elementsfor consistency and stablility test.

Consistency Requirement demands the governing partial differential equation to be satisfied exactly. The
matrix form of the weak statement derived from the governing partial differential equation is

Kijuj = fi Eq. 44226

whereK; is the global stiffness matrix arfds the global nodal force vector. We flrst specify all nodes with the
Imear displacement calculated from u = 0.002x, and v = -0.0006y, wieriey, v] is the solution vector, and

=[x, y]" is the nodal coordinates. Since no loadifign EQ. 4+226, is specmed for the internal nodes (# 4, 5,
6 7), the “reaction” calculated according t&jit;;” should be identically zero, if the governing partial differen-
tial equation is to be satisfied. This is tHest A” in Figure 4¢49. Thélest A is useful in checking theorrect-
ness of program statements in implementing the stiffness matrix. The Program Listing 4¢17 implements the test
suite for theTest A described in the above. The standard (full-) integratien (2 2)e&rA is the default setting
of this program. The uniform reduced integration (1-point Gauss integration) can be performed on this program
by setting macro definition “  TEST _UNIFORM_REDUCED_INTEGRATION” at compile time. Both the
standard integration and uniform reduced integration produce the exact reaction, up to machine accuracy, as
listed in TABLE 4+4.

In the “Test B” in Figure 4+49, a second step for checking ¢hesistency requirement, we specified only
nodes on the boundaries. Then, the unknapon internal nodes (# 4, 5, 6, 7) can be calculated according to

= (K”)'lfI Eq. 4+227

This step requires the matrix solver to “invert” the stiffness matjixThe matrix solver is a fixture in “fe.lib".
Assuming the matrix solver chosen is appropriate to solve the problem at hantieshB™checks theaccu-

racy of the stiffness matrix maintained in the process of matrix solution step. A problematic stiffness matrix, or
improper matrix solver, will lose accuracy significantly and may give out erroneous solutiofest lBecan be
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!#i nclude "include\fe.h”
static const double E_ = 1.0e3; static const doublev_=0.3;
static const doublelambda_=v_*E_/((1+v_)*(1-2*v_)); static const double mu_=E_/(2*(1+v_));
static const double lambda_bar = 2*lambda_* mu_/(lambda_+2*mu_);
Omega_h::Omega_h() { doublev[2]; Node* node; int ena[4]; Omega_eh* elem;
v[0] =0.0; v[1] = 0.0; node = new Node(0, 2, v); the_node_array.add(node);
v[0] = 2.0; v[1] = 0.0; node = new Node(1, 2, v); the_node_array.add(node);
v[0] = 2.0; v[1] = 3.0; node = new Node(2, 2, v); the_node_array.add(node);
v[0] = 0.0; v[1] = 2.0; node = new Node(3, 2, v); the_node_array.add(node);
v[0] = 0.4; v[1] = 0.4; node = new Node(4, 2, v); the_node_array.add(node);
v[0] = 1.4; v[1] = 0.6; node = new Node(5, 2, v); the_node_array.add(node);
v[0] = 1.5; v[1] = 2.0; node = new Node(6, 2, v); the_node_array.add(node);
v[0] = 0.3; v[1] = 1.6; node = new Node(7, 2, v); the_node_array.add(node);
eng[0] = 0; enal1] = 1; ena[2] = 5; end 3] = 4;
elem = new Omega _eh(0, 0, 0, 4, ena); the_omega_eh_array.add(elem);
eng[0] = 5; ena[1] = 1; ena[2] = 2; end[3] = 6;
elem = new Omega_eh(1, 0, 0, 4, ena); the_omega_eh_array.add(elem);
eng[0] = 7; ena[1] = 6; ena[2] = 2; end[3] = 3;
elem = new Omega_eh(2, 0, 0, 4, ena); the_omega_eh_array.add(elem);
eng[0] = 0; ena[1] = 4; ena[2] = 7; end[3] = 3;
elem = new Omega_eh(3, 0, 0, 4, ena); the_omega_eh_array.add(elem);
eng[0] = 4; ena[1] =5; ena[2] = 6; end[3] = 7;
elem = new Omega_eh(4, 0, 0, 4, end); the_omega_eh_array.add(elem); }
gh_on_Gamma_h::gh_on_Gamma_h(int df, Omega_h& omega h) { __initialization(df, omega_h);
for(inti=0;i<8;i++) define boundary conditions
for(int j = 0; j < 2; j++) the_gh_array[node_order(i)](j) = gh_on_Gamma_h::Dirichlet;
the_gh_array[node_order(1)][0] = 0.004; the_gh_array[node_order(2)][0] = 0.004;
the_gh_array[node_order(2)][1] = -0.0018; the gh_array[node_order(3)][1] =-0.0012;
the_gh_array[node_order(4)][0] = 0.0008; the_gh_array[node_order(4)][1] = -0.00024;
the_gh_array[node_order(5)][0] = 0.0028; the_gh_array[node_order(5)][1] = -0.00036;
the_gh_array[node_order(6)][0] = 0.003; the_gh_array[node_order(6)][1] = -0.0012;
the_gh_array[node_order(7)][0] = 0.0006; the_gh_array[node_order(7)][1] = -0.00096; }
class ElasticQ4 : public Element_Formulation { public: define element “EIasticQ4”
ElasticQ4(Element_Type_Register &) : Element_Formulation(a) {}
Element_Formulation *make(int, Global_Discretization& );
ElasticQ4(int, Global_Discretization&); };
Element_Formulation* ElasticQ4::make(int en, Global_Discretization& gd) {
return new ElasticQ4(en,gd); }
static const doublea_=E_/ (1-pow(v_,2));
static const double Dv[3][3] ={ {a_,a *v_, 0.0}, {a *v_,a, 0.0}, {0.0,0.0, a *(1-v_)/2.0} };
CO0 D = MATRIX("int, int, const double*", 3, 3, Dv[0]);
ElasticQ4::ElasticQ4(int en, Global_Discretization& gd) : Element_Formulation(en, gd) {
Quadrature qp(2, 4); H1 Z(2, (double*)0, gp), Zai, Eta,
N = INTEGRABLE_VECTOR_OF TANGENT_BUNDLE( "int, int, Quadrature’, 4, 2, qp);
Zai &=Z[0]; Eta&=Z[1]; N[0] = (1-Zai)*(1-Eta)/4; N[1] = (1+Zai)* (1-Eta)/4;
N[2] = (1+Zai)* (1+Eta)/4; N[3] = (1-Zai)* (1+Eta)/4; H1 X = N*xI; J dv(d(X).det());
for(int b =0; b < nen; b++) { B1 &= Nx[b][0]; B2 &= Nx[b][1];
DB[0][0] = Dv[0][0]*B1; DB[0][1] = Dv[0][1]* B2; DB[1][0] = DV[0][1]*B1;
DB[1][1] = Dv[1][1]*B2; DB[2][0] = Dv[2][2]*B2; DB[2][1] = Dv[2][2]*B1;
for(int a=0; a<=b; a++) { B1 &= Nx[a][0]; B2 &= Nx[a][1];
K[2*a ][2*b] = B1*DB[0][0] + B2*DB[2][0];
K[2*a ][2*b+1] = B1*DB[0][1] + B2*DB[2][1];
K[2*a+1][2*b] = B2*DB[1][0] + B1*DB[2][0];
K[2*at+1][2*b+1] = B2*DB[1][1] + B1*DB[2][1];} }
for(int b = 0; b < nen; b++) for(int a= b+1; a< nen; a++) {
K[2*a ][2*b] = K[2*b ][2*a ]; K[2*a ][2*b+1] = K[2*b+1][2*a ];
K[2*at+1][2*b] = K[2*b ][2*a+1]; K[2*at+1][2*b+1] = K[2*b+1][2*a+1];
}

define nodes

define elements
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if(Matrix_Representation::Assembly_Switch == Matrix_Representation::REACTION) { Post- proc ng
stiff &= K | dv; the_element_nodal_value &= stiff * (ul+gl); eacti

} elseif(Matrix_Representation::Assembly_Switch == Matrix_Representation::STRESS) { Compu’[e r 1on . .
HO Sigma = INTEGRABLE_VECTOR("int, Quadrature”, 3, gp); Sigma = 0.0; compute stresses on Gauss integration
for(inti=0;i<nen; i++){ B1 &= NXx[i][0]; B2 &= NX[i][1]; poi nts

DBJ[0][0] = Dv[0][0]*B1; DB[0][1] = Dv[0][1]*B2; DB[1][0] = Dv[0][1]*B1;
DB[1][1] = Dv[1][1]*B2; DB[2][0] = Dv[2][2]*B2; DB[2][1] = Dv[2][2]*B1;
Sigma += DB(0)* (ul[i* ndf]+gl[i* ndf]) + DB(1)* (ul[i* ndf+1]+gI[i* ndf+1]);
}
int ngp = gp.no_of_quadrature_point();
for(inti=0;i<nqp;i++) { cout << setw(9) <<en
<< setw(14) << ((H0)X[0]).quadrature_point_value(i)
<< setw(14) << ((HO)X[1]).quadrature point_value(i)
<< setw(14) << (Sigma[0].quadrature_point_val ue(i))
<< setw(14) << (Sigma[1].quadrature_point_value(i))
<< setw(14) << (Sigma[2].quadrature_point_val ue(i)) << endl;
}
} elseif (Matrix_Representation::Assembly_Switch == . ;
Matrix_Representation:NODAL_STRESS) { compute nodal stresses projection
int stress_no = (ndf+1)* ndf/2; the_element_nodal_value &= CO(nen*stress_no, (double*)0);
CO projected_nodal_stress = SUBVECTOR("int, CO&", stress_no, the_element_nodal_val ue);
HO Sigma= INTEGRABLE_VECTOR("int, Quadrature", 3, gp); Sigma= 0.0;
for(inti=0;i<nen; i++){ B1 &= NXx[i][0]; B2 &= NX[i][1];
DB[0][0] = Dv[0][0]*B1; DB[0][1] = Dv[0][1]*B2; DB[1][0] = Dv[0][1]*B1;
DB[1][1] = Dv[1][1]*B2; DB[2][0] = Dv[2][2]*B2; DB[2][1] = Dv[2][2]*B1;
Sigma += DB(0)* (ul[i* ndf]+gl[i* ndf]) + DB(1)* (ul[i* ndf+1]+gl[i* ndf+1]);
}
for(inti =0; i <nen; i++) { COlumped_mass = ((HO)N[i]) | dv;
projected_nodal_stress(i) = ( (HO)N[i])*Sigma | dv ) / lumped_mass,

}

} else stiff &= K | dv;

}

Element_Formulation* Element_Formulation::type list = 0;

Element_Type Register element_type_register_instance;

static ElasticQ4 elasticgd_instance(element_type_register_instance);

int main() { int ndf = 2; Omega_h oh; gh_on_Gamma_h gh(ndf, oh);
U_h uh(ndf, oh); U_h hh(ndf, oh); declare global discretization and matrix
Global_Discretization gd(oh, gh, uh); .
Global_Discretization hd(oh, gh, hh); repr tation
Matrix_Representation mr(gd);

Matrix_Representation::Assembly_Switch = Matrix_Representation::REACTION; compute reaction

mr.assembly(FALSE);

cout << "reaction:" << endl << (mr.global_nodal_value()) << endl; .
Matrix_Representation::Assembly_Switch = Matrix_Representation::STRESS; CompUte stresses on Gauss pol nts

cout << "gauss point stresses: " << endl;
cout.setf(ios::1ft,ios::adjustfiel d);
cout << setw(9) <<" elem #, " << setw(14) << "x-coor.," << setw(14) << "y-coor.,"
<< setw(14) << "sigma-11," << setw(14) << "sigma-22," << setw(14) << "sigma-12" << endl;
mr.assembly(FALSE);
Matrix_Representation::Assembly_Switch = Matrix_Representation::NODAL_STRESS; compute nodal stresses proj ection
mr.assembly(FALSE);
cout << "nodal stresses: " << endl << (mr.global_nodal_value()) << endl;
return 0;

Listing 4+17 Patch test A(project workspace file “fe.dsw”, project “patch_test” with Macro definition
“ PATCH_TEST_A”" set at compile time).
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activated by setting macro definition “__PATCH_TEST_B” in the same project. Again, both the standard inte-
gration and uniform reduced integration produce the exact internal nodal displacements as listed in TABLE 4¢/

Sability Requirement examines if thezero-energy modes (eigenvalues) of the stiffness matrix Kj; can be
excited from loadingd; on the boundaries. If this does occur the eigenvectors, with arbitrary magnitudes but nc
energy contribution, will pollute the solution and render the solution useless. liekeC” in Figure 449,
node # 0 is fixed on both directions and node # 3 is fixed on x-direction but allowed to be moved on y-direction
This suppresses three degree of freedoms, which is chosen to prohibit three modes of rigid body motior
namely, x-translation, y-translation, and infinitesimal rotation. Note that fixing these three degree of freedoms t
zero is still consistent with the assumed solution of u = 0.002x, and v = -0.0006y. In this case, node #1 is give
loading off, = 3, and node #2 is given loadingfef= 2, which is also the same as the reactions on these two
nodes computed from the reactionl@st A. The displacement solutions frohast C are, then, checked against

the assumed solutions.

(b) 1x1 solution (c) Pseudo-inverse 1x1
solution

(@) 2x2 solution @
(d) y-hourglass mode (for a square) (e) x-hourglass mode (for a'square)

Figure 4¢50 Deformation of the element patch magnifies 50 timesin (a) solution with
standard 2x 2 integration points, (b) solution with uniform reduced (1x1) integration, (c)
solution with uniform reduced integration using pseudo (M oore-Penrose) inverse for matrix
solver; i.e., with singular value decomposition, (d) and (€) are compared to two zero-energy
hourglass modes of a square bilinear element (the eigenvectors designated as the x-
hourglass and y- hourglass modes), associated with the signular values of the uniform
reduced (1x1) integration stiffness matrix.
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With the same project “patch_test” in project workspace file “fe.dsw'TéseC is activated by setting the
macro definition “__PATCH_TEST_C". For standard integratior (2 2), the exact solution in TABLE 4+4. is
reproduced. The solution magnified by 50 times is shown in Figure 4+50a. If we set macro definition
“ TEST_UNIFORM_REDUCED_INTEGRATION” (1-point Gaussian integration) at compile time, the solu-
tion rendered is useless as shown in Figure 4¢50 (b). We can then set macro defintion
“ TEST_SINGULAR_VALUE_DECOMPOSITION” to analyze the problem. Under the uniform reduced
integration, the rank of the stiffness matrix has rank deficiency of 2 (the full rank = 13 under 2 2 integration,
and the rank = 11 under 1-point integration). With singular value decomposition the matrix can be solved with
the so-called Moore-Penrose (pseudo-) inverse as in page 40 of Chapter 1. The effect of this generalized inverse
is to filter out two eigen-modes corresponding to the two singular values which are very close to zero. These two
eigen-modes are plotted and compared to two spurious hourglass modes of a square bilinear element (some use
the “key-stoning mode” for bilinear element and reserve the term “hourglass mode” for quadratic élement)
Note that we compare the outlines of these two eigen-modes to the two spurious modes of a square bi-linear ele-
ment. The internal nodes of the current element patch can be considered as to add to higher order variations on
top of the two spurious modes. However, we emphasize that the singular value decomposition is used as an ana-
Iytical tool to analyze the rank-deficient nature of the problem. The computation cost of the singular value
decomposition is very expensive compared to that of the Cholesky decomposition for a symmetrical matrix; i.e.,
the most expensive one among the matrix solver provided in Chapter 1.

1. see p.242 in Hughes, T. J.R., 1987, “The finite element method: linear static and dynamic finite element analysis”, Pren-
tice-Hall Inc., Englewood Cliffs, New Jersey.
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Weak Patch Test for an Axisymmetrical Problem

The patch test require only when the mesh size “h” approach zero, the approximated solution should co
verge to the exact solution. For problem in the Cartesian coordinates the “coefficients” of the governing parti:
differential equation are constants. Therefore, an arbitrary mesh size should produce the exact solution. T
weak patch test, for problem written in other than the Cartesian coordinates, revert the criterion to pass the pa
test as a series of solutions converging to the exact solution when the mesh size approaches zero.

Consider an axisymmetrical problem as shown in Figure 4. an axisymmetrical problem with coordi-
z
A

0
D
h h
|<—>!<—>l
7 s‘fh
o 1} 2 .
&\\ L8

>
r=1

Figure 4¢51An axisymmetricl problem for weak patch test.

nate system denoted as rfzand the displacement alofglirection is assumed zero, and u, w are the displace-
ment along r-, and z- directions, respectively. We assume solution as

u=2r,andw=0 Eq. 4228
The strain vector is defined%s
_ ou _
c 0z
g ou
g= |5 =| or Eq. 4229
€ u
r
Y
rz a_l._]+@/_V
10z Or]

Therefore, with€ll = B,ug , where tH&-matrix for the axisymmetrical case becomes

1. Taylor, R.L., O.C. Zienkiewicz, J.C. Simo, and A.H.C. Chan, 1986, “The patch test--a condition for assessing f.e.m. con
vergence”, International Journal of Numerical Methods in Engineering, vol., 22, pp. 39-62.

2. Chapter 12 in Timoshenko, S.P., and J.N. Goodier, 1970, “ Theory of elasticity”, McGraw-Hill, Inc., London, U.K.
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N,
9z
oN
O_ra 0 ~ 02
B,= , and ug = | ° Eq. 4+230
N, v2
— 0
r
ON, oN,
%z or |
For isotropic material case tBematrix becomes
Vv \%
1 1-vi-v 0
\% \Y
— 1 — 0
_ __E@-v) j1-v 1-v .
D = TVE-)| v Eq. 4+231
1-vi1l-v L 0
1-2v
000 )
In the integration of axisymmetrical problem the stiffness matrix is
Ke = J’BTDBdQ Eq. 44232

The infinitesimal volume is taken over the whole ring of material\as 2rr dr dz. For the selective reduced
integration, the volumetric and deviatoric split of the stiffness matrix as in Eq. 4+221 is still valid

Kyol = eiTJ—B;K(m U m)Bbder
Q
2
Koeu = & [BI| FPo-5m 0 mEByd0e Eq. 4233
0

with two simple modifications for axisymmetrical consideration that[1, 1, 1, 0], and

2000

D, = 0200 Eq. 4234
0020
0001

For the current problem, the material constants are giverrak andu = 0, for simplicity. This gives

§=€g=0,=0g=2 Eq. 4+235
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and all other stresses and strains as zero. The z-displacement of node number 1 isfixed to zero to prevent the z-
translation of the rigid body motion. For the patch test we take the element size “h” as 0.05, 0.1, 0.2, 0.4, and O
The Program Listing 4¢18 implements the axisymmetrical patch test (Eq. 4¢230, and Eq. 4233 with definition o
Dy in EQ. 4+234). The results of nodal radial displacement (u) at node number 1 and 4 are all exact urnder the 2
integration scheme. The macro definition “_ TEST_SELECTIVE_REDUCED_INTEGRATION” can be set at
compiled time for the selective reduced integration. The radial displacement on nodes 1 and 4 under the select
reduced integration are shown in TABLE 4+5. It shows that when the element size “h” goes down, the radial di
placement solution converges quickly to the assumed solution

Element size “h” Node # 1, and 4
0.05 2.0
0.1 2.0
0.2 2.00003
0.4 2.00049
0.8 2.01114

TABLE 4-5. The radial displacement for axisymmetrical problem.

We notice that the implementation of BBematrix for the axisymmetrical problem is implemented according to
Eq. 4230 as

1 HOW._x = INTEGRABLE_SUBMATRIX("int, int, HO&", 1, nsd, Nx), o M
2 Wr. Wz, B, R: 0z
3 Wr&= W_x[0][0]; Wz &= W_x[O][L]; N,

4 R &= (HOX]O]; B = or

5 B&= (CO0.0) | ~Wz ) & 1 N,

6 (~Wr IC00.0) )& T 0

7 (~(HON)/R [|C0(0.0) )& AN, N,
8 (~Wz [| ~Wr )i 9z or

Lines 5-8 use matrix concatenation operation to capture the semamicsatfix directly.
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l#include "includefe.h”
static const double E_=1.0;
static const doublev_ = 0.0;
static const double lambda_=v_*E_/((1+v_)*(1-2*v_));
static const double mu_ = E_/(2* (1+v_));
static const double K_=lambda_+2.0/3.0* mu_;
static const double h_=0.8;
static const doubler_=1.0;
static const double PI_=3.14159265359;
Omega_h::Omega_h() {
doublev[2];
Node* node;
int ena[4];
Omega_eh* elem;
v[0] =r_-h_; v[1] =0.0;
node = new Node(0, 2, v);
the_node_array.add(node);
v[0]=r_;
node = new Node(1, 2, v);
the_node_array.add(node);
v[0] =r_+h_;
node = new Node(2, 2, v);
the_node_array.add(node);
v[0] =r_-h ; v[1] =h_;
node = new Node(3, 2, v);
the_node_array.add(node);
v[0] =r_;
node = new Node(4, 2, v);
the_node_array.add(node);
v[0] =r_+h_;
node = new Node(5, 2, v); the_node_array.add(node);
eng[0] =0; ena[1] = 1; ena[2] = 4; ena[3] = 3;
elem = new Omega_eh(0, 0, 0, 4, ena);
the_omega_eh_array.add(elem);
ena[0] = 1; end[1] = 2; eng2] = 5; ena[3] = 4;
elem = new Omega_eh(1, 0, 0, 4, ena);
the_omega_eh_array.add(elem); }
gh_on_Gamma_h::gh_on_Gamma_h(int df, Omega_h& omega_h) {
__initialization(df, omega_h);
the_gh_array[node_order(1)](1) = gh_on_Gamma_h::Dirichlet;
doublesigma r, r, f_r;
sigma r=2.0;r=10-h ;
f_r=-2.0PI_*r*h_*sigma_r;
the_gh_array[node_order(0)][0] =f_r/ 2.0;
the_gh_array[node_order(3)][0] =f_r/ 2.0;
r=1.0+h_;
f r=20*PI_*r*h_*sigma._r;
the_gh_array[node_order(2)][0] =f_r/ 2.0;
the_gh_array[node_order(5)][0] =f_r/ 2.0;
}
class ElasticAxisymmetricQ4 : public Element_Formulation {
public:
ElasticAxisymmetricQ4(Element_Type Register a) : Element_Formulation(a) {}
Element_Formulation * make(int, Global_Discretization&);
ElasticAxisymmetricQ4(int, Global _Discretization&);
h
Element_Formulation* ElasticAxisymmetricQ4::make(int en, Global_Discretization& gd) {
return new ElasticAxisymmetricQ4(en,gd);
}
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ElasticAxisymmetricQ4::ElasticAxisymmetricQ4(int en, Global _Discretization& gd) :
Element_Formulation(en, gd) {
Quadratureqp(2, 4);
H1 Z(2, (double*)0, gp), Zai, Eta,
N = INTEGRABLE_VECTOR_OF TANGENT BUNDLE( "int, int, Quadrature", 4, 2, qp);
Za &=Z[0]; Eta&= Z[1];
N[0] = (1-Zai)* (1-Eta)/4; N[1] = (1+Zai)* (1-Eta)/4;
N[2] = (1+Zai)* (1+Eta)/4; N[3] = (1-Zai)* (1+Eta)/4;
H1 X = N*xl;
HO Nx = d(N) * d(X).inverse();
J dV(d(X).det());
HOW_x = INTEGRABLE_SUBMATRIX("int, int, HO&", 1, nsd, Nx), Wr, Wz, B, R;
Wr &=W_x[0][0]; Wz &=W _x[0][1]; R &= (HO)X[O];
B &=(C0(0.0) | ~Wz) &
(~Wr || C0(0.0)) &
(~((HO)N)/R || C0(0.0)) &
(~Wz || ~Wr);
doubled_0[4][4]={ {2.0,0.0,0.0,0.0},
{0.0,2.0,0.0,0.0},
{0.0,0.0,2.0,0.0},
{0.0,0.0,0.0,1.0} };
COD_0=MATRIX("int, int, const double*", 4, 4, d_0[0Q]);
doublem_0[4] ={1.0, 1.0, 1.0, 0.0} ;
COm =VECTOR("int, const double*", 4, m_0);
CO stiff_dev = 2.0*PI_*(((~B) * ((mu_*(D_0-2.0/3.0*(m%m))) * B) * R) | dV);
Quadraturegpl(2, 1);
H1 z(2, (double*)0, qpl), zai, eta,
n=INTEGRABLE_VECTOR_OF TANGENT_BUNDLE("int, int, Quadrature”, 4, 2, qp1);
zal &=2[0]; eta&= Z[1];
n[0] = (1-zai)* (1-eta)/4; n[1] = (1+zai)* (1-eta)/4;
n[2] = (1+zai)* (1+eta)/4; n[3] = (1-zai)* (1+eta)/4;
H1x=n*xl;
HO nx =d(n) * d(x).inverse();
J dv(d(x).det());
HOw_x=INTEGRABLE_SUBMATRIX("int, int, HO&", 1, nsd, nx), wr, wz, b, r;
wr &=w_x[0][0]; wz &=w_x[0][1]; r &= (HO)x[Q];
b &=(C0(0.0) || ~wz) &
(~wr || C0(0.0)) &
(~((HO)N)/r || C0(0.0)) &
(~wzl| ~wr);
CO stiff_vol = 2.0¢PI_*(((~b) * ((K_*(m%m)) * b) * r) | dv);
stiff &= gtiff_vol + stiff_dev;
}
Element_Formulation* Element_Formulation::type _list = 0;
Element_Type Register element_type_register_instance;
static ElasticAxisymmetricQ4 elasticaxisymmetricgd_instance(element_type register_instance);
int main() {
int ndf = 2; Omega_h oh; gh_on_Gamma_h gh(ndf, oh); U_h uh(ndf, oh);
Global_Discretization gd(oh, gh, uh);
Matrix_Representation mr(gd);
mr.assembly();
CO u = ((CO)(mr.rhs())) / ((CO)(mr.Ihs()));
gd.u_h() = u; gd.u_h() = gd.gh_on_gamma_h();
cout << gd.u_h() << endl;
return O;

}
I
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Two Dimensiona Problems
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Listing 4¢18 Axisymmetrical patch test (project workspace file “fe.dsw”, project

“axisymmetrical_patch_test” with Macro definition
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Higher-Order Patch Test

In the patch Test A, B, and C, the assumed solution is linear. We now study when the assumed solution is
quadratic, which may reveal additional problems. In the first set of problem, the element shape sensitivity effect
is considered for eight-nodes serendipity element and nine-nodes Lagrangian element. This is followed by
robustness of an element formulation when the material becomes incompressible. The successfulness of the
selective reduced integration will be evident.

Shape Senghility: Consider two quadratic elements. Either eight-nodes or nine-nodes elements as shown in Fig-
ure 4+52. The common edge of the two elements is slanted with the distortion, away from axes of Cartesian
coordinates, denoted as “d”, and shown in Figure 4+52.

E=10%v=03

15

A
v

-15 = ; P :
| hig

10 0 o °
d=2 o / .
[

Figure 452 Beam subject to bending moement on the left. Three amount of element
distortion away from rectangular shape (d = 0).

There is no new program implementation needed for the higher-order patch test. The project
“higher_order_patch_test” implemented program for the present test. The eight-nodes and nine-nodes elements
are activated by setting macro definition “__ TEST_Q8” and “__ TEST_Q9”, respectively. The distortion factor

is a static constant “d_" in the very beginning of the program. The uniform reduced integration can be achieved
by setting all gaudrature point toc2 2 in the program. The tip deflection on the middle point of the left edge is
listed in TABLE 46.

Distortion Integration Points 8-nodes Quadrilateral | 9-nodes Quadrilateral
d=0 3x3 0.750000 0.750000
d=0 2x2 0.750000 0.750000
d=1 3x3 0.744849 0.750000
d=1 2x2 0.750000 0.788531
d=2 3x3 0.666839 0.750000
d=2 2x2 0.750000 0.676616

TABLE 4+6. Tip deflection of 8-nodes and 9-nodes quadrilaterals.
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The exact solution is “0.75". The standard integration scheme (3 3) for 8-nodes and 9-nodes elements with |
distortion both match the exact solution. When the distortion occurs, the accuracy of the 8-nodes element dete
orates fast when 9-nodes element is still capable of producing the exact solution. This is because the 9-nodes
ment is capat;tle of reproducing arbitrary quadratic displacement of straight-edged quadrilateral while the 8-nod
element is not.

With uniform reduced integration ¥2 2), the reverse is true. Each integration point contribute to 3 indepen
dent relations from the definitions of 3 strain equations. For the present>xcase 2 2 uniform reduced integratic
gives X 8 = 24 independent relations. The 9-nodes element has “total degree of freedom” = ¥5(nodes) 2(dof:
4(constraints) = 26 > 24. Therefore, under this integration scheme the 9-nodes element is rank deficient. T
accuracy of the solution collapses fast with the increasing amount of the distortion. For the 8-nodes element, 1
total degree of freedoms is 13 2-4 = 22 < 24, which is not only rank sufficient, but also less stiff compared to &
nodes element with standard integration scheme. Therefore, it produces better result. The displacement formu
tion usually leads to over-estimated stiffness. The lowest order of numerical integration required for convergenc
relaxes the stiffness and produces improved redults.

Convergenceof bilinear 4-nodedement: We show the convergence of bilinear 4-node element at (1) Poisson ratio
v = 0.3 in plane stress and ¥ 0.4999 in plane strain (with the same boundary value problem in Figure 4¢52).
The options of (a) the selective reduce integration on the shear term of the deviatoric stiffness and (b) the vol
metric stiffness are also tested. The same problem is divided with successively finer meshes, and is shown in F
ure 4+53. The test suite is implemented in project “higher_order_g4” in project workspace file “fe.dsw”. For total
element number greater than 8, the macro definitions “ TEST Q4 32", “ TEST Q4 128", and
“ TEST_Q4 5127, with the last numbers indicate the total element number, can be set at compile time. For tt
selective reduced integration on the offending shear terms and dilatational term in incompressible materials, t
corresponding macro definitions are “ SHEAR _SELECTIVE_REDUCED_INTEGRATION” and

“ _INCOMPRESSIBLE_ SELECTIVE_REDUCED_INTEGRATION".

The results with various combinations of the options are shown in TABLE 4+7. For Poissan=rdi8, in

plane stress, the convergence is clear with increasing number of element used in the computation. The succes
results agree on more digits after the decimal points. This convergence is guaranteed by the patch test for the
nodes bi-linear element, since it pass the consistency and stability parts of the patch test. Both the full integrati
and selective reduced integration on the offending shear treatment converge to exact solution of ©.¥5. For
0.4999, the nearly incompressible condition, in plane strain case, the solution shows significant locking withot
signs of convergence, when applied with the full integration. The solution and its convergence are obtainab
with the selective reduced integration schemes as shown in the last two columns, which both converge to val
of ~0.56 comparing to “0.5625" in mixadp formulation ¢ = 0.5 in Chapter 5).

1. p. 167-169 in Zienkiewicz, O.C., and R.L. Taylor, 1989, “The finite element method: basic formulation and linear prob-
lems”, McGraw-Hill, London., UK.

2. p. 164-165 in Bathe, K.-J. and W.L. Wilson, 1976, “ Numerical method in finite element analysis”, Prentice-Hall, Inc.,
Englewood Cliffs, New Jersey.
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8 elements

32 elements

128 elements

512 elements

Figure 4¢53 Mesh refinement of 4-nodes quadrilateral element.

Number of v=03 v=03 v =0.4999 v =0.4999 v =0.4999
E.lements (standard) (selective reduced (standard) (selectivereduced | (selectivereduced on
on shear) on dilatation) shear & dilatation)

8 0.6920159 1.097860 0.00271635 0.666701 0.964387

32 0.7295910 0.839392 0.00799228 0.595018 0.655087

128 0.7443220 0.772274 0.02823080 0.570704 0.584802

512 0.7485400 0.755571 0.09621180 0.564732 0.568095

TABLE 4-7. Convergence of four node bi-linear element with selective reduced integration on
offending shear terms to prevent shear-locking = 0.3 in plane stress case, and selective reduced
integration on volumetric terms when the Possion ratios = 0.4999 in plane strain case to prevent
dilatational locking.
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435 StokesFlow

For afluid particle with density p and velocity u relative to an inertial frame of reference. The Newton’s sec-
ond law of motion requires the linear momentum of the fluid particle is equal to the forces applied to it.

P2y = div O +f Eq. 4236

where divergence of interal stresses, @j\equals the externalirface force, andf is thebody force. The Du/Dt
in the left-hand-side is the fluid particle in Lagragian (material) description, in wii¢h) can be differentiated
with respect to time “t” (by first applying the Lebniz rule, idéxy) = xdy + y dx, and then the chain rulé f(x)

/[ dt = (df / dx) (dx / dt), on the second term of the Lebniz rule)

Du(xt) _ du, dudx _ au, . :
Dt~ ot Taxot ~ gt tutgradu Eq. 4237

where we have applied the definitions of the velodity, 0x/0t, and the velocity gradiergrad u = du/ox. The
stress in the first term of the right-hand-side of Eq. 4¢236 can be expressed as in Eq. 4146 that

O=-pl+T
where p is th@ressure, | is theunit tensor, andT is theviscous stress. Theconstitutive equations is
T = 2y def u+Aldiv u Eq 4238

wherep is the fluid viscosity, and' s theecond viscosity (this term gives the deviatoric stress caused by the
volumetirc deformation which is a process attributed to molecular relaxation). For monatomic gagy/3, = -2
and it can be proved as the lower boundXor  thermodynamically. In most applicatiatis, u , IS nearly
completely negligible compared to the pressure, “p”.

A popular treatment for the incompressible condition is tgpasalty method where the pressure variable is
eliminated by taking

p=-A divu Eq. 4239

Now A andp are equivalent to theamé constantm elasticity. As discussed earlier (see page 409), near the
incompressible condition K=A >> . In the penalty method in the stokes problem, the penalty parameten, is
usualy taken as

A = (10~10%%) Eq. 4240

to approximate the nearly incompressible conditi@ubstituting Eq. 4¢237 and viscous stress of Eq. 4¢238 into
Eq. 4236, we have thdavier-Sokes equation

1. p.520 in Zienkiewicz and R.L. Taylor, 1991, “The finite element method”, 4th ed., vol. 2. McGraw-Hill, Inc., UK.
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p%—l:+pu- grad u+grad p = div(2u def u)+f Eq. 4+241

We have dropped out the second viscogity  and use the identity that div{pad p”. For steady incom-
pressible viscous fluid, the Navier-Sokes equation simplifies to

puegrad u+grad p = div(2u def u)+f Eq. 4+242

From Eq. 4+242, theReynolds number (denoted asRe) is the dynamic similarity of thenertia force
“puegrad u“to the viscousforce “div(2u def u)” ast

louegrad ul _pUL
|div(2u def u)]~ p

Re Eq. 4+243

At very low Reynolds numbeRg << 1) the inertia force is negligible compared to the viscous force. The Eg.
4242 can be simplified to

grad p = div(2u def u) +f Eq. 4+244

Therefore, the resultant equation is completely identical to Eq. 4¢140 with the constitutive equation of Eq. 4¢146
and Eq. 4147 for elasticity. The physical interpretation is different in that instead of regaaditige displace-

ment, it is the velocity in the stokes flownow plays the role of fluid viscosity instead of the shear modsilus

in elasticity.A is now the penalty parameter we take 10 K, and certainly with the selective reduced integra-

tion for the volumetric term, in the computation. The finite element formulation in the last section for plane elas-
ticity can be applied to the stokes flow problefthout modification. Considering thB-matrix formulation for

plane elasticity

kde\lzeﬂ'IB;[uHDO—gm O mE}BbdQe ,and kg = eiTIB;'K(m [0 m)B,dQe, Eq. 4+245
Q Q
Since at the incompressible limit=K | ake 168 u for the penalty method, Eq. 4+245 becofmes

ANO 2000
kgeD&' [BID,BydQe;, andkyq U6 [BID,B,d0g wherep - |, o p =
o) Q

000 0 0p

1. p. 97 in Tritton, D.J., 1988, “ Physical fluid dynamics”, 2nd ed., Oxford University Press, Oxford, UK.

2. see Hughes, T.J.R., W.K. Liu, and A. Brooks, 1979, “Review of finite element analysis of incompressible viscous flows
by the penalty function formulation”, Journal, of Computational Physics, vol. 30, no. 1, p. 1-60.
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Plane Couette-Poiseuille Flow

Consider a plane uni-directional flow (v = w = 0) drives by both pressure gradient (the Poiseuille flow) and
relative motion (U) of two bounding plates (the Couette flow) as shown in Figure 4«54 . The distance betwee
two rigid plates is “d” with the pressure gradient from the entrance of the flow to the €Xji asG. The viscos-
ity of the fluid isp. The velocity profile can be expressed as a function of y coordinate

G U
uy) = yd-y)+ 5 Eq. 4+247

This solution can be derived from Eq. 4¢244 from the superposition of two solutions of the viscous flow inducec
by the pressure gradient and by the bounding plates separately. That is the first term corresponding to the P
seuille flow caused by the applied horizontal pressure gradient, the second term corresponding to the Coue
flow induced by the relative motion of the two bounding plates. In these test cases, the Couette flow provides :
assumed linear solution, and the Poiseuille flow provides an assumed higher-order (quadratic) solution.

Program Listing 419, in the project “plane_couette poiseuille_flow” in project workspace file “fe.dsw”, is
implemented for these tests. To emphasize its relation to plane elasticity, we use “elasticq9.cpp” as a separ
compilation unit, as a dependent source file for this project. The “elasticq9.cpp” is the implementation very clos
to of Lagrangian 9-node element for plane elasticity.

The plane Couette flow can be activated by setting macro definition “ _ TEST_PLANE_COUETTE_FLOW”
and the plane Poiseuille flow can be activated by setting macro definition “©  TEST PLANE_POISEUILLE_
FLOW?”. The default is a combined flow with both pressure gradient applied on the entrance and relative motiol
of bounding plates. The results of the computation are shown in Figure 4+55. The finite element solutions al
shown in dashed curves with arrows to indicate the velocity profiles in the middle of the channel to avoid th
entrance and exit effects. The exact solution are shown in solid curves. We notice that the solution for the pla
Poiseuille flow, quadratic in nature, is less accurate compared to the solution for the plane Couette flow, which
linear.

u=1
7
' J.
>
p=GL=40.] * n=1 p=0 |d=1
P L=10
|‘

Figure 454 Plane Couette-Poiseuille flow problem.

1. p. 182 in Batchelor, GK., 1967, “An introduction to fluid dynamics”, Cambridge University Press, UK.
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Figure 4+55 Plane Couette flow and plane Poiseuille flow. The exact solutions are shown in
solid curves the finie element solutions are shown in dashed curves with arrows. The finite
element solutions are velocity profiles taken from the middle of the channel to avoid

entrance and exit effect.
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Finclude "include\fe.h a separate source file “elasticqg.cpp’I

static const double mu_ = 1.0; static const doublelambda_= 1.0e8*mu_;
class ElasticQ9 : public Element_Formulation { public:

taken from plane elasticity problem

ElasticQo(Element_Type Register); penalty parameter %= 10°
Element_Formulation *make(int, Global_Discretization&);
ElasticQ9(int, Global_Discretization&); };

ElasticQ9::ElasticQ9(Element_Type_Register a) : Element_Formulation(a) {}
Element_Formulation* ElasticQ9::make(int en, Globa_Discretization& gd) {

return new ElasticQ9(en,gd); }

ElasticQ9::ElasticQ9(int en, Global_Discretization& gd) : Element_Formulation(en, gd) {

Quadraturegp(2, 9); . .
H1Z(2, (double*)0, qp), Zai, Eta, 3x3 integration
N = INTEGRABLE_VECTOR_OF TANGENT_BUNDLE( “int, int, Quadrature", 9, 2, qp);
Zai &= Z[0]; Eta&= Z[1];
N[O] = (1-Zai)* (1-Eta)/4; N[1] = (1+Zai)* (1-Eta)/4; ) )
N[2] = (1+Zai)* (L+Eta)/4; N[3] = (1-Zai)* (1+Eta)/4; 9-node Lagrangian shape functions
N[8] = (1-Zai.pow(2))* (1-Eta.pow(2));
N[0] -= N[8]/4; N[1] -= N[8]/4; N[2] -= N[8]/4; N[3] -= N[8]/4;
N[4] = ((1-Zai.pow(2))* (1-Eta)-N[8])/2; N[5] = ((1-Eta.pow(2))* (1+Zai)-N[8])/2;
N[6] = ((1-Zai .pow(2))* (1+Eta)-N[8])/2; N[7] = ((1-Eta.pow(2))* (1-Zai)-N[8])/2;
N[O] -= (N[4]+N[7])/2; N[1] -= (N[4]+N[5])/2; N[2] -= (N[5]+N[6])/2; N[3] -= (N[6]+N[7])/2;
Quadratureqpl(2, 4);
H1 z(2, (double*)0, gpl), zai, eta,
n=INTEGRABLE_VECTOR_OF TANGENT_BUNDLE("int, int, Quadrature", 9, 2, qp1);
zai &=2[0]; eta&=2[1];
n[0] = (1-zai)* (1-eta)/4; n[1] = (1+zai)* (1-eta)/4;
n[2] = (1+zai)* (1+eta)/4; n[3] = (1-zai)* (1+eta)/4;
n[8] = (1-zai.pow(2))* (1-etapow(2)); n[0] -= n[8]/4; n[1] -= n[8)/4; n[2] -= n[8]/4; n[3] -= n[8]/4;
n[4] = ((1-zai.pow(2))* (1-eta)-n[8])/2; n[5] = ((1-etapow(2))* (1+zai)-n[8])/2;
n[6] = ((1-zai.pow(2))* (1+eta)-n[8])/2; n[7] = ((1-eta.pow(2))* (1-zai)-n[8])/2; ; ; ; ;
n[0] -= (N[4]+n[7])/2; n[1] -= (n[4]+n[S])/2; n[2] -= ([5]-+n[6])/2; n[3] -= (n[6]+n[7])/2; B-matrix formulation for incompressib-
H1X = N*xl; HONx = d(N) * d(X).inverse(); J dV(d(X).det(); lility
H1x=n*xl; HO nx = d(n) * d(x).inverse(); J dv(d(x).det());

2x2 reduced integration

9-node Lagrangian shape functions

#f defined(_ TEST_B_MATRIX_FORMULATION) ANO 20 00
double d_lambda{3][3] ={ {lambda_, lambda_, 0.0}, {lambda_, lambda_, 0.0},{0.0,00, 00} }; Dy = A r 0D, = |0 2u 0
CO D_lambda= MATRIX("int, int, const double*", 3, 3, d_lambda[0]); 000 00 U

HOw_x = INTEGRABLE_SUBMATRIX("int, int, HO&", 1, nsd, nx), wx, wy, b;

wx &=w_x[0][0]; wy &=w_x[0][1]; b &= (~wx|| C0(0.0)) & (CO(0.0) || ~wy ) & (~wy || ~wXx);
CO stiff_vol = ((~b) * (D_lambda* b)) | dv;

doubled_mu[3][3] ={ {2*mu_, 0.0, 0.0},{0.0, 2*mu_, 0.0},{0.0, 0.0, mu_}};
COD_mu=MATRIX("int, int, const double*", 3, 3, d_mu[Q]);

HOW_x = INTEGRABLE_SUBMATRIX("int, int, HO&", 1, nsd, Nx), Wx, Wy, B; T T

Wi =W X(OI[0]; Wy &=V X[0J[1]; B &= (-Wx] CO0.0) & (CO0.0) I -wy) & (-wy-wix); <vol &' [BaDABrdQe,
CO stiff_dev = ((~B) * (D_mu* B)) | dV; Q

kdeVDeiTIB;DHBbder ,
Q

#else standard\—p formulation

COe=BASIS("int", ndf), E = BASIS("int", nen), U = (e%e)* (E%E);

HOw_x = INTEGRABLE_SUBMATRIX("int, int, HO&", 1, nsd, nx), wx, wy;

wx &=w_x[0][0]; wy &=w_Xx[0][1];

CO stiff_vol = lambda_* (
+H(wx~wx*U[O][0] +wx* ~wy*U[O][1]  +wy*~wx*U[1][0]+wy*~wy*U[1][1] ) | dv);

HOW_x = INTEGRABLE_SUBMATRIX("int, int, HO&", 1, nsd, Nx), Wx, Wy;

Wx &=W_x[0][0]; Wy &= W_x[0][1];

CO stiff_dev = mu_* (
+( (2 W ~Wx)+(Wy* ~Wly))* (e[ 0] %e{ 0])* (E%E))+(Wy* ~Wx) * (e[ 0] %oe[ 1])* (E%E))
HWx*~Wy) * (e[ 1] %e[ 0] )* (E%E))+((2* Wy* ~Wy)+(Wx* ~Wx))* (e[ 1] %e[ 1])* (E%E)) )
|dv);

#endif

}

stiff &= stiff_vol + siff_dev;
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#include "include\fe.n"
static const int row_node_no = 7; static const int col_node no=9;
static const int row_element_no = (row_node_no-1)/2;
static const int col_element_no = (col_node_no-1)/2;
static const int row_segment_no = row_node _no-1;
static const double L_ = 10.0; static const doublec_ = 0.125;
static const doubleh_e =L _/((double)row_segment_no); static const double mu_ = 1.0;
static const double lambda_ = 1.0e8*mu_; static const double p_ = 40.0;
Omega_h::Omega_h() { doublev[2]; int ena[9]; Omega_eh *elem;
for(inti =0;i < col_node_no; i++) for(int j = 0; j < row_node_no; j++) { :
int nn = i*row_node_no+j; v[0] = ((double)j)*h_e_; v[1] = ((double)i)*c_; define nodes
Node* node = new Node(nn, 2, v); the node_array.add(node); }
for(inti=0;i < col_element_no; i++) for(int j = 0; j < row_element_no; j++) { define elements
inten=i*row_element_ no+j,fArn=i* 2* row_node no+j* 2;
eng[0] = fnn; ena[1] = fnn + 2; ena[2] = ena[1] + 2*row_node_no;
ena[3] = eng[0] + 2*row_node_no; ena[4] = eng[0] + 1; ena[5] = ena[1] + row_node_no;
ena[6] = ena[3] + 1; ena[ 7] = ena[0] + row_node_no; ena[8] = ena[4]+row_node_no;

elem = new Omega_eh(en, 0, 0, 9, ena); the_omega eh_array.add(elem); } } B.C
gh_on_Gamma_h::gh_on_Gamma_h(int df, Omega_h& omega h) { __initiaization(df, omega h); —" " .
#f defined(__TEST_PLANE_POISEUILLE_FLOW) Poiseuille flow only

for(inti =0;i <row_node no; i++) {
the_gh_array[node_order(i)](0) = the_gh_array[node_order(i)](1) =
the_gh_array[node_order((col_node_no-1)*row_node_no+i)](0) =
the_gh_array[node_order((col_node_no-1)*row_node_no+i)](1)=gh_on_Gamma_h::Dirichlet;}
doubleweight[9] = { 0.0, 3.0/2.0, 1.0, 1.0, 1.0, 1.0, 1.0, 3.0/2.0,0.0}; open integration rule (see Numerica
for(inti=1;i <col_node no-1;i++){ Reci epe)
the_gh_array[node_order(i*row_node_no)](0) = gh_on_Gamma_h::Neumann;
the_gh_array[node_order(i*row_node no)][0] = p_*weight[i]*c_; }
#elif defined(__TEST_PLANE_COUETTE_FLOW) Couette flow on|y
for(inti =0;i <row_node _no; i++) {
the_gh_array[node_order(i)](0) = the_gh_array[node_order(i)](1) =
the_gh_array[node_order((col_node_no-1)*row_node_no+i)](0) =
the_gh_array[node_order((col_node_no-1)*row_node_no+i)](1) = gh_on_Gamma_h::Dirichlet;
the_gh_array[node_order((col_node_no-1)*row_node_no+i)][0] = 1.0; }
#else
for(int i = 0; i <row_node_no; i++) { Poiseuille & Couette flow
the_gh_array[node_order(i)](0) = the_gh_array[node_order(i)](1) =
the_gh_array[node_order((col_node_no-1)*row_node no+i)](0) = gh_on_Gamma_h::Dirichlet;
the_gh_array[node_order((col_node_no-1)*row_node_no+i)](1) = gh_on_Gamma_h::Dirichlet;
the_gh_array[node_order((col_node_no-1)*row_node no+i)][0] = 1.0; }
doubleweight[9] = { 0.0, 3.0/2.0, 1.0, 1.0, 1.0, 1.0, 1.0, 3.0/2.0, 0.0 };
for(inti=1;i <col_node no-1;i++){
the_gh_array[node_order(i*row_node no)](0) = gh_on_Gamma_h::Neumann;
the_gh_array[node_order(i*row_node no)][0] = p_*weight[i]*c_; }
#endif
}
class ElasticQ9 : public Element_Formulation { public:
ElasticQ9(Element_Type_Register); Element_Formulation * make(int, Global_Discretization&);
ElasticQ9(int, Global_Discretization&); };
Element_Formulation* Element_Formul ation::type_list = 0;
Element_Type Register element_type_register_instance; i i
static ElasticQ9 stokesq9_instance(element_type register_instance); register “ElasticQ9” as element # 0
int main() {
int ndf = 2; Omega_h oh; gh_on_Gamma_h gh(ndf, oh); U_h uh(ndf, oh);
Global_Discretization gd(oh, gh, uh); Matrix_Representation mr(gd);
mr.assembly(); CO u = ((CO)(mr.rhs())) / ((CO)(mr.Ihs()));
gd.u_h() = u; gd.u_h() = gd.gh_on_gamma_h(); cout << gd.u_h() <<endl;
return 0; }

Listing 4+19 Plane Couette-Poiseuille flow in project “plane_couette_poiseuille_flow”

declare “ElasticQ9” class

solution phase
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Driven Cavity Flow!

The stokes flow in a square cavity is shown in Figure 4+56a. The bottom and the two sides are rigid-walls
The top is a boundary with velocity given as u(x) = 4(1-x)x. This velocity boundary condition causes a convect
ing current in the cavity, which is known fasced convection. The top horizontal velocity boundary conditions
vanish at the two top corners, which are to avoid the difficulty in defining boundary conditions at these two cor
ner node$.Program Listing 420, the project “square_cavity_flow” in project workspace file “fe.dsw”, is imple-
mented for this computation. Again, the “elasticq9.cpp” is a separate compilation unit for this project. The
penalty methodX = 10° ) is used with selective reduced integration and the 9-nodes Lagrangian quadrilateral
element. The velocity vectors are shown in Figure 4+56b.

y

o}/ u = 4(1-x)x (1, 1) LS MO AEEAALE

S S S, YN S

k n i 4 - 4 .- 4

l//.// ' 0 b . = = # s i R

@ ’ (b)
Figure 4¢5a) Flow in square cavity with sixteen 9-nodes Lagrangian elements. (b) velocity
vectors.

1. p. 462-465 in J.N. Reddy, 1986, “Applied functional analysis and variational methods in engineering”, McGraw-Hill, Inc.,
New York.

2. such as corner node treatments described in p.231 in Hughes, T.J.R., “The finite element method: linear static and dynar
finite element analysis”, Prentice-Hall, Inc., Englewood Cliffs, New Jersey.
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l#include "includefe.h”
static const int row_node_no = 9; static const int col_node no=9;
static const int row_element_no = (row_node_no-1)/2;
static const int col_element_no = (col_node_no-1)/2;
static const double h_e = 1.0/((double)row_element_no* 2);
static const doublev_e_ = 1.0/((double)col_element_no*2);
static const double mu_ = 1.0; static const double lambda_=1.e8* mu_;
EP::element_pattern EP::ep = EP.:LAGRANGIAN_9_NODES;
Omega_h::Omega h() {
doublex[4][2] = {{0.0, 0.0}, {1.0, 0.0}, {1.0, 1.0}, {0.0, 1.0} };
int control_node_flag[4] ={1, 1, 1, 1};
block(this, row_node_no, col_node_no, 4, control_node flag, x[0]);
}
gh_on_Gamma_h::gh_on_Gamma_h(int df, Omega_h& omega h) {
initialization(df, omega_h); .
f_or(int i=0;i icol_nsge:nl; i++) { ”ght; u=v=0
the_gh_array[node_order((i+1)*row_node_no-1)](0) =
the_gh_array[node_order((i+1)*row_node_no-1)](1) = gh_on_Gamma_h::Dirichlet;
}
for(inti =0; i < col_node_no; i++) { left; u=v=0
the_gh_array[node_order(i*row_node_no)](0) =
the_gh_array[node_order(i*row_node_no)](1) = gh_on_Gamma_h::Dirichlet;
ior(int i =1;i <row_node_no-1; i++) { bottom; u=v=0
the_gh_array[node_order(i)](0) =
the_gh_array[node_order(i)](1) = gh_on_Gamma_h::Dirichlet;
}
for(inti=1;i <row_node no-1;i++) {
int nn = (col_node_no-1)*row_node _no+i; top, forced B.C.; u=4(1-x)x,v=0
doublex = ((double)i)*h_e_, u=4.0* (1.0-x) * x;
the_gh_array[node_order(nn)](0) = gh_on_Gamma_h::Dirichlet;
the_gh_array[node_order(nn)][0] = u;
the_gh_array[node_order(nn)](1) = gh_on_Gamma_h::Dirichlet;
}
E:IaS ElasticQ9 : public Element_Formulation { declare “EIaSUCan class
public:
ElasticQ9(Element_Type_Register);
Element_Formulation * make(int, Global_Discretization& );
ElasticQ9(int, Global_Discretization&);
h
EIernmt_FormuIaIign* EIement_FormuIati_on::t)_/pe_list =0; register “EIasticQ9” as element # 0
Element_Type Register element_type_register_instance;
static ElasticQ9 stokesq9_instance(element_type_register_instance);
int main() {
int ndf = 2; Omega_h oh;
ﬂﬁoﬂgﬁzm,?;h ghnet, oh: solution phase
Global_Discretization gd(oh, gh, uh);
Matrix_Representation mr(gd);
mr.assembly();
COu=((CO)(mr.rhs())) / ((CO)(mr.Ihs()));
gd.u_h() = u; gd.u_h() = gd.gh_on_gamma_h();
cout << gd.u_h() << endl;
return O;

Listing 420 Driven cavity flow (in project: “square_cavity flow” in project workspace file “fe.dsw”.).
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4.3.6 Plate Bending Problems

The plate theory probably is only to interest the structural engineers. However, it has often been argued that
since the plate bending is the subject in the fourth-order differential equation that has been most extensively stud-
ied in finite element. The experiences gained in the plate finite element analysis may serve as an important exam-
ple for solving other fourth-order partia differential equation, such as the biharmonic equation of general
physical interests.

Basic Plate Theory

The basic assumption of the plate is that the plane sectfiyes;,‘remain plane under deformation (see Fig-
ure 4¢57a). Eactamina, which is parallel to the mid-surface, is assumed to be under plane stress, ©.9.,
We also assumed, inconsistent to the plane stress assumptian,ishemost negligible, so wgx x) does not
vary with thickness (z = [-1/2, t/2]). The displacements can be expressed as.

Uy = Uyo-8q2, W = Ugp-8pZ, W = W, or
u = w-6,2, Vv =\p-6yz, W =W EQ. 4248

The membranending strains can be expressed'as

0
el | O
_ _ 0 0y _
€E=|g | =-z|g & =-2.0 Eq. 4+249
y 0 oy M .
Yol o0
dy 0X

Yo Shear strain

@ “ (b)
( T / 4
pW=o A M y
S SO — 7 :
\ Lfiber)mldsurface/e s, (My( @ @xv
Uy = Uyg-9gZ or}‘ -

Figure 457 (a) the displacements of plate under deformation, (b) the shear forces (S, S),
the normal momenets (M, My), and the twisting moments (M, My,) of aplate.

1. p.8in Zienkiewicz and R.L. Taylor, 1991, “The finite element method”, 4th ed., vol. 2. McGraw-Hill, Inc., UK.
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and the transverse shear strains|[yy, Yy] as

L
y= "% = 2|2+ |9 = _0+pw Eq. 4+250
Yy Oy |9w
Y

t
M, 2 oy
M =M, | =-[o,|zdz= DLO Eq. 44251
MXy _% Tyy
whereD, assumed plane stress, is defined as
1v O
EC _vi 0
D= —— Eq. 4¢252
2I-V)| 1y a
00—
2
The shear forces [SS] are
S
S= [ X] = BGt(- 0 + Ow) =a(- 0 + Ow) Eq. 4+253
Sy
wherea = Gt, and the correction fact@ = g is for rectangular homogeneous section with parabolic shear

stress distribution.

Parallel to thequilibrium equations, Eq. 4¢26 and Eq. 4+27 for 1-D beam bending problem, we have in plate
bending problem

LT™ +S=0, and OTS+q =0 Eq. 4254

or we can express their components explicitly in matrix form as

0 2| M
ox " 0yl v |+ le = H an P i} ﬂ +M = H Eq. 44255
0 4 9 MY sy ox ady Sy ay 0

ay ox||V'xy
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Kirchhoff (Thin-) Plate Theory and Finite Element For mulation—C?* Continuity Requirement

In thin plate theory, we assume that the fiber remains normal to the mid-surface during deformation.There
fore, the transverse shear strains are all zero. Thatis) , and from Eq. 4250, we identify

0 = ow EqQ. 4256
Substituting first part of Eq. 4254 into the second part of it, we get
-OL™ +g =0 Eq. 4257

Then, use Eq. 4+251 to substitidiein Eq. 4¢257, and substituf® with thin plate assumptiof, = Ow  in Eq.
4256, we get

(LO)™DLOW—q = 0 Eq. 4258

From the definition of operatots and], we have the combined operataf” as

9 92
ax 0 9 ox2
Lo=|g 2[|%%]=| 22 Eq. 4259
oy 9 ay?
9 o]l9y 92
ay 1) _26X6y_

For constanb, the Eq. 4258 becomes the well-known classiitarmonic equation®

4, 4 4 —y2
0*w 04w +6W 12(1 v):0

W + Zaxzayz a_y4 q Et3 Eq 4260

The homogeneous solution for a simply supported rectangular plate with lengths of “a” and “b” has the simpl
form of

w = cosEmTT[X%cosEn%yH where m,n = 1, 3,5, ... Eq. 44261

The finite element formulation is obtained by substituting element shape furid)ointo Eq. 4256 to Eq.
4+259. TheB-matrix is defined as

B, = (LO)N, Eq. 44262

1. e.g., Airy’s stress function satisfies the biharmonic equation as described in p.32, and p.538 in Timoshenko, S.P., and J.
Goodier, 1970, “ Theory of elasticity”, 3rd ed., McGraw-Hill Book Company.
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From Eq. 4251 and Eqg. 4+256, we have the moment vector as
h ~a
Mg = DB we EQ. 4263
Where\fvg1 is the nodal deflection vector. The element stiffness matrix has no difference from Eq. 4¢173; i.e.,

kpd = kiaib = eiTIBaTIDBbder , with p =ndf (a-1) + i, and q =ndf (b-1)+j EQ. 4+264
Q

Nonconforming Rectangular Plate Element (12 degrees of freedom)

The nodal variables for this four-node rectangular element is

Wa
ud= [, EqQ. 4265
bya
where
A ow A w
o= F3y0, and ba = %Eg Eq. 4+266
The nonconforming element defines a 12-terms polynomial for the deflection “w” as
W =0g+0q X +0,Y +03X2+0,Xy +05 Y+
U6 X + 07 X3y +ag Xy? + Ao y° + g0 X%y + gy Xy°
=P Eq. 44267
where
P= [1 Xy x2 xy y© x3 x2y xy2 y3 x3y xy3} Eq. 4268

Notice that the polynomial isot complete up to the third-order. For each of four nodes on the corner of the rect-
angle 6=0, 1, 2, 3), we have twelve equations

2 2 3 2 2 3 3 3
Wa Op T A Xg T ApYa + OgXg + 0 XY T A5Yg + UeXy + U7X3Y + UgXaya + Ogya + 0oX3Ya T 0 11XaY 3
a | = . _ Cox2_ _ 2_ 3_ 2
Oxa Op = OyXa = 2055 = 07X5 — 206Xy o = 30gY5 — UyoX3 — 3011 XY 5
Bya Oy + 203X, + UyY, + 306XS +207X,Y, +UgY3 +300X3Y, +0A 11y 3

=c.a Eq. 44269
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where C, is defined as

1%y Ya X5 Xa¥a Y& X3 XDa X¥3 Y3 Xa X2¥d
Ca=[00-1 0 —-x, -2y, 0 —-x2 -2xyy,-3y2 —x3 -3xy2 Eq. 4+270
01 02y, 0 322xy, VY2 0 3%y, ys

fora=0, 1, 2, 3. Therefor& is a 12« 12 matrix. The vectofr can be obtained by inverting Eq. 4¢269 as

o = ca Eq. 4271
Therefore, thd-matrix is defined as
B = (LO)PC-! Eq. 4+272
where the shape function is
N=PC1 Eq. 44273

The Program Listing 4¢21 implements the generic procedure in the above to derive the nonconforming sha
function (Eq. 4+273) for the thin-plate bending rectangular element. Eq. 4262 and Eq. 4¢264 are then taken
define theB-matrix and the stiffness matrix, respectively. The plate is clamped at four sides and with uniform
unit loading. Only a quarter (upper-right) of the plate is modeled due to the symmetry of the geometry and th
boundary conditions. 4 4 (= 16) elements are used in the computation. At the right and the top edges of tt
model the boundary conditions are wo= dw/ = dw/ y = 0 (clamped). At the bottom and the left edges are
taken asd wd y =0, and W/ x =0, respectively (see Figure 4¢58a). The solution of the vertical deflection is

shown in Figure 4+58b.

The maximum deflection is at the center of the plate, or at the lower-left corner of the finite element model
The exact solution is 226800The results are shown in TABLE 4+8., which shows the convergence toward the

exact solution when the mesh size is refined.

Mesh Center Deflection
2x2 251691
4x4 234449
8x8 229464
16x 16 228186
Exact 226800

TABLE 4+8. Center deflection.

1. The exact solution is computed from formula provided in p. 31 in Zienkiewicz, O.C. and R.L. Taylor, 1991, “The finite

element method”, 4th ed., vol. 2. McGraw-Hill, Inc., UK, and reference therein.
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l#include "includefe.h”
static row_node no = 5;
EP::element_pattern EP::ep = EP:QUADRILATERALS 4 NODES;
Omega_h::Omega_h() {
double coord[4][2] = {{0.0, 0.0}, {1.0, 0.0}, { 1.0, 1.0}, {0.0, 1.0} };
int control_node_flag[4] = { TRUE, TRUE, TRUE, TRUE};
block(this, row_node _no, row_node no, 4, control_node_flag, coord[0]);
}
gh_on_Gamma_h::gh_on_Gamma_h(int df, Omega_h& omega_h) {
__initialization(df, omega_h);
for(inti =0; i < row_node_no-1; i++)
the_gh_array[node_order(i)](1) = gh_on_Gamma_h::Dirichlet;
for(inti =0; i < row_node_no-1; i++)
the_gh_array[node_order(i*row_node_no)](2) = gh_on_Gamma_h::Dirichlet;
for(inti =1;i <=row_node_no; i++) {
the_gh_array[node_order(i*row_node_no-1)](0) = gh_on_Gamma_h::Dirichlet;
the_gh_array[node_order(i* row_node_no-1)](1) = gh_on_Gamma_h::Dirichlet;
the_gh_array[node_order(i*row_node no-1)](2) = gh_on_Gamma_h::Dirichlet; }
for(inti =0; i <row_node_no-1; i++) {
the_gh_array[node_order(row_node_no* (row_node_no-1)+i)](0) =
gh_on_Gamma_h::Dirichlet;
the_gh_array[node_order(row_node_no* (row_node_no-1)+i)](1) =
gh_on_Gamma_h::Dirichlet;
the_gh_array[node_order(row_node_no* (row_node_no-1)+i)](2) =
gh_on_Gamma_h::Dirichlet;
}
}
class PlateR4 : public Element_Formulation {
public:
PlateR4(Element_Type_Register a) : Element_Formulation(a) {}
Element_Formulation * make(int, Global_Discretization& );
PlateR4(int, Global _Discretization& );
h
Element_Formulation* PlateR4::make(int en, Global_Discretization& gd) {
return new PlateR4(en,gd);
}
static const double E_ = 1.0; static const double v_ = 0.25; static const doublet_=0.01;
static const double D_=E_* pow(t_,3) / (12.0* (1-pow(v_,2)));
static const double Dv[3][3] ={ {D_,D_*v_, 0.0},
{D_*v_,D_00},
{0.0,0.0, D_*(1-v)/2.0} };
COD =MATRIX("int, int, const double*", 3, 3, Dv[0]);
PlateR4::PlateR4(int en, Global _Discretization& gd) : Element_Formulation(en, gd) {
int ndf = 3;
Quadratureqp(2, 16);
HO dx_inv;
H2X;
{
H2 z(2, (double*)0, gp),
n=INTEGRABLE_VECTOR_OF TANGENT_OF TANGENT_BUNDLE(
"int, int, Quadrature", 4/* nen*/, 2/*nsd*/, qp), za, eta;
zai &=2[0]; eta&=2[1];
n[0] = (1-zai)* (1-eta)/4; n[1] = (1+zai)* (1-eta)/4;
n[2] = (1+zai)* (1+eta)/4; n[3] = (1-zai)* (1+eta)/4;
X &=n*xl;
}
dx_inv &= d(X).invers();
J dv(d(X).det());

bottom B.C. ow/ay =0
left B.C. ow/dx =0
topB.C.w=0w/dx=0w/dy=0

right B.C.w=a9w/dx=9dw/oy =0

v O

D = Et3 vi1 0
12(1-v?) 1-v
00

coordinate transformation rule
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H22Z(2, (double*)0, gp),
N = INTEGRABLE_VECTOR_OF TANGENT_OF_TANGENT_BUNDLE( Shape functionsl
"int, int, Quadrature”, nen* ndf/* nenxndf*/, 2/*nsd*/, qp),
Zai, Eta;
Zai &=Z[0]; Eta&=Z[1];
CO0 C(12, 12, (double*)0),
C_sub = SUBMATRIX("int, int, C0&", 3, 12, C);
for(inti=0;i<nen;i++){
COX(xI[i][D), y(I[i][1]), X2 = x.pow(2), x3 = X.pow(3), y2 = y.pow(2), y3 = y.pow(3),
zero = C0(0.0), one = CO(1.0); Eq. 4270 forC-matrix
C_sub(i) =
(one[x |y [x2 [(x*y)|y2 [x3 [(x2*y) [(x*y2) |y3  |(x3*y) [(x*y3) )&
(zerolzerol-onejzero |(-x)[(-2.0%y)[zero |(-x2)  |(-Z*x*Y)[(-3*y|(-x3)  |(-3*x*y2)) &
(zerolone |zero|(2*x)ly |zero  |(3*Xx2)|(2*x*y) ly2 |zero  |(3*x2*y)ly3 );
}
COC_inv = C.inverse(); 1
H2P=INTEGRABLE VECTOR_OF TANGENT_OF TANGENT_BUNDLE( C
"int, int, Quadrature", 12/* nenxndf*/, 2/* nsd*/, gp);
{
H2x =X[0], y = X[1];
P[0] = 1.0; P[1] = x; P[2] = y; P[3] = x.pow(2); P=
P4] = x*y; P[5] =y.pow(2); P[6] = x.pow(3); 2 i|
PI7] = xpow(2)*y; PI8] = x*y.pow(2); PI9] = y.pow(3); 1xyx2xy y" x3 x%y xy? y3 x3y xy3
P[10] = x.pow(3)*y; P[11] = x*y.pow(3);
}
for(inti =0;i<12;i++) N[i] = P* C_inv(i);
HO Nxx = INTEGRABLE_MATRIX("int, int, Quadrature", 2* nen* ndf, 2, gp); N = PC-1 _ _
HOw_xx = INTEGRABLE_SUBMATRIX("int, int, HO&", 2, 2, Nxx); 62
for(inti = 0; i < nen*ndf; i++) w_xx(i) = (~dx_inv) * dd(N)(i) * dx_inv; 6_2
HO B = (~w_xx[0][0]) & X
(~woxx[1][1]) & — — 92
(2.0 (-w OI[1]): B, = (LO)N,, andLO 6_y2
stiff &= ((~B) * (D * B)) | dv;
doublef_0=10; kiaib = eiTIB;DBbdQe. 02
force &= ((HO)N)*f_0) | dv; 2 ! axay
} L a
}
Element_Formulation* Element_Formulation::type_list =0;
static Element_Type_Register element_type_register_instance;
static PlateR4 plate_r4_instance(element_type register_instance);
int main() {
int ndf = 3;
Omega_h oh; gh_on_Gamma_h gh(ndf, oh); U_h uh(ndf, oh);
Global_Discretization gd(oh, gh, uh);
Matrix_Representation mr(gd);
mr.assembly();
CO u = ((CO)(mr.rhs())) / ((CO)(mr.Ihs()));
gd.u_h() = u; gd.u_h() = gd.gh_on_gamma_h();
cout << "[w, -dw/dy, dw/dx]:" << endl;
for(inti = 0; i <row_node_no; i++)
for(int j = 0; ] < row_node_no; j++)
cout << "#" << (i*row_node_no+j) <<": " << gd.u_h()[i*row_node_no+j] << endl;
return O;

i |
Listing 4¢21 Plate bending using nonconformming rectangular element (project workspace file “fe.dsw”,
project “rectangular_plate_bending” with Macro definition
“__GENERIC_NONCONFORMING_SHAPE_FUNCTION” set at cpite time).
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W = 0w/0x = ow/dy =0
A 7

ow/ox =0

ow/dy =0

@ (b)

Figure 458 Clamped boundary conditions and nodal deflections for rectangular plate bending
elements (4 x4 mesh are shown) using non-conformming shape function.

Alternatively, we can substitute the explicit shape functions® in Eq. 4+262 with

) (E&a+1)(NNy+ 1)(2+EE,+nn,—&%-n?)
Na=3|  -bny(E&,+1)(nny+1)%(Nn,—1) EQ. 4274
ag, (88, +1)%(88,—1)(Nn,+1)

where “2a” and “2b” are the lengths of a rectangular element, and the nodal normalized coordin&iesre [
={(-1, -1), (1, -1), (1, 1), (-1, 1)}. Implementation of Eq. 4¢274, to be substituting in Eq. 4+262, is straight for-
ward as

1 H2Z(2, [double¥)0, gp),

2 N = INTEGRABLE_VECTOR_OF_TANGENT_OF_TANGENT_BUNDLE(
3 "int, int, Quadrature", nen*ndf/*nenxndf*/, 2/*nsd*/, qp),

4 Zai, Eta;

5 Zai &= Z|[0]; Eta &= Z[1];

6 doublea = fabs( (@ouble)(xI[0][0]-xI[1][O])) )/2.0,

1. see p. 17 in Zienkiewicz, O.C. and R.L. Taylor, 1991, “The finite element method”, 4th ed., vol. 2. McGraw-Hill, Inc.,
UK, and reference therein.
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7 b = fabs( ((double)(xI[2][1]-xI[1][1])) )/2.0,

8 zai[4] ={-1.0, 1.0, 1.0, -1.0}, eta[4] ={-1.0, -1.0, 1.0, 1.0};

9 for(inti=0;i<nen;i++){

10 N[i* ndf] = (Zai* zai[i]+1)* (Eta* eta[i] +1)* (2+Zai* zai[i] +Eta* eta[i]-Zai.pow(2)-Eta.pow(2))/8.0;
11 N[i*ndf+2] = a*zai[i]* (Zai* zai[i] +1).pow(2)* (Zai* zai[i]-1)* (Eta* eta[i] +1)/8.0;

12 N[i*ndf+1] = -b*eta[i]* (Zai* zai[i] +1)* (Eta* eta[i] +1).pow(2)* (Eta* eta[i]-1)/8.0;

13}

On the other hand, the Eq. 4¢272 is quite generic especially when no one is deriving an explicit formula like Ec
4274 for us. The computation is done on the same project (“rectangular_plate_bending” in project workspac
file “fe.dsw”) with macro definition “_ EXPLICIT_NONCONFORMING_SHAPE_FUNCTION” set at com-

pile time. The solutions is certainly identical to the one with generic procedure for computing the shape functior

Conforming Rectangular Plate Element (16 degrees of freedom)

Instead of Eq. 4+265, we can extend the nodal variables to

Wa

owg
Moy,
W Eq. 40275
ox L,

>
(Lh]
1]

19°w
| LOxayL}|

with four nodes at each corner of the rectangle we have totally 16 degree of freedoms. Thecefapiste
third-order polynomial can be used to represent the deflection wPwidfined as

P = [1 x y x2 xy y© x3 x2y xy2 y3 x3y x2y” xy3 x3y? x2y3 x3y~% EqQ. 44276
and parallel to the derivation of Eq. 4¢269, we have

1XaYa X& Xa¥a Y& X§ XBa Xa¥Z VZ XDVa XBV2 XY XdV%a XA¥V%a XQ¥'a
c,= 001 0 x5 2y, 0 x2 2x,y,3y2 x3 2x2y,3x,y2 2x3y, 3x3y?, 3x3y2, Eq. 4277
01 02x, Yo 0 3x32x3y, yi 0 3x3y, 2x.y2 y3 3x3yZs 2x,y3, 3x2y3,

000 0 1 0 0 2x, 2y, 0 3x2 4x,y, 3y2 6x2y, 6x,y2 9x2y2,

Eq. 4276 and the inverse of Eq. 4¢277 can be substituted in Eq. 4¢272 to deBamahiex. The explicit shape
functions for the conforming rectangular element, , is defined as
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(E. + Ea)z(zza_z)(n + na)z(r]r]a_z)
1| a8, (E+ E)EE,~1)(N +N,)%(NN,~2)

16| _p(g +£,)2(58,—2)n,(n +Np2(NN,—1)
abg (& +&,)%(88,—1)n,y(n +ny)?(nn,—1)

Na

Eq. 4278

where “2a” and “2b” are the lengths of the rectangular element, and the suaseiiptl, 2, 3 are the nodal
numbers (developed by Bogrmeral.lvz). The same project “rectangular_plate_bending” can be used with macro
definition “__EXPLICIT_CONFORMING_SHAPE_FUNCTION" set at compile time for using Eq. 4278, or

no macro definition set at compile time for its generic counterpart via Eq. 4.277. The results of center deflection
of the conforming rectangular plate are shown in TABLE 49. .

Mesh Center Deflection
2x2 363735
4x4 275114
8x8 242597

16x 16 232124
Exact 226800

TABLE 4+9. Center deflection.

Triangular Plate Element (9 degrees of freedom)

For triangular element we use thiea coordinates Lg, L;, andL,. The polynomial has 9-terms to match the
9-dof on the three corner nodes. Thereférean be defined s

P = ['—o Ly Ly Loby Lyly Lyl LGL, LEL, L%L(J Eq. 44279

Three third order terms are chosen in addition to the first six complete second order terms. The explicit shape
function for the first node is (with cyclic permutation of 0, 1, 2 for other two nodes)

1. see p. 49 in Zienkiewicz and R.L. Taylor, 1991, “The finite element method”, 4th ed., vol. 2. McGraw-Hlill, Inc., UK, and
reference therein.

2. see also p. 419, Table 9.1 for the “Hermite cubic element” in Reddy, J.N., 1993, “An introduction to the finite element
method”, 2nd ed., McGraw-Hill, Inc., New York.

3. see p. 244 in Zienkiewicz, O.C., 1977, “The finite element method”, 3rd ed., McGraw-Hill, Inc., UK.
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Lo+L8L, +L3L,—LoL?—L,L2
Ng = bZH'ng + %LoLleg‘ blH_ZL(Z) + %LoLle Eq. 4+280
C2H—§'—l + %'—o'—ﬂ-z%‘ 018-2'-5 + %LoLleH
wherebg = y;- y,, andcgy = X,-X1. The explicit shape function for the triangular element can be implemented as

1 H2L(2, (double®O, qp), /l area coordinates
2 N = INTEGRABLE_VECTOR_OF_TANGENT_OF_TANGENT_BUNDLE(

3 "int, int, Quadrature”, 9, 2, gp), /I shape functions
4 LO=L[0],L1=1L[1],L2=1.0-LO-L1;

5 double b0 = @double)(xI[1][1]-xI[2][1]), cO = (double)(xI[2][0]-xI[1][0]),

6 b1 = double)(xI[2][1]-xI[0][1]), c1 = (double)(xI[0][0]-xI[2][0]),

7 b2 = double)(xI[0][1]-xI[1][1]), c2 = (double)(xI[1][0]-xI[O][0]);

8 N[0] = LO+LO.pow(2)*L1+L0.pow(2)*L2-LO*L1.pow(2)-LO*L2.pow(2); /I first node

9 N[1] = b2*(LO.pow(2)*L1+L0*L1*L2/2.0)-b1*(L2*L0.pow(2)+L0*L1*L2/2.0);

10 N[2] = c2*(LO.pow(2)*L1+L0*L1*L2/2.0)-c1*(L2*L0.pow(2)+L0*L1*L2/2.0);

11 N[3] = L1+L1.pow(2)*L2+L1.pow(2)*LO-L1*L2.pow(2)-L1*LO.pow(2); Il second node
12 N[4] = bO*(L1.pow(2)*L2+L0*L1*L2/2.0)-b2*(LO*L1.pow(2)+L0*L1*L2/2.0);

13 NI5] = cO*(L1.pow(2)*L2+L0*L1*L2/2.0)-c2*(LO*L1.pow(2)+LO*L1*L2/2.0);

14 N[6] = L2+L2.pow(2)*LO+L2.pow(2)*L1-L2*L0.pow(2)-L2*L1.pow(2); // third node
15 N[7] = b1*(L2.pow(2)*LO+L0*L1*L2/2.0)-b0*(L1*L2.pow(2)+L0*L1*L2/2.0);

16 NI[8] = c1*(L2.pow(2)*LO+L0*L1*L2/2.0)-cO*(L1*L2.pow(2)+LO*L1*L2/2.0);

Program Listing 422 implements the 9-dof triangular plate bending problem. The project
“triangle_plate_bending” in project workspace file “fe.dsw” implements the 9-dofs triangular element for plate
bending problem. The maximum deflection, for & (4x 4) 2 triangular mesh, is 205175.
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l#include "includefe.h”
static row_node no = 5;
EP::element_pattern EP::ep = EP::SLASH_TRIANGLES;
Omega_h::Omega_h() {
double coord[4][2] = {{0.0, 0.0}, {1.0, 0.0}, { 1.0, 1.0}, {0.0, 1.0} };
int control_node_flag[4] = { TRUE, TRUE, TRUE, TRUE};
block(this, row_node_no, row_node no, 4, control_node_flag, coord[0]);
}
gh_on_Gamma_h::gh_on_Gamma_h(int df, Omega_h& omega_h) {
__initialization(df, omega_h);
for(inti =0; i < row_node_no-1; i++)
the_gh_array[node_order(i)](1) = gh_on_Gamma_h::Dirichlet;
for(inti =0; i < row_node_no-1; i++)
the_gh_array[node_order(i*row_node_no)](2) = gh_on_Gamma_h::Dirichlet;
for(inti =1;i <=row_node_no; i++) {
the_gh_array[node_order(i*row_node_no-1)](0) =
the_gh_array[node_order(i*row_node_no-1)](1) =
the_gh_array[node_order(i*row_node_no-1)](2) = gh_on_Gamma_h::Dirichlet;
}
for(inti =0;i <row_node no-1; i++) {
the_gh_array[node_order(row_node_no*(row_node_no-1)+i)](0) =
the_gh_array[node_order(row_node_no* (row_node_no-1)+i)](1) =
the_gh_array[node_order(row_node_no*(row_node_no-1)+i)](2) =
gh_on_Gamma_h::Dirichlet;
}
}
class PlateT3 : public Element_Formulation {
public:
PlateT3(Element_Type Register a) : Element_Formulation(a) {}
Element_Formulation * make(int, Global _Discretization& );
PlateT3(int, Global_Discretization&);
b
Element_Formulation* PlateT3::make(int en, Global_Discretization& gd) {
return new PlateT3(en,gd);
}
static const double E_ = 1.0; static const double v_ = 0.25; static const doublet_ = 0.01;
static const double D_=E_* pow(t_,3) / (12.0* (1-pow(v_,2)));
static const double Dv[3][3]={
{D_, D *v, 00 I8
{D_*v_, D_, 0.0 1,
{00, 00, D_*(1-v)/20}
b
COD = MATRIX("int, int, const double*", 3, 3, Dv[0Q]);
PlateT3::PlateT3(int en, Global_Discretization& gd) : Element_Formulation(en, gd) {
int ndf = 3;
Quadratureqp(2, 16);
HO dx_inv;
H1X;
{
H11(2, (double*)0, gp),

n=INTEGRABLE_VECTOR_OF TANGENT_BUNDLE( "int, int, Quadrature’, 3, 2, qp),

10=1[0],11=1[1],12=1.0-10-11;
n[0] =10; n[1] =11; n[2] = 12;
X &=n*xl;

}

dx_inv &= d(X).invers();

J dv(d(X).det());

bottom B.C. -aw/oy =0
left B.C. ow/ax =0

right B.C.w=o9dw/ox=ow/dy=0

topB.C.w=0w/dx=daw/ay=0

v O

D = Et3 vi1 0
12(1-v?) 1-v
00

coordinate transformation rule
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{
H2L(2, (double*)0, gp),
N = INTEGRABLE_VECTOR_OF TANGENT_OF TANGENT_BUNDLE( Shape functionsl
"int, int, Quadrature”, 9, 2, qp),
LO=L[0],
L1=1L[1],
L2=1.0-L0-LZ;

double b0 = (double)(xI[1][1]-XI[2][1]),

c0 = (double)(xI[2][0]-xI[1][0]),

b1 = (double)(xI[2][1]-I[0][1]),

cl = (double)(xI[0][0]-xI[2][0]),

b2 = (double)(xI[O][1]-I[1][1]),

€2 = (double)(xI[1][0]-xI[01[0]); .. .
N[O] = LO+LO.pow(2)* L 1:+L0.pow(2)* L 2-L 0* L 1.pow(2)-L 0% L 2.pow(2); explicit shape functions
N[1] = b2*(LO.pow(2)* L 1+L 0% L 1* L 2/2.0)-b1* (L 2* L0.pow(2)+L 0* L1* L 2/2.0);
N[2] = c2* (LO.pow(2)* L 1+L0* L1* L 2/2.0)-c1* (L 2* L 0.pow(2)+L0* L 1* L 2/2.0);
N[3] = L1+L1.pow(2)* L2+L1.pow(2)* L O-L 1* L 2.pow(2)-L 1* L 0.pow(2);
N[
N[
N[
N[

bo = y1- Y2, andcy = Xp-Xy.

4] = b0* (L 1.pow(2)* L 2+L 0% L1* L 2/2.0)-b2* (LO* L 1.pow(2)+L 0* L1* L. 2/2.0);
5] = cO* (L 1.pow(2)* L 2+L 0% L 1* L 2/2.0)-c2* (L O* L 1.pow(2)+L0* L 1* L 2/2.0); - -

6] = L2+L 2.pow(2)* L 0+L 2.pow(2)* L 1-L 2* L O.pow(2)-L 2¢ L 1.pow(2); 92

7] = b1*(L2.pow(2)* LO+L 0% L 1* L 2/2.0)-b0* (L 1* L 2.pow(2) +L O L 1*L 2/2.0); %2
N[8] = C1* (L2.pow(2)* LO+LO¥ L 1%L 2/2.0)-c0* (L 1*L 2.pow(2)+L0* L 1*L 2/2.0); )
HO Nxx = INTEGRABLE_MATRIX (“int, int, Quadrature", 2*nen*ndf, 2, op): B, = (LO)N,, andLO = 0
HOw_xx = INTEGRABLE_SUBMATRIX("int, int, HO&", 2, 2, Nxx): dy?
for(inti = 0; i < nen*ndf; i++) .

W xx(i) = (~dx_inv) * dd(N)(i) * dx_inv: kiab = eiT_[B;D B,dQe 26_2
HOB = (~w_xx[0][0]) & o) | axay|

(~w_xx[1][1]) &
(2.0* (~w_xx[O][1]));
stiff &= ((~B) * (D * B)) | dv;
doublef_0=1.0;
force &= (((HO)N)*f_0) | dv;
}
}
Element_Formulation* Element_Formulation::type_list =0;
static Element_Type_Register element_type_register_instance;
static PlateT3 plate_t3_instance(element_type_register_instance);
int main() {
int ndf = 3;
Omega_h oh;
gh_on_Gamma_h gh(ndf, oh);
U_h uh(ndf, oh);
Global_Discretization gd(oh, gh, uh);
Matrix_Representation mr(gd);
mr.assembly();
COu = ((CO)(mr.rhs())) / ((CO)(mr.Ihs()));
gd.u_h() =y;
gd.u_h() = gd.gh_on_gamma_h();
cout << "[w, -dw/dy, dw/dx]:" << endl;
for(inti =0; i <row_node_no; i++)
for(intj = 0; j < row_node_no; j++)
cout << "#"' << (i*row_node_no+j) <<": " << gd.u_h()[i*row_node_no+j] << endl;
return 0;
}

I |
Listing 4¢22 9 dof triangular plate bending using nonconformming rectangular element (project workspace
file “fe.dsw”, project “triangular_plate_bending”).
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Morley’s Triangular Plate Element (6 degrees of freedom)

A complete quadratic polynomial has only six terms as

P = ['—o Ly Ly Loby Lybo '—2'—4 Eq. 4281

A triangular element can be conceived with six degree of freedoms, with three deflection variables “w” on the

corner nodes and three normal derivativeés “9 w/ n” on the three middle points of the triangle sides as depicted
in Figure 4¢59.

Wa

(owfon), (ow/on)s

Wy

(Ow/an)s

Figure 4¢59 Morley's six degrees of freedom triangular element.

Parallel to the derivation of Eq. 4269 for a generic shape function, we have
Wg =0g, Wy =01, Wy =05 EqQ. 4+282

The normal derivatives to the node number “3” can be obtained according to the formula

DQD_'_O[G 0,0 Diim}

Cons ~ 4A|3L, T AL, 2aL, T HomL, ~aL,0 Eq. 4-283

wherely is the length of the edge opposing to node numberX'®,the area of the triangle, apgdis defined as

32 133 213
Mo= "5~ W= =3 ,and p, = 2 Eq. 4-284
0 1 2
Similarly we can define for the other two normal derivatiy@son), @dn); . The derivativ&(df “

with respect td.q, L4, andL, are

1. p.27 in Zienkiewicz, O.C. and R.L. Taylor, 1991, “The finite element method”, 4th ed., vol. 2. McGraw-Hill, Inc., UK.
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o(Pd)
oL, = agtagl,+agl,
oPa)
oL, - oy +oglg+oy,l,
(PO
(6L2) = dy+oyl, +agly Eq. 4-285
Therefore, using Eq. 4¢283, we have
|
Wi 0
%& = Al 200+ (1=pg)a; + (1+ po)a, —ag + 0y —ag]
|
w 1
%HA = gal-2a; + (1-py)a, + (1 + ) ag -0, + 05— 0]
I
W 2
%& = al= 205+ (1-py)ag + (1 + Hg)ay — a5+ ag—ay] Eq. 4-286
ThereforeC can be expressed as
1 0 0O 00 0
0 1 0 00O
0 0 1 00O
ilo lo(1—Hg) (1 +Hp) 11 -1
Cs= N N N - - Eq. 4+287
L(1+py) =2, 1(1-p)
~a a4 1ti
H(1-py) L,(1+p,) =21,
4 44 A

The shape function is definedlds= PCL. We can still use the definition of stiffness matrix from EqQ. 4264,

kpa = kiab = eiTIBgDBbder Eq. 4288
Q
Recall it has been defined with a particular choice
A 5, = W .
Oy = 3y’ and 8y = I Eq. 44289

that improves the symmetry of plate theory equations. The relatién ofd, to éy and can be expressed as

_w_ dw, ow e .
en‘%‘“xax+“yay‘(—”y)9x+”x9y Eq. 4290
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where n = [n,, ny]T is the outward unit surface normal on the mid-side node. Therefore, the B-matrix corre-
sponding to 6, -dof is multiplied with a factor “(n, - n)" to take care of the conventional choice in Eq. 4289.

Program Listing 4+23 implements the Morley’s 6-dof triangular plate element. The result of the computation are
shown in TABLE 4-10..

No. of Elements Center Deflection
(4x4)x2 125704
(8x8)x2 165518

(16x16) x2 192789
Exact 226800

TABLE 4-10. Center Deflection of Morley’s
triangular plate element.
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[ I
#include "include\fe.h”
static row_node_no=19;
Omega_h::Omega_h() {
int row_segment_no = (row_node_no - 1)/2;
double v[2]; int ena[6];
for(int i =0; i <row_node_no; i++)
for(int j = 0; j <row_node_no; j++) {
int nn = i*row_node_no+j;
v[0] = (double)j/(double)(row_node_no-1); v[1] = (double)i/(double)(row_node_no-1);
Node* node = new Node(nn, 2, v); the_node_array.add(node);
}
for(int i =0; i < row_segment_no; i++)
for(int j = 0; j < row_segment_no; j++) {
int nn = i*row_node_no*2+j*2;
ena[0] = nn; ena[1] = ena[0]+row_node _no*2+2; ena[2] = ena[1]-2;
ena[3] = ena[2] + 1; eng[4] = eng[0]+row_node _no; ena[5] = ena[4]+1;
int en = i*row_segment_no*2+j*2;
Omega_eh* elem = new Omega_eh(en, 0, 0, 6, ena); the_omega_eh_array.add(elem);
ena[0] = nn; ena[1] = nn+2; eng[2] = ena[1] + row_node no*2;
ena[3] = ena[1] + row_node_no; ena[4] = ena[ 3] -1; ena[5] = ena[0] +1;
elem = new Omega_eh(en+1, 0, 0, 6, ena); the_omega_eh_array.add(elem);

}
}
gh_on_Gamma_h::gh_on_Gamma_h(int df, Omega_h& omega h) { __initialization(df, omega_h);
for(inti =1;i < row_node no-1; i+=2) bottom B.C. o w/o n =0
the_gh_array[node_order(i)](0) = gh_on_Gamma_h::Dirichlet;
for(inti =1; i <row_node_no-1; i+=2) left B.C. aw/d n=0

the_gh_array[node_order(i*row_node_no)](0) = gh_on_Gamma_h::Dirichlet;
for(inti = 0; i <row_node_no; i+=2) {

the_gh_array[node_order(i*row_node_no-1)](0) = right B.C.w=9dw/dn=0
the_gh_array[node_order((i+1)* row_node_no-1)](0) = gh_on_Gamma_h::Dirichlet;

}

for(inti =0; i < row_node_no-1; i+=2) { top B.C.w=49dw/on=0

the_gh_array[node_order(row_node_no* (row_node_no-1)+i)](0) =
the_gh_array[node_order(row_node_no* (row_node_no-1)+i+1)](0) =
gh_on_Gamma_h::Dirichlet;

the_gh_array[node_order(row_node_no*row_node_no-1)](0) = gh_on_Gamma_h::Dirichlet;
}
class PlateMorley6 : public Element_Formulation {
public:
PlateMorley6(Element_Type_Register a) : Element_Formulation(a) {}
Element_Formulation * make(int, Global _Discretization&);
PlateMorley6(int, Global_Discretization&);
b
Element_Formulation* PlateMorley6::make(int en, Global _Discretization& gd) {
return new PlateMorley6(en,gd);
}
static const double E_=1.0;
static const doublev_ = 0.25;
static const doublet_=0.01;
static const doubleD_ = E_* pow(t_,3) / (12.0* (1-pow(v_,2))); 1v O

static const double Dv[3][3] ={ 3
{D_, D_*v., 00 1}, D-—FEC |v1 0
(D*v, D, 00 1}, 12(1-v?) 1-v
{00, 00, D_*(1-v )/2.0} 00—~

b
CO D = MATRIX("int, int, const double*", 3, 3, Dv[0]);
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PlateMorley6::PlateMorley6(int en, Global_Discretization& gd) : Element_Formulation(en, gd) {
Quadrature gp(2, 16); coordinate transformation rule

H11(2, (double*)0, ap), hape functions!
n=INTEGRABLE VECTOR OF TANGENT BUNDLE("int, int, Quadrature’, 3,2, qp), ~ >NaP€ tunction

10=1[0], 11=1[1], 12=1.0-10-11; n[0] =10; n[1] = 11; n[2] = I2; natural coordinatég, L4, L,
CO x = MATRIX("int, int, CO&, int, int", 3, 2, xl, 0, 0);
H1 X =n*x; HO dx_inv = d(X).inverse(); J dv(d(X).det()/2.0);
{
H2 L (2, (double*)0, gp),
N = INTEGRABLE_VECTOR_OF TANGENT_OF TANGENT_BUNDLE(
"int, int, Quadrature”, 6, 2, qp),
LO=L[0], L1=L[1],L2=1.0-L0-L1;
HO unit(gp); unit = 1.0; double area= (double)(unit | dv);
doublel_0 = (double)norm(xI[1]-xI[2]), |_1 = (double)norm(xI[2]-xI[O]),
|_2 = (double)norm(xI[0]-xI[1]), mu_0 = (pow(l_2,2)-pow(l_1,2))/pow(I_0,2),
mu_1 = (pow(l_0,2)-pow(l_2,2))/pow(l_1,2), mu_2 = (pow(l_1,2)-pow(l_0,2))/pow(I_2,2),
d3=1_0/(4.0%area), d4 =1_1/(4.0*area), d5 = |_2/(4.0* area);
COC=( CO0(1.0) |CO0(0.00 |CO0(0.00 |C0(0.0) |CO(0.0) |CO(0.0) )& C
( CO0(0.0) |CO(1.0) |CO0(0.0) |CO(0.0) |CO(0.0) |CO0.0) )&
( CO0(0.0) |CO0(0.0) |CO(1.00 |CO(0.0) |CO(0.0) |CO0.0) )&
(d3*(CO(-2.0) | CO(1.0-mu_0) | CO(1.0+mu_0) | CO(-1.0) | CO(1.0) | CO(-1.0))) &
(d4*( CO(1.0+mu_1) | CO(-2.0) | CO(1.0-mu_1) | CO(-1.0) | CO(-1.0) | CO( 1.0) )) &

(d5*( CO(1.0-mu_2) | CO(1.0+mu_2) | CO(-2.0) | CO( 1.0) | CO(-1.0) | CO(-1.0) )); 1

COC_inv = C.inverse(); C

H2 P=INTEGRABLE_VECTOR _OF TANGENT_OF TANGENT_BUNDLE( r 2 7
"int, int, Quadrature", 6/* nenxndf*/, 2/* nsd*/, gp); i

P[O] = LO; P[1] = L1; P[2] =L2; P[3] = LO*L1; P[4] = L1*L2; P[5] = L2*LO; N = pc-l 9x2

for(inti=0;i<86;i++) N[i] =P* C_inv(i); - 92

HO Nxx = INTEGRABLE_MATRIX("int, int, Quadrature", 2* nen*ndf, 2, gp); B, = (LO)N,, andLO = | 2=

HOw_xx = INTEGRABLE_SUBMATRIX("int, int, HO&", 2, 2, Nxx); ay?

for(int i = 0; i < nen*ndf; i++) w_xx(i) = (~dx_inv) * dd(N)(i) * dx_inv; 92

HO B = (~w_xx[0][0]) & (~w_xx[1][1]) & (2.0* (~w_xx[0][1])); D

for(inti=0;i<3;i++){ |~ 0xay|

int next = ((i == 2)?0:i+1);

COt = xlI[next]-xI[i]; t = t/norm(t);

COnx =t[1], ny = -t[0]; ~ ~

B(i+3) = B(i+3)* (nx-ny); 6, = (—ny)ex +n, 0y

B (n,-ny) for 6, , to be compatible with

}
siff &= ((-8) * (D B)) |dv; stiffness matrix that is defined for

doublef_0=1.0;
force &= (((HO)N)*f_0) | dv;
} (HON)*T_0) | . ow . ow
Bx=—3-, and By = 5=
} oy ox
Element_Formulation* Element_Formulation::type list = 0;
static Element_Type_Register element_type register_instance; kiaib = T J’ BTDB.dQe
static PlateMorley6 plate_m6_instance(element_type_register_instance); e ! a b ]
int main() { Q

int ndf = 1; Omega_h oh; gh_on_Gamma_h gh(ndf, oh); U_h uh(ndf, oh);
Global_Discretization gd(ch, gh, uh); Matrix_Representation mr(gd);
mr.assembly(); CO u = ((CO)(mr.rhs())) / ((CO)(mr.1hs()));
gd.u_h() =u; gd.u_h() = gd.gh_on_gamma_h();
for(inti =0; i <row_node_no; i++)

for(int j = 0; ] < row_node_no; j++)

cout << "#" << (i*row_node_no+j) <<": " << gd.u_h()[i*row_node_no+j] << endl;

return0; }

Listing 4¢23 Morley’s 6-dof triangular plate bending(project workspace file “fe.dsw”, project
“morley_plate_bending”).
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