
CHAPTER
Four Finite Element Method Primer
numer-

 indus-
themat-
ically for
 mathe-
Various methods in the last chapter are mostly applicable to small size problems. We have demonstrated that
the VectorSpace C++ Library help to ease the programming task significantly. However, if the problem size is
down to one or two variables, they might be solved by hand as well. For better approximation of the solution, we
often need to increase the number of the variables substantially. Finite difference method, finite element method,
and boundary element method are three widely accepted methods for large size problems. We have introduced
the finite difference method in Chapter 1 and the boundary element method in the Chapter 3. Yet another defi-
ciency for the variational method in the last chapter is that it is very simplistic in terms of the geometry of the
problem domains. The geometry of the problem domains is, in most case, very simple; a line segment, a square
(or rectangle), or a circle. In real world applications, the geometry of the problem domains is always much more
complicated. We devote the following two chapters for finite element method with considerable depth. The finite
element method is the most well-established method among the three methods for the large-scale problems. It is
also most capable of handling arbitrarily complicated geometry

Moreover, we would also like to demonstrate to the users of the VectorSpace C++ Library that a numerical
method is often not just about mathematical expression which is already made easy by using VectorSpace C++
Library. The programming complexities caused by complicated geometry (and its large size variables) in finite
element method serves as an excellent test bed that the object-oriented programming can make a significant dif-
ference. The source code of “fe.lib” is used to demonstrate the power of object-oriented programming in
ical applications.

The object-oriented programming is the present-day programming paradigm which is supported by the
trial flag-ship general purpose language—C++. Other alternative approaches for programming highly ma
ical problems are symbolic languages, special purpose packages, or program generators written specif
dedicated application domains. These alternative approaches may have specialized capability in solving
Workbook of Applications in VectorSpace C++ Library 265

Finite Element Method PrimerChapter 4

digm.
ning any
at they

arly all
ind you.
atures.

hases on

zation

t

matical problems just like what VectorSpace C++ Library is designed for. However, for general purpose pro-
gramming, none of these alternative approaches could come close to rival that of C++. If we have chosen those
alternative approaches, we will be seriously penalized by their limited capability in non-mathematical aspects of
the programming. If you choose to program in C++ with the VectorSpace C++ Library, your programming task
will be significantly empowered by the object-oriented programming—the modern programming para
Time have proven that specific purpose languages do not last long, they come and go and never gai
wide acceptance. Sometimes, they are even quickly forgotten by the communities of the applications th
are specifically targeting for. Jump on the band wagon of C++, you have entire software industry (particul
the first-ranked compiler vendors), professional programmers, and a vast number of C++ literatures beh
Our program’s potential can only be limited by our own imagination, not some un-supported language fe

4.1 Basics of Finite Element Method

4.1.1 Mathematical Abstraction of Finite Element Method

Finite element method can be considered as a special case of variational methods, with special emp
the a systematic treatment of complicated geometry.

Finite Element—A Systematic Treatment for Complex Geometry

In finite element method, the approximation basis functions for the variable ue is defined in each subdo-
main—element (see Figure 4•1, the subscript “e” denotes “element”, and “h” denotes element discreti
into a “characteristic size”—h)

Eq. 4•1

where “nen” is the number of nodes in an element. The space of ue is infinite dimensional, in which every poin
x on the element has a variable ue(x) associated with it. In Figure 4•1, this infinite dimensional variable ue(x) is
approximated by a finite dimensional space of approximated function (x) which in turn only depends on finite

Ωe
h

global domain —Ω

discretized global domain—Ωh

element—Ωe
h

boundary—Γ

Figure 4•1 Geometry of global domain discretization.

ue ue
h φe

a ûe
a where a,≡≅ 0 … n, en 1–,=

ue
h

266 Workbook of Applications in VectorSpace C++ Library

Basics of Finite Element Method

merical
ement

rpola-

setting

 in the

-

en to

f
n
number of nodal values (“a” is the element node number, “hat” denotes a nodal value). The approximated
function, rewritten as (; x), is defined through a set of interpolation (basis) function on the element as
in Eq. 4•1. The space spans by these bases, , is known as the finite element space. The trio set { , ,

}, defined as a finite element is consists of (1) element (domain) “Ωe”, (2) interpolation functions “ ”, and
(3) degree of freedoms “ ”.1

We have seen some examples of linear and quadratic interpolation functions for the purpose of nu
integration in 1-D and 2-D in the Chapter 3. For example, interpolation functions for a bilinear four-node el
can be defined with the formula

Eq. 4•2

where index “a” (= 0, 1, 2, 3) is the element node number. The coordinate (ξa , ηa) = {{-1, -1}, {1, -1}, {1, 1}, {-
1, 1}} is the natural (or referential) coordinates of the four nodes. Therefore, the explicit forms for the inte
tion functions are

Eq. 4•3

The interpolation function formula for linear triangular element can be degenerated from Eq. 4•3 by
, and

Eq. 4•4

(or using “triangular area coordinates” as in page 454 of Chapter 5). That is

 Eq. 4•5

Coordinate transformation using Eq. 4•3 for quadrilateral and Eq. 4•5 for triangular elements are shown
middle column of Figure 4•2. From those integration examples, we note that a reference element1., Ωe , can be
defined in a normalized region with a coordinate transformation rule x x(Ωe) which maps the reference ele
ment, Ωe , to a physical element, ; i.e., a normalized domain in natural coordinates ξ is transformed to a phys-
ical domain in coordinate x. The interpolation functions for the coordinate transformation rule can be chos
be the same as the interpolation for the approximated function (x) as in Eq. 4•1. That is

Eq. 4•6

where is the nodal coordinates (“over-bar” indicates fixed nodal values). A finite element with the same set o
interpolation functions for (1) approximation functions and (2) coordinate transformation rule is called aiso-

1. P. G. Ciarlet, 1978, “ The finite element method for elliptic problems”, North-Holland, Amsterdam.

ûe
a

ue
h ûe

a φe
a

φe
a ≡ Ωe

h φe
a

ue
h φe

a

ue
h

Na ξ η,() 1
4
--- 1 ξaξ+() 1 ηaη+()=

N0
1
4
--- 1 ξ–() 1 η–()= N1

1
4
--- 1 ξ+() 1 η–() N2

1
4
--- 1 ξ+() 1 η+()= N3

1
4
--- 1 ξ–() 1 η+()=, ,=,

N0
Tri N0= N1

Tri N1=,

N2
Tri N2 N3+=

1
4
--- 1 ξ+() 1 η+() 1

4
--- 1 ξ–() 1 η+()+

1
2
--- 1 η+()= =

N0
Tri 1

4
--- 1 ξ–() 1 η–()= N1

Tri 1
4
--- 1 ξ+() 1 η–() N2

Tri,=, 1
2
--- 1 η+()=

≡
Ωe

h

ue
h

x Ωe() φe
a xe

a where a,≡ 0 nen 1–,=

xe
a

Workbook of Applications in VectorSpace C++ Library 267

Finite Element Method PrimerChapter 4

,

is
undary
ighting

parametric element. The interpolation functions in finite element method are further subject to continuity and
completeness requirements. The continuity requirement demands that the approximated function to be continu-
ous both in the interior and the boundaries of the element. The completeness requirement demands arbitrary
variation, up to certain order, in the approximated function can be accurately represented. When these require-
ments are relaxed, we have the so-called non-conforming elements.

Finite Element Approximation

In the standard finite element method, the weighting functions, W, is taken as that in the Galerkin method in
the context of weighted residual methods (see page 232), which are the same as the element interpolation func-
tions in Eq. 4•1, but vanishing at boundaries corresponding to the essential boundary conditions; i.e.

W = Eq. 4•7

g is the essential boundary conditions on the boundary Γg, and (“over-bar” indicates fixed nodal values)
the nodal value of the essential boundary condition with a boundary interpolation function on the bo
associated with the element. Since is defined in the element domain only, this particular choice of we
function resembles the subdomain collocation method (see page 229) in the weighted residual method, whereW
= 1 on each subdomain and W = 0 elsewhere.

ξ4

5

2

63

7

0

8

1

η

ξ

η

η

ξ ξ

η

1-D

linear

quadratic

2-D

curve

linear quadrilateral

quadratic quadrilateral

degenerated
linear triangle

degenerated
quadratic triangle

Figure 4•2 (1) 1-D linear and quadratic line elements, and (2) 2-D curve, linear quadrilateral and
trianglular elements, and quadratic quadrilateral and triangular elements.

0
1

23

0 1

0 1 2

0 1

2

0 1

2

1

4
0

7
5

2

8

φe
a

0 for ûe
a g φΓe

a ue
a≡= on Γg,

φe
a otherwise,

ue
a

φΓe

a

φe
a

268 Workbook of Applications in VectorSpace C++ Library

Basics of Finite Element Method

ment,

t-hand-

n
nt right-
nd-

 of free-

 will be

re 4•1)
 princi-
e
d set of
rea for
For a self-adjoint operator, from Eq. 3•125 in Chapter 3, the finite element approximation, at each ele
gives

Eq. 4•8

or in matrix forms

Eq. 4•9

where,

Eq. 4•10

The difference of Eq. 4•8 from Eq. 3•125 in Chapter 3 is now we have second and third terms in the righ
side. The second terms is the non-homogeneous natural boundary conditions

 = h on Γh Eq. 4•11

where is flux q projected on the outward unit surface normal n. This term occurs when we take integratio
by parts on the weighted-residual statement, then, applied the Green’s theorem to change the resulta
hand-side domain integral into a boundary integral. The third term is due to non-homogeneous essential bou
ary conditions. According to the first line of Eq. 4•7, rewritten with a new index “b” as . In Eq. 4•10 the
index “a” is the element equation number, and the index “b” is the element variable (degree of freedom) number.
Since W has been taken according to Eq. 4•7, the rows (or equations) corresponding to the fixed degree
doms (essential boundary conditions) will have vanishing weighting function (W = 0) multiplies through-out
every term of Eq. 4•8. Therefore, the rows (or equations) corresponding to the fixed degree of freedoms
eliminated at the global level. We also note that the element tensors is the element stiffness matrix, and the
element tensors is the element force vector.

In summary, for a differential equation problem, we first discretize its domain into elements (as in Figu
and approximate its variables (Eq. 4•1), and weighting functions (Eq. 4•7) corresponding to a variational
ple. These steps are known as the finite element approximation1. A finite element approximation depends on th
choice of (1) the variational principle, and (2) a corresponding set of variables approximated by a selecte
interpolation functions. The various variational principles make the finite element method such an open a
improvements. These various variational principles also bring a challenge that a finite element program should
be able to endure a dramatic impact of changes in its design structure, and to enable the reuse of existing code in
its evolutionary course. The object-oriented programming has a lot to offer in this regard.

1. p. 3 in F. Brezzi and M. Fortin, 1991, “ Mixed and hybrid finite element methods”, Springer-Verlag, New York, Inc.

a φe
a φe

b,()ûe
b φe

a f,() φe
a h,()Γ a φe

a φe
b,()ue

b–+=

ke
ab ûe

b fe
a=

ke
ab a φe

a φe
b,()=

fe
a φe

a f,() φe
a h,()Γ a φe

a φe
b,()ue

b–+=

q n• φ
Γe

a he
a≡

q n•

g φ
Γe

b ue
b≡

ke
ab

fe
a

Workbook of Applications in VectorSpace C++ Library 269

Finite Element Method PrimerChapter 4

s to be
ce vec-

software
r
 on the

.

n is

pecific

re pro-
oherent
ow-

. The
mong

er
ntial to
d
nd the
ori-
e of the
Global Matrix and Solution Phase—Systematic Treatment for Large-Size Degree of Freedoms

Eq. 4•8 to Eq. 4•10 are defined only on an element domain— , while the variational principle need
applied on the global discretized domain— ; i.e., the element stiffness matrix and the element for
tor need to be assembled into a global stiffness matrix K and global force vector F as

Eq. 4•12

where is the global nodal solution vector. The symbol stands for the procedure of assembly of all ele-
ments. The index “i” is the global equation number and index “j” is the global variable number of .

4.1.2 Object-Oriented Modeling of the Finite Element Method

The central theme of the object-oriented programming is the data abstraction and inheritance. Firstly, the
data abstraction enabling software modules to be modeled after the real world objects. Each of such a
module —class defines the states of an object as its member data, and the behaviors of the object as its membe
functions. In the procedure programming method, data structure and algorithms (subroutines) performing
data structure are separate. In an abstract data type, they are organized into a coherent unit; i.e., the class. C++
also provides user access control mechanism to declare its member data or functions as private, protected, or
public, such that the complexities can be encapsulated inside the abstract data type. Secondly, the inheritance
relation enables factoring of common parts to define a more general base class higher in the class hierarchy
More specific classes can be derived from the base class by adding details to facilitate the idea of programming
by specification and to enforce code reuse. The most impressive power comes out of this inheritance relatio
the dynamic binding mechanism provided to implement the concept of polymorphism. In C++ such mechanism
is provided by declare member functions as virtual. A call on the virtual function of a base class is dispatched by
the virtual function mechanism to the corresponding member function of the derived class, where a s
behavior is actually defined. We explore all these programming concepts in the modeling of the finite element
library— “fe.lib”, in which the source codes are provided for demonstrating the object-oriented method.

Then, we go further on. The object-oriented paradigm is meant to replace the old-way—the procedu
gramming. As we have mentioned earlier, the data and function are now organized together as a c
abstract data type—class. The objects are empowered with inheritance and virtual function mechanism. H
ever, the dependency relations among the objects can grow to an extremely complicated network of objects
object-oriented analysis is applied on the problem domains to understand the dependency relations a
objects and the object-oriented design is the newly programming discipline taken to harness the rampant pow
of C++. It sounds so familiar that we used to write “go to” among Fortran statements which has the pote
grow into an extremely complicated flow chart (a network of statements). The procedure programming is the ol
discipline proposed to rescue the old-world from chaos. Now, we introduce the object-oriented method a
resultant complicated network of objects turns out to be a serious problem too. A new discipline, the object-
ented design, is a lesson learned from a frequently cited costly experience from Mentor Graphics (on
world largest CAD company today), which is the very first company to attempt a large-scale C++ project1.

Ωe
h

Ωh ke
ab

fe
a

Kij ûj Fi=

Ki j A
e∀

ke
ab and Fi, A

e∀
fe

a= =

ûj
A

e∀
ûj
270 Workbook of Applications in VectorSpace C++ Library

Basics of Finite Element Method

 really
stematic
ly quite

lement
 simple
r

el the

ns

 and

. The

996,
In the section on the mathematical abstraction of finite element method, only Eq. 4•8 to Eq. 4•10 contain the
core of mathematics of the differential equation problems. All other things in finite element method are
complicated details. As we have mentioned earlier, the finite element method can be viewed as a sy
treatment for these non-mathematical trivia. However, these trivia are no simple matter, which are actual
a challenging task that we will use object-oriented modeling for their implementation.

Step 1. Discretization Global Domain—

The first step of the finite element method is to discretize the problem domain into element— . An e
 is often described as simple geometrical area like triangles or quadrilaterals. The vertices for these

geometrical objects are called nodes with nodal coordinates as . A node object is instantiated by its constructo

Node(int node_number,
int number_of_spatial_dimension,
double* array_of_coordinates);

Using the terminology of the relational database the “node_number” is the key to this abstract data type—
“Node”. One considers that the “node_number” as the identifier for an instance of the class Node. The following
example is to define a 2-D case with the node number “5”, and coordinates = {1.0, 2.0}T

double *v;
v = new double[2];
v[0] = 1.0; v[1] = 2.0;
Node *nd = new Node(5, 2, v);

This instantiates an object of type “Node” pointed to by a pointer “nd”. Data abstraction is applied to mod
“Node” as an object. The states of the “Node” is consist of private data members include the node number, the
spatial_dimension, and the values of its coordinates. The behaviors of the “Node” are public member functio
that provide user to query the states of the “Node” including it node number, and spatial dimension, ... etc. The
“operator[](int)” is used to extract the components of the coordinates, and logical operators “opera-
tor==(Node&)” and “operator !=(Node&)” are used for the comparison of the values of two nodes. The data
the functions that operating on them are now organized together into a coherent unit—class. The private mem-
bers of the object are encapsulated from users that the access are only possible through its public members
encapsulation mechanism provides a method to hidden complexities from bothering users (see Figure 4•3).

An element— is constructed by

1 Omega_eh(int element_number,
2 int element_type_number,
3 int material_type_number,

int element_node_number,
int *node_number_array);

1. see p. 1 in J. Soukup, 1994, “Taming C++”, Addison-Wesley, Reading, Massachusetts, and preface in J. Lakos, 1
“Large-scale C++ software design”, Addison-Wesley, Reading, Massachusetts.

Ωh

Ωe
h

Ωe
h

x

x

Ωe
h

Workbook of Applications in VectorSpace C++ Library 271

Finite Element Method PrimerChapter 4

er”
ers are

ment.

orner,
The “element_number” play the role of the key for the element class “Omega_eh”. The “element_type_numb
and the “material_type_number” are integers greater or equal to “0”. The default values for the both numb
“0”. For example, the “element_node_number” is “3” for a triangular element, and “4” for a four-node ele
The “node_number_array” points to an int pointer array of global node numbers for the element. An example is

1 int *ena; // 10 11
2 ena = new int[4]; // +-------------+
3 ena[0] = 0; ena[1] = 1; // | |
4 ena[2] = 11; ena[3] = 10; // | |
5 Omega_eh *elem = // +-------------+
6 new Omega_eh(0, 0, 0, 4, ena); // 0 1

The order of global node numbers in the “node_number_array” is counter-clockwise from the lower-left c
as illustrated in the comment area after each statement, which is conventional in finite element method.

A discretized global domain— basically consists of a collection of all nodes and elements as

1 class Omega_h { // discretized global domain—
2 protected:
3 Dynamic_Array<Node> the_node_array;
4 Dynamic_Array<Omega_eh> the_omega_eh_array;
5 public:
6 Omega_h(); // declared by not defined
7 ...
8 };

Figure 4•3 The class Node is consists of private data members to describe its
states, and public member functions provide the access to query its states. The
private members are encapsulated away from the controlled access through the
public members.

==

[]

node_no()

int node_no
int spatial_dim
double* value

...

...

controlled access

class Node

Ωh

Ωh
272 Workbook of Applications in VectorSpace C++ Library

Basics of Finite Element Method

y.h”.
f

ga_h()”
e seg-
The data structure Dynamic_Array<T> does what it means, which is declared and defined in “dynamic_arra
It is a simplified version of <dynarray> in the standard C++ library1. Two protected member data consist o
“the_node_array” and “the_omega_eh_array” (element array). The default constructor “Omega_h::Ome
is declared in the header file, The users of the “fe.lib” are responsible for its definition. The following cod
ment shows an example of a user defined discretized global domain as illustrated in Figure 4•4.

1 Omega_h::Omega_h() { // define default constructor
2 int row_node_no = 4;
3 row_element_no = row_node_number -1;
4 double v[2];
5 for(int i = 0; i < row_node_no; i++)
6 for(int j = 0; j < row_node_no; j++) { // ena[3] ena[2]
7 int nn = i * row_node_no + j; // +-------------------+
8 v[0] = (double) j; v[1] = (double) i; // | |
9 Node *node = new Node(nn, 2, v); // | |
10 the_node_array.add(node); // | |
11 } // | |
12 int ena[4]; // +-------------------+
13 for(int i = 0; i < row_element_no; i++) // ena[0] ena[1]
14 for(int j = 0; j < row_element_no; j++) {
15 int nn = i * row_node_no + j; // node number at lower left corner
16 ena[0] = nn; ena[1] = ena[0] + 1;
17 ena[3] = nn + row_node_no; ena[2] = ena[3] +1;
18 int en = i * row_element_no + j; // element number

1. P.J. Plauger, 1995, “The draft standard C++ library”, Prentice-Hall, Inc., Englewood Cliffs, New Jersey.

0 1 2 3

4
5 6 7

8 9 10 11

12 13 14 15

0 1 2

3 4 5

6 7 8

Figure 4•4 Nine elements in a rectangular area consist of 16 nodes.
Workbook of Applications in VectorSpace C++ Library 273

Finite Element Method PrimerChapter 4

tion

nd

 “U_h”.
 flag is
 or nat-

inates

York.
19 Omega_eh *elem =
20 new Omega_eh(en, 0, 0, 4, ena);
21 the_omega_eh_array.add(elem);
22 }
23 }

Then, we can make an instance of the discretized global domain “Omega_h” by declaring in main() func

Omega_h oh;

The instance “oh” calls the default constructor “Omega_h::Omega_h()” that is custom made by the user.

Remark: For users who are familiar with database languages1, the class definitions of Node, Omega_eh, a
Omega_h per se define the database schema; i.e., the format of the data, which serves the function of the data
definition language (DDL). The function “Dynamic_Array<T>::add(T*)” is an example of data manipulation
language (DML) that assists user to modify the database. And two most important features of data query lan-
guage provided by “fe.lib” are the node selector “Node& Omega_h::operator [](int)” and the element selector
“Omega_eh& Omega_h::operator ()(int)”.

Step 2. Free and Fixed Variables

The discretized global free degree of freedoms are (“hat” indicate a nodal value)

 on Ωh.

The essential boundary conditions (fixed degree of freedoms) and natural boundary conditions are

 on , and on

respectively, where the “over-bar” indicates a fixed value. The global variables are modeled as class
And, the global boundary conditions and are modeled as class “gh_on_Gamma_h”. A constraint
used to switch in between “Dirichlet” and “Neumann” to indicate whether the stored values are essential
ural boundary conditions, respectively.

All three kinds of values , , and are nodal quantities, which are somewhat similar to the coord
of a node; i.e., . Therefore, we can factor out the code segment on coordinates in the class Node and create a
more abstract class Nodal_Value for all of them.

1 class Nodal_Value {
2 protected:
3 int the_node_no,
4 nd; // number of dimension

1. e.g., Al Stevens, 1994, “ C++ database development”, 2nd eds., Henry Holt and Company, Inc., New York, New

ûh

gh Γh
g hh Γh

h

ûh

gh hh

ûh gh hh

x

274 Workbook of Applications in VectorSpace C++ Library

Basics of Finite Element Method

the

ode will
for the
s unsat-
 all three
data and
ed
l struc-

omain,
1; i.e.,
bound-

 essen-
n prob-
5 double *the_value;
6 public:
7 operator[](int);
8 ...
9 };

Now the three classes are publicly derived from the base class “Nodal_Value” as

1 class Node : public Nodal_Value { ... }
2 class U_h : public Nodal_Value { ... }
3 class gh_on_Gamma_h : public Nodal_Value { ... }

All three derived classes inherit the public interfaces (member functions) of the class Nodal_Value. For example,
now all three derived classes can use the operator[](int) to access the nodal values. If “nd” is an instance of
class Node and “uh” is an instance of the class U_h, and “gh” is an instance of the class gh_on_Gamma_h, then,
the access is performed by

1 nd[0]; // first coordinate value
2 uh[1]; // second degree of freedom
3 gh[0]; // first constraint values

The common part of the three classes are factored out to form a new base class “Nodal_Value”. The c
be significantly duplicated, if we have not done so. In addition, factoring out this common part is good
maintenance of the code. If we have found out in the future that the way we modeled the “nodal values” i
isfactory, changes made in this single class are sufficient comparing to changes needed to be made in
classes. In general, the object-oriented programming method not only use data abstraction to organize
functions (the algorithm operating upon data), it also help to classify these software modules, which are model
after real world objects, into a hierarchical structure. We note that classification of things into hierarchica
ture is one of the most powerful tools that human beings have to built knowledge.

We now consider an example of heat conduction (see Figure 4•5) using the discretized global d
declared as “oh” previously, and was illustrated in Figure 4•4. The number of degree of freedom “ndf” =
the temperature. We should instantiate, in the “main()” program, the variable “uh” of class U_h, and the
ary conditions “gh” of class gh_on_Gamma_h as the followings

1 int main() {
...

2 int ndf = 1;
3 U_h uh(ndf, oh);
4 gh_on_Gamma_h gh(ndf, oh);

...
5 }

The constructor of class U_h is defined in “fe.lib”. The users do not need to worry about it. However, the
tial and natural boundary conditions in the class gh_on_Gamma_h are parts of every differential equatio
Workbook of Applications in VectorSpace C++ Library 275

Finite Element Method PrimerChapter 4

tor

;

s func-
class

 internal

ssential
 uses a
-
ndary

“0” on
t type as
lems. Therefore, defining the constructor of class gh_on_Gamma_h is users’ responsibility. This construc
needed to be defined before it is instantiated in the above. For the problem at hand, we have

1 gh_on_Gamma_h::gh_on_Gamma_h(int df, Omega_h& oh) {
2 __initialization(df, omega_h);
3 int row_node_no = 4;
4 for(int i = 0; i < row_node_no; i++) {
5 the_gh_array[node_order(i)](0) = gh_on_Gamma_h::Dirichlet;
6 the_gh_array[node_order(row_node_no*(row_node_no-1)+i)](0) = gh_on_Gamma_h::Dirichlet
7 the_gh_array[node_order(row_node_no*(row_node_no-1)+i)][0] = 30.0;
8 }
9 }

The first line in the constructor (line 2) called a private member function of class gh_on_Gamma_h. Thi
tion initiates a private data member “Dyanmic_Array<Nodal_Constraint> the_gh_array” for the
gh_on_Gamma_h. This is a mandatory first statement for every constructor of this class for ochestrating
data structure. The first line in the for loop uses a constraint type selector “operator ()(int degree_of_freedom)”.
It can be assigned, for each degree of freedom, to either as “gh_on_Gamma_h::Dirichlet” to indicate an e
boundary condition or as “gh_on_Gamma_h::Neumann” to indicate a natural boundary condition. Line 7
constraint value selector “operator [](int degree_of_freedom)” to assign 30oC to the nodes on the upper bound
ary. The default condition and default value, following finite element method convention, are natural bou
condition and “0”, respectively. Therefore, for the present problem, the natural boundary condition with
two sides can be neglected. On the bottom boundary conditions, we only need to specify their constrain
essential boundary conditions, the assignment of value of “0.0” (the default value) can be skipped too.

0 1 2 3

4
5 6 7

8 9 10 11

12 13 14 15

0 1 2

3 4 5

6 7 8

Figure 4•5 Heat conduction problem with two side insulated, bottom and top temperature
boundary conditions are set to 0 oC and 30 oC, respectively.

g = 0 oC

g = 30 oC

h=0h=0
276 Workbook of Applications in VectorSpace C++ Library

Basics of Finite Element Method

ses of
type
ood
vantage
of des-

 New-

f

er
ector-
tting to
en the
ferent

s
s of
played

2.5.

g-
Step 3. Element Formulation

At the very heart of finite element program is the element formulation. This part does every thing that is most
relevant to the variational methods we have introduced in Chapter 3. Henceforth, this part is highly mathemati-
cal. The VectorSpace C++ Library is therefore most heavily used in the element formulation. For every differen-
tial equation problem, the element formulation is different. The impact of change to the code from one problem
to the other is a routine rather than an exception. Under the procedure programming paradigm, it is soon recog-
nized that an element subroutine should be used to form an replaceable module. In object-oriented programming,
further flexibility for element formulation can be obtained through the polymorphism supported in C++.

We have seen that for data abstraction C++ provides class to organize data and functions into a coherent
object. The inheritance is provided to build hierarchical structure of objects and enable code reuse. Now the
objects put into the hierarchical structure can be made to be intelligent to perform some autonomous tasks. For
example, we may have a base class of “Animal”. Then, we derived from this class of “Animal” to form clas
“Lion”, “Horse”, and “Whale”. Next, we declare three instances “lion”, “horse”, and “whale” of general
“Animal”, each of polymorphic concrete types “Lion”, “Horse”, and “Whale”. Now, God says “Animals eat f
!” The “lion” goes to catch a zebra, the “horse” bites grass, and the “whale” catches tons of fishes. The ad
of this higher level of intelligent is enormous. Now we can have one single generic command for all kinds
perately different individual objects.

A simple algebraic example is described in root-finding problem in page 40 of Chapter 1, where the
ton’s formula gives the increment of solution dx as

dx = - f / df

The corresponding C++ code can be written as a function

C0 dx(const C0& f, const C0& df) { return - f / df; }

For one dimensional problem, f, df, and dx are all Scalar object of C0 type. For n-dimensional problem, n > 1,
and dx are Vector object of C0 type with length “n” and df is a Matrix object of C0 type with size “n n”. The
“C0::operator / (const C0&)” now no longer implies “divide” operation. It actually means to invoke matrix solv
that use df as the left-hand-side matrix and “-f” as the right-hand-side vector. The default behavior of V
Space C++ Library is the LU decomposition, although you have the freedom to change the default se
Cholesky decomposition (for symmetrical case only), QR decomposition (for ill-conditioned case) or ev
singular value decomposition (for rank deficient case). This single function is sufficient for the very dif
arguments taken, and different operations intelligently dispatched to perform upon themselves.

In Chapter 3, we have introduced the non-linear and transient problems in the context of variational method
which are now the kernel of the element formulation. We considers the impact of change by these two type
problems that will be played out in the element formulation. We note that an even greater impact will be
out in the mixed formulation, introduced in Chapter 3 in page 217, if we use global matrix substructuring solu-
tion method (or “static condensation”). We defer the more complicated matrix substructuring until Section 4.

First, from “fe.lib” user’s perspective, the design of the “element formulation definition language”, if you
would, is for (1) definition of an element formulation and (2) registration of an element type. The user code se
ment for the declaration and instantiation of a class HeatQ4 is

×

Workbook of Applications in VectorSpace C++ Library 277

Finite Element Method PrimerChapter 4

ents
o the

y
class

y man-
plication
te data

ance of
nstance

 J.O.
1 class HeatQ4 : public Element_Formulation {
2 public:
3 HeatQ4(Element_Type_Register a) : Element_Formulation(a) {}
4 Element_Fomulation *make(int, Global_Discretization&);
5 HeatQ4(int, Global_Discretization&);
6 };
7 Element_Formulation* HeatQ4::make(int en, Global_Discretization& gd) {return new HeatQ4(en, gd);}
8 HeatQ4::HeatQ4(int en, Global_Discretization&) : Element_Formulation(en, gd) {
9 ...
10 }

From this code, the line 5 which is the declaration of the constructor of the heat conduction element formula-
tion—“HeatQ4(int, Global_Discretization&)”. The definition of this constructor is user customized, the cont
of this constructor is the variational formulation of differential equation problem at hand. We will get t
details of definitions for the constructor (line 8) at the end of this section.

Polymorphism: First, let’s look at the fe.lib implementation of polymorphism, in this code segment, enhanced b
emulating symbolic language by C++1. The class Element_Formulation and the custom defined user
HeatQ4 are used hand-in-hand. The Element_Formulation is like a symbol class for its actual content class—
HeatQ4. The symbol class Element_Formulation is responsible for doing all the chores including memor
agement and default behaviors of the element formulation. The content class HeatQ4 does what ap
domain actually required; i.e., the variational formulation. The class Element_Formulation has a priva
member “rep_ptr” (representing pointer) which is a pointer to an Element_Formulation type as

1 class Element_Formulation {
2 ...
3 Element_Formulation *rep_ptr;
4 C0 stiff, force, ...;
5 protected:
6 virtual C0& __lhs() { return stiff; }
7 virtual C0& __rhs() { return force; }
8 ...
9 public:
10 ...
11 C0& lhs() { return rep_ptr->__lhs(); }
12 C0& rhs() { return rep_ptr->__rhs(); }
13 ...
14 };

Since the derived class HeatQ4 is publicly derived from the base class Element_Formulation, an inst
HeatQ4 has its own copy of Element_Formulation as its “header”. Therefore, the rep_ptr can point to an i

1. see (1) p. 58 “handle / body idiom”, (2) p. 70 “envelope / letter” idiom, and (3) p. 315 “symbolic canonical form” in
Coplien, 1992, “ Advanced C++: Programming styles and idioms”, Addison-Wesley, Reading, Massachusetts.
278 Workbook of Applications in VectorSpace C++ Library

Basics of Finite Element Method

 are
 in the
__rhs().

blem

r

 class
of HeatQ4. This is done by invoking “Element_Formulation* HeatQ4::make(int, Global_Discretization&)” to
produce a pointer to HeatQ4 instance. We also see that the two public member functions lhs() and rhs()for-
warding, by its delegate “rep_ptr”, to its derived class protected member functions __lhs() and __rhs(),
present case, forwarding to an instance of HeatQ4’s two protected virtual member function __lhs() and
The default behaviors of these two protected virtual member function has been defined to return element stiffness
matrix and element force vector.

We have explained the mechanisms built for polymorphism. Now we can consider how the impact of change
bring out by nonlinear and transient problems can be accommodated under this design. For a nonlinear pro
the solution is obtained from an iterative scheme u i+1 = ui + δui for the convergence of the residual vector R = F
- K(u) u (from Eq. 4•12) defined as

Eq. 4•13

From this approximated equation, we have the incremental solution δui as the solution of the simultaneous linea
algebraic equations

Eq. 4•14

where both the tangent stiffness matrix and the residual vector are functions of ui. That is at the
element level, the nodal values— must be available. Therefore, a new class derived from
Element_Formulation is

1 class Nonlinear : public Element_Formulation {
2 C0 ul;
3 void __initialization(int, Global_Discretization&) { ul &= gd.element_free_variable(en); }
4 public:

Figure 4•6 Emulating symbolic language features using C++.

Element_Formulation
rep_ptr

Element_Formulation

HeatQ4

Symbol

Content

Ri 1+ R ui 1+()≡ R ui δui+() R ui()
R∂
u∂

ui

δui+≅ 0= =

δui R∂
u∂

ui

1–

R ui()–= K
T

1–
ui() R ui()≡

K T
1– ui() R ui()

ûi
Workbook of Applications in VectorSpace C++ Library 279

Finite Element Method PrimerChapter 4

 have
e class

ction

lic case

compute
5 Nonlinear(int, Global_Discretization&);
6 ...
7 };
8 Nonlinear::Nonlinear(int en, Global_Discretization& gd) : Element_Formulation(en, gd) {
9 __initialization(en, gd);
10 ...
11 };

The class “Nonlinear” inherits all the public interfaces of the class Element_Formulation. On top of that we
declared a private data member “ul”, the element nodal variables, for this nonlinear element. When th
“Nonlinear” is defined, it is imperative to invoke its private member function “Nonlinear::__initialization(int,
Global_Discretization&)” to setup the element nodal variables. In this case, the use of inheritance for program-
ming by specification is very straight forward. An example of a simple nonlinear problem is shown in Se
4.2.3. In Chapter 5, we investigate state-of-the-art material nonlinear (elastoplasticity) and geometrical nonlin-
ear (finite deformation problems).

For a transient problem, the polymorphic technique is much more complicated. We show the parabo
here. From Eq. 3•191 in Chapter 3 (page 253) we have

Eq. 4•15

In this case, the nodal values from the last time step— is also needed. In addition, we also need to
the mass (heat capacitance) matrix “M”.

1 class Transient::public Element_Formulation {
2 C0 mass, ul;
3 void __initialization(int, Global_Discretization&) { ul &= gd.element_free_variable(en); }
4 public:
5 Transient(Global_Discretization&);
6 ...
7 C0& __lhs();
8 C0& __rhs();
9 };
10 Transient::Transient(int en, Global_Discretization& gd) : Element_Formulation(en, gd) {
11 __initialization(en, gd);
12 ...
13 };
14 static double theta = 0.5, dt = 0.01; // central difference θ = 0.5
15 C0& Transient::__lhs() {
16 the_lhs &= mass + dt*theta *stiff; //
17 return the_lhs;
18 }
19 C0& Transient::__rhs() {
20 Element_Formulation::__rhs(); // - f; the default force vector
21 the_rhs += (mass -dt*(1-theta)*stiff)*ul; //

M ∆tθK+()ûn 1+ M ∆t 1 θ–()K–()ûn f–=

ûn

M ∆tθK+

M ∆t 1 θ–()K–()un f–
280 Workbook of Applications in VectorSpace C++ Library

Basics of Finite Element Method

ector

s its
e for-
e been
n exam-

rent
as, while
planner”
ents as

”

”

mber
fine an

efi-
22 return the_rhs;
23 }

Note that in the definition of class Element_Formulation the default behaviors of the last two protected member
functions are through two virtual member functions to return element “stiff” matrix and element “force” v
as

virtual C0& __lhs() { return stiff; }
virtual C0& __rhs() { return force; }

This is standard for the static, linear finite element problems. When an instance of Element_Formulation call
public member functions “Element_Formulation::lhs()” and “Element_Formulation::rhs()”, the requests ar
warding to its delegates’ virtual member functions. If these two protected virtual member functions hav
overwritten (lines15-23), the default behaviors in the base class will be taken over by the derived class. A
ple of transient program is shown in Section4.2.4.

Element Type Register: A differential equation problem, solved by a finite element method may apply diffe
elements for different regions. For example, we can choose triangular elements to cover some of the are
quadrilateral elements to cover the rest of the areas. We can have a “truss” element on certain parts of “
elements to simulated a strengthened structure. From user’s perspective, he needs to register multi-elem

1 Element_Fomulation* Element_Formulation::type_list = 0; // register element type
2 Element_Type_Register element_type_register_instance;
3 static Truss truss_instance(element_type_register_instance); // element type number “2
4 static T3 t3_instance(element_type_register_instance); // element type number “1”
5 static Q4 q4_instance(element_type_register_instance); // element type number “0

The element type register uses a list data structure. We number the last registered element’s element type nu
as “0”. This number increases backwards to the first registered element in the “type_list”. When we de
element as introduced in page 271. The second argument is supplied with this number such as

Omega_eh *elem;
elem = new Omega_eh(0, element_type_number, 0, 4, ena);

The C++ idiom to implement the element type register is discussed in Section 4.1.3.

Element Formulation Definition: Now we finally get to the core of the Element_Formulation. That is the d
nition of its constructor. We show an example of heat conduction four-node quadrilateral element

1 HeatQ4::HeatQ4(int en, Global_Discretization& gd) : Element_Formulation(en, gd) {
2 Quadrature qp(2, 4);
3 H1 Z(2, (double*)0, qp), // natrual coordinates
4 N = INTEGRABLE_VECTOR_OF_TANGENT_BUNDLE(4, 2, qp),
5 Zai, Eta; // alias
6 Zai &= Z[0]; Eta &= Z[1];
Workbook of Applications in VectorSpace C++ Library 281

Finite Element Method PrimerChapter 4

ize
tor of
rns the

be com-

ditions
nt that
() where
ctor.
alled it

e is that
 case,
7 N[0] = (1-Zai)*(1-Eta)/4; N[1] = (1+Zai)*(1-Eta)/4; //
8 N[2] = (1+Zai)*(1+Eta)/4; N[3] = (1-Zai)*(1+Eta)/4;
9 H1 X = N*xl // coordinate transformation
10 H0 Nx = d(N)*d(X).inverse(); // derivative of shape functions
11 J dv(d(X).det()); // the Jacobian
12 double k = 1.0, q = 1.0; // conductivity and heat source
13 stiff &= (Nx * k * (~Nx)) | dv; // element stiffness matrix
14 force &= (((H0)N)*q) | dv; // element force vector
15 }

The “xl” is the element nodal coordinates which is a C0 type Matrix object of size nen nsd(number of element
nodes) (number of spatial dimension). The “stiff” is the element stiffness matrix, a square matrix of s
(nen ndf) (nen ndf) (“ndf” as number of degree of freedoms). The “force” is the element force vec
size (nen ndf). The VectorSpace C++ Library is most heavily used in this code segment, since it conce
subject of variational methods the most. If you have mastered Chapter 3 already, these lines should
pletely transparent to you.

The treatment of the terms on natural boundary conditions and the essential boundary con
, in Eq. 4•8 in page 269, requires some explanation. “fe.lib” adopts the conventional treatme

the natural boundary conditions are taken care of at the global level in Matrix_Representation::assembly
the user input equivalent nodal forces of natural boundary condition are directly added to the global force ve
The treatment of the third term is also conventional that when the Element_Formulation::__rhs() is c
automatically call Element_Formulation::__reaction() which is defined as

C0 & Element_Formulation::__reaction() {
the_reaction &= -stiff *gl; // “gl” is the element fixed boundary conditions
return the_reaction;

}

The the “reaction” is added to the element force vector as

C0 & Element_Formulation::__rhs() {
the_rhs &= __reaction();
if(force.rep_ptr()) the_rhs += force;
return the_rhs;

}

These two default behaviors can be overwritten as in the class “Transient” in the above. Another exampl
we might want to have different interpolation function to approximate the boundary conditions. In such
first we need to call “Matrix_Representation::assembly()” in main() program as

assembly(FALSE); // FALSE turns off nodal force loading

Na ξ η,() 1
4
--- 1 ξaξ+() 1 ηaη+()=

×
×

× × ×
×

φe
i h,()Γ

a φe
i φe

j,()ue
j–
282 Workbook of Applications in VectorSpace C++ Library

Basics of Finite Element Method

 virtual

ement
y sac-
ernel

se of evo-
ation”

e ever

e
 total
ree of
 vector
lized
to
lement.
t
 line 3,
ffness
line 4.

ctor
om the
ed with

. A
ugh
Then, redefine “__rhs()” in user defined element. In the definition of the user element, we can define boundary
integration of these two terms to the element force vector. The basic idea is just like we can overwrite the
functions “__lhs()” and “__rhs()” for the transient problem.

Now we have shown that object-oriented programming does provide unprecedented flexibility to impl
seemly incompatible problems in finite element method. Most importantly, the flexibility does not come b
rifying the organization or simplicity of the code. A beginner of “fe.lib” can always study the same simple k
code. The kernel code does not grow because of the irrelevant details have been added during the cour
lution of “fe.lib” to encompass more advanced problems. The “code-reuse” and “programming by specific
can be repeated applied to the “fe.lib” relentlessly, while the very kernel of the “fe.lib” may reside in th
grander architecture un-disturbed.

Step 4. Matrix Representation and Solution Phase

The user’s code for the steps of matrix representation and solution phase is

1 int main() {
... // instantiation of Global_Discretization object

2 Matrix_Representation mr(gd);
3 mr.assembly();
4 C0 u = ((C0)(mr.rhs())) / ((C0)(mr.lhs()));
5 gd.u_h() = u;
6 gd.u_h() = gd.gh_on_gamma_h();
7 cout << gd.u_h();
8 return 0;
9 }

We show an example illustrated in Figure 4•7. Step 4a. A global stiffness matrix is a square matrix of siz
tnn ndf = 7 7 per side, and global force vector is of size tnn ndf = 7, respectively (where “tnn” is the
number of node, and “ndf” is number of degree of freedoms assumed as “1” for simplicity). The fixed deg
freedoms are then removed from the global stiffness matrix (with remaining size = 5 5) and global force
(with remaining size = 5). This is done at line 2 when an instance of Matrix_Representation “mr” is initia
with an instance of Global_Discretization “gd”. Step 4b. The mapping relationship of element stiffness matrix
global stiffness matrix, and element force vector to global force vector can be constructed element by e
This global-element relation is also established in line 2. Step 4c. The maps in Step 4b are used to add elemen
stiffness matrices and element force vectors to the global stiffness matrix and global force vector as in
where the public member function “Matrix_Representation::assembly()” is called. Then, the global sti
matrix and global force vector are used for linear algebraic solution of the finite element problem as in
Step 4d. The solution is in the order of free degree of freedom number which is then mapped back to the global
degree of freedom number for output of the solution. This is done in line 5 where the global solution ve
gd.u_h() is updated with the solution “u”. The values for the fixed degree of freedoms can be retrieved fr
program input of the problem. That is the line 6 where the same global solution vector gd.u_h() is updat
fixed degree of freedom “gd.gh_on_gamma_h()”.

In between the Step 4c and Step 4d, the variational problem has been reduced to a matrix solution problem
regular matrix solver provided in C0 type Matrix in Chapter 1 can be applied to solve this problem, altho

× × ×

×

Workbook of Applications in VectorSpace C++ Library 283

Finite Element Method PrimerChapter 4
Figure 4•7 Element connectivity example. Step 1. elimination of fixed degree of freedoms, Step 2.
element to global mapping, Step 3. assembly all elements, and Step 4. equation number to global
degree of freedoms number.

0

1

2

3

4

5

6

7

0
1 2

3 4

0 1 2 3 4 5 6 7

0

1

2

3

4

5

6

7

0 1 2 4 5
0
1
2
4
5

Element connectivity Step 4a: eliminate fixed degree of freedoms

Step 4b: map element stiffness matrix and element force vector to global matrix and global vector, respectively

Element 0:
Element 1: Element 2: Element 3: Element 4:

Step 4c: assembly of all elements

0

1

2

4

5

0

1

2

3

4

5

6

7

Step 4d: map equation number to global degree of freedom

number equation numberglobal degree of freedom number
284 Workbook of Applications in VectorSpace C++ Library

Basics of Finite Element Method

 vector,
e global

 impact
ontact
blems.

odel-
ogram-
ling then
een pro-
r analy-

global
raw a
tual rela-
meaning
always be
h
lations as

 starting

ariables
•1; i.e.,
ed. The

icate of
there are many matrix computational methods specifically designed for the finite element method. To name a
few, profiled sparse matrix, frontal method, and nested dissection1. These methods are not supported by “fe.lib”.
However, we reserve an entry point to declare the Matrix_Representation as

Matrix_Representation mr(gd, “ ... user defined string to identify special matrix ...”);.

The global stiffness matrix and global force vector can be replaced by corresponding special matrix and
provided you have code all the needed interfaces for retrieving the components in the special forms of th
matrix and vector.

Just as in the Element_Formulation, object-oriented programming provides mechanisms to deal with
of change for a swift evolution of “fe.lib”. Examples of these changes are mixed and hybrid method and c
mechanics. In abstract mathematical form, they all belong to the category of constrained optimization pro

4.1.3 Object-Oriented Analysis and Design of Finite Element Method

As in many books on object-oriented analysis and design have suggested, we define that the object-oriented
analysis is to understand the object dependency relation, and the object-oriented design is the discipline to man-
age the potentially complicated dependency relation among objects.

We may think of analysis and design probably is the first thing to consider, logically, even before the m
ing in the previous section. However, an experienced programmer will point out that the nature of the pr
ming is more like an iterative process that one goes over again and again from analysis/design to mode
re-analysis/re-design and then to re-modeling. Some problems are unraveled only after first model has b
posed. In this perspective, the modeling in the previous section provides us the materials to begin with fo
sis and design process.

Dependency Graph

The four major components in the modeling of finite element method are (1) the discretized
domain , (2) variables , (3) element formulation (EF), and (4) matrix representation (MR). We can d
tetrahedron with the four vertices represent the four components and the six edges represents their mu
tions (see Figure 4•8). The first thing we can do is this tetrahedron can be reduced to a planner graph,
that no edge among them can cross each other; i.e., to reduce it to a lower dimension. This step can not
done. If there is any such difficulty, we need to applied dependency breakers (to be discussed later) to the grap
to reduce it to a lower dimension. In a planner graph, we represent a component as a node, and their re
the arrows. For a component, the number of arrows pointing towards the node is called degree of entrance. In the
convention of object-oriented method, an arrow stands for a dependency relation that the node on the
point of an arrow depends on the node at the ending point of the arrow.

We briefly explain these dependency relations. The entrance number “0” says the global discretized v
 depends on the global discretization . is defined as interpolation of nodal variables as in Eq. 4

conceptually , and the nodal variables depends on how nodes and element, , are defin

1. Johnson, C., 1987, “ Numerical solution of partial differential equations by the finite element method”, Press Synd
the University of Cambridge, UK.

Ωh uh

uh Ωh uh

uh φ û,() û Ωh
Workbook of Applications in VectorSpace C++ Library 285

Finite Element Method PrimerChapter 4

nt stiff-
element
formula-
 mapped
nce
mber 4 is
 show a
fter we
ree of
ree of
 on EF.

est for
 EF
at they

o pic-
entrance number “1” says the element formulation depends on the global variables , since the eleme
ness matrix and element force vector are all calculated corresponding to the interpolated value of the
nodal variables . The entrance number “2” says the matrix representation depends on the element
tion, since element formulation supplies the element stiffness matrices and element force vectors to be
to the global matrix and global vector. The entrance number “3” is a redundant dependency relation. Si
depends on and EF depends on , we can conclude that EF must depend on . The entrance nu
a similar redundant relation with one more step of MR depending on EF. The entrance number 5 and 7
mutual dependency relation that MR depends on for MR is just the lhs and rhs to solve for , and a
get solution from solving MR we need to map the solution vector from MR back to , since the fixed deg
freedom is excluded from the MR, the variable number in MR is different from the number of global deg
freedom. Therefore, depends on the knowledge of MR. The entrance number “6” has depends
When we define elements, we need to specify the element type number.

Graph Level Structure

A complicated network such as the one in Figure 4•8 may look aesthetically pleasant, but it isn’t the b
human mind to comprehend. A clique is formed if we starts the flows of dependency steps from node MR to
then to it goes right back to MR itself. The members in a clique depend on each other so strongly th
are not separable. It is much easier to understand if the relation is hierarchical. In our mind we only need t
ture a simple sequence of states and top-dwon relations. We would like to change the graph into a level structure
such as a tree or even better a simple chain. These are same structures that we always preferred in procedure pro-
gramming method. Therefore, we proceed to sort out the planner graph into a graph level structure.

Ωh

uh

MR

EF

Ωh

uh EF

MR

tetrahedron planner graph

Figure 4•8Tetrahedron to show four components on the vertices with six edges. This can be
transformed to a planner graph with arrows to show dependency relation. The numbers
marked are the entrance numbers.

0

1

2
3

4

5

6

7

uh

ûe

uh

Ωh uh Ωh

uh uh

uh

uh Ωh

uh
286 Workbook of Applications in VectorSpace C++ Library

Basics of Finite Element Method

ever,
d EF is to
LE 4•1
ce num-
ext, there
re 4•9,

 under-
onents.
 simpli-
mind that
ception,

 software
are so
eraction
out differ-
ndly, the
nd con-
 of a pro-
 be done

 break-

rela-
f class
rder of
r of the
fication
First we compare the degree of entrance of the four components (see TABLE 4•1) to transform, by escalation
and demotion1 of nodes on the planner graph in Figure 4•8, into a graph level structure.

The has highest degree of entrance that means it should be at the highest root of class hierarchy. How
and EF have same degree of entrance. Since the EF explicitly depends on . is to be escalated an
be demoted. The order in the class hierarchical is, therefore, , , EF, MR, as the order shown in TAB
The pseudo-level structure is shown in the right-hand-side of Figure 4•9. The redundant relations, entran
bers 3, 4, and 5, are drawn as light arrows. These redundant dependencies are first to be eliminated. N
are still two un-resolved entrances (entrance 6 and 7 pointing downwards) in the left-hand-side of Figu
which make the graph not to be a level structure. Therefore, in the rest of this section we will explore C++level-
ization idioms1 that help us to break these two dependency relations. Now not only the graph is simple to
stand for human mind, but also it will have a profound impact on the organization of the software comp
Firstly, with a simplified dependency hierarchy, the interfaces of the software components are much more
fied. The interaction among the components can be understood easier. For example one can just bear in
only components that are lower in the hierarchy depend on those on the above. And , then, if there are ex
such as entrances 6 and 7, we just mark them as such. On the other hand, the complicated network of
components such as the one in the left-hand-side of Figure 4•8 will be extremely difficult to follow. There
many cliques among them. One nodes can lead to the other and then back to itself. The dynamical int
patterns among the components seems to have a life of its own. The sequence of events can be acted
ently every time. Therefore, the model based on the graph level structure will be less error proned. Seco
complicated network demands all module to be developed, tested and maintained all together. Divide a
quer is the principal strategy that we always need to deploy in the development, testing and maintenance
gram. The graph level structure in the right-hand-side of Figure 4•9 means that now these processes can
in a more modulized fashion from top level 0 down to level 3 incrementally. We discuss two dependency
ers in the followings.

Pointer to a Forward Declaration Class: We can apply a traditional C technique to break the dependency
tion caused by entrance number 7. That is the output for solution needs the knowledge o
Matrix_Representation. The the order of the solution vector “u”, in the main(), is corresponding to the o
variable number in the Matrix_Representation. For output of solution, we need to map this internal orde
Matrix_Representation back to the order of global nodal degree of freedoms according to the speci
from the problem. This breaking of dependency relations can be done with the forward declaration in traditional

1. J. Lakos, 1996, “Large-scale C++ software design”, Addison-Wesley, Reading, Massachusetts.

Component Degree of entrance

3

2

EF 2

MR 1

TABLE 4•1 Degree of entrance of the four components.

Ωh

uh

Ωh uh

uh uh

Ωh uh

uh

uh
Workbook of Applications in VectorSpace C++ Library 287

Finite Element Method PrimerChapter 4

, are
C. Four separate files “u_h.h”, “u_h.cpp”, “matrix_representation.h” and “matrix_representation.cpp”
shown in the followings.

Ia. “u_h.h”
1 class Matrix_Representation;
2 class U_h {
3 Matrix_Representation *mr;
4 ...
5 public:
6 ...
7 Matrix_Representation* &matrix_representation() { return mr; }
8 U_h& operator=(C0&);
9 U_h& operator+=(C0&);
10 U_h& operator-=(C0&);
11 };

Ib, “u_h.cpp”
12 #include “u_h.h”
13 ...

IIa. “matrix_representation.h”
14 class Matrix_Representation {
15 ...
16 protected:
17 Global_Discretization &the_global_discretization;
18 ...
19 public:

Ωh

uh

EF

MR

Figure 4•9levelization of non-hierachical network into a level structure then to a
chain. The entrances 6 and 7 remained. We need to apply C++ levelization
idioms to reslove them.

Level 0

Level 1

Level 2

Level 3

6

7

0

3
4

1

5

2

Ωh

uh

EF

MR

6

7

0

1

2

eliminate
redundant
dependancies

(a) levelization (b) simplify to a chain
288 Workbook of Applications in VectorSpace C++ Library

Basics of Finite Element Method

lementa-
e the

ss name
at only
 defini-
nly an

e transla-
 devel-
n at all.

tation of
p” files
nario of
d many

at class

ed in
an un-

 to do

ctly.

omain,
 U_h an
e define
ember

 of
20 void __initialization(char *s);
21 ...
22 };

IIb. “matrix_representation.cpp”
23 #include “u_h.h”
24 #include “matrix_representation.h”
25 void Matrix_Representation::__initialization(char *s) {
26 if(!(the_global_discretization.u_h().matrix_representation()))
27 the_global_discretization.u_h().matrix_representation() = this;
28 ...
29 }
30 U_h& U_h::operator=(C0& a) { ... }
31 U_h& U_h::operator+=(C0& a) { ... }
32 U_h& U_h::operator-=(C0& a) { ... }

The class U_h and class Matrix_Representation are actually depend on each other. Therefore, the imp
tions of them in the “cpp” extension files will require the knowledge of their definitions. That is to includ
“.h” extension files. Traditional C language (note that class can be viewed as a special case of struc) provides
mechanism to break this mutual dependency relation by forward declaration such as in line 1 that the cla
Matrix_Representation is introduced in the name scope of the translation unit “u_h.h”, on the condition th
the name of class Matrix_Representation, not its member data or member functions are to be used in the
tion of class U_h. In class U_h, we at most refer to a pointer of class Matrix_Representation, which is o
address in the computer memory, not an actually instance of the class Matrix_Representation, because th
tion unit has no knowledge yet of what class Matrix_Representation really is. Now a programmer in the
oper team can compile and test “u_h.cpp” separately, without having to define class Matrix_Representatio

One scenario of using the forward declaration of a class and using a member pointer to it is after the entire
product has been completed and sale to the customer, if we want to change the definition and implemen
class Matrix_Representation we do not need to recompile the file “u_h.cpp”. The changes in “.h” and “.cp
of the class Matrix_Representation do not affect the object code of class U_h module. A less dramatic sce
using a member pointer is that a developing process is iterative and the files always need to be compile
times. During developing cycles, class U_h module does not need to be recompiled every time th
Matrix_Representation is changed. Therefore we have seen a most primitive form of a compilation firewall been
set to separate the compile-time dependency among source files. In a huge project, such as the one develop
Mentor Graphics we mentioned earlier. They may have thousands of files. It will be ridiculous that when
important change of a tiny file higher in the dependency hierarchy is made. The “make” command may trigger
tens of hours in compile time to update all modules that are depending on it. Not for long you will refuse
any change at all. In yet another scenario, when class Matrix_Representation is intended to be encapsulated from
end-users, this same technique insulates end-users from accessing the class Matrix_Representation dire

Certainly, the dependency relation of entrance number 7 exists, which is demanded by the problem d
we can only find a way to get around it. We successfully break this particular dependency and make class
independent software module, but how do we re-connect them as the problem domain required. When w
the constructor of the class Matrix_Representation, the first line of the constructor is to call its private m
function “__initialization(char*)”. This private member function set up the current instance
Workbook of Applications in VectorSpace C++ Library 289

Finite Element Method PrimerChapter 4

and
e push
ecause
s its infor-
ned in
we not
ule and

s

2”
”
”

 then
bers are

es. The

on-
Matrix_Representation as the pointer to Matrix_Representation in the class U_h. We break up the dependency
relation using forward declaration now we reconnect them when an instance of class Matrix_Representation is
initiated. This closes the cyclic dependency relation, at link-time, that was broken at compile-time for making an
independent module of class U_h. Furthermore, the definitions of three public member operators “=”, “+=”,
“-=”, which map the equation number of solution vector back to global degree of freedoms for output, ar
down the hierarchical levels. They are not defined in “u_h.cpp” with other class U_h member functions, b
the independent module class U_h has no idea what is a class Matrix_Represenation, let alone to acces
mation for the mapping. Therefore, these three public member functions of class U_h are defi
“matrix_representation.cpp” with other member functions of class Matrix_Representation. Certainly, had
defined these three operators anywhere, at link-time, the linker will refuse to build the executable mod
will complain that these three operators, declared in “u_h.h”, are un-resolved external references.

Element Type Register: In page 281, we have discussed the element type register from user’s code segment a
registration by

1 Element_Fomulation* Element_Formulation::type_list = 0;
2 Element_Type_Register element_type_register_instance;
3 static Truss truss_instance(element_type_register_instance); // element type number “
4 static T3 t3_instance(element_type_register_instance); // element type number “1
5 static Q4 q4_instance(element_type_register_instance); // element type number “0

The element types are registered in a list data structure. The last registered element type number is “0”, and
the number increases backwards to the first registered element in the “type_list”. This element type num
referred to when we define the element as

Omega_eh *elem = new Omega_eh(element_number, element_type_number,
material_number, nodes_per_element,
node_number_array);

This user interface design itself breaks the dependency of the definition of an element on element typ
C++ technique to implement this design is the autonomous virtual constructor1. Let’s first look at the definitions
of the class Element_Formulation

1 class Element_Type_Register { public: Element_Type_Register() {} };
2 class Element_Formulation {
3 Global_Discretization& the_global_discretization;
4 ...
5 public:
6 static Element_Formulation *type_list;
7 Element_Formulation *next;
8 Element_Formulation(Element_Type_Register) :

1. see autonomous generic constructor in J. O. Coplien, 1992, “ Advanced C++: Programming styles and idioms”, Addis
Wesley, Reading, Massachusetts.
290 Workbook of Applications in VectorSpace C++ Library

Basics of Finite Element Method

can be

t in line
 the
liber-
e sup-

sist of
icture is

a
 of the
it is con-

tization,
ed the
ss of
ment

ite class
straction
ments to
ned to be
tails are
pen, such
ction is
xibility
9 the_global_discretization(Globa_Discretization()) { next = type_list; type_list = this; }
10 Element_Formulation& create(int, Global_Discretization&);
11 virtual Element_Formulation* make(int, Globa_Discretization&);
12 ...
13 };

The class Element_Type_Register, in line 1, is a dummy one that is used like a signature in line 8 to indicate that
the instance of class Element_Formulation generated is for element type identifier, and the static member
type_list embedded in the Element_Formulation will be maintained automatically. This element_type_number
information is used in “Matrix_Representation::assembly()” as

1 Element_Formulation *element_type = Element_Formulation::type_list;
2 for(int i = 0; i < element_type_number; i++) element_type = element_type->next;
3 Element_Formulation ef = element_type->create(element_no, the_global_discretization);

Line 3 is to compute the Element_Formulation, and form an instance of Element_Formulation, say “ef”, it
used as “ef.lhs()” and “ef.rhs()” to query information. The task of “create()” is to call “make()” forward by its
delegate “rep_ptr->make()”. Since “make()” is virtual and to be redefined in the derived class. The reques
3 is dispatched to a user defined element class. The virtual function mechanism is usually referred to aslate-
binding technique at run-time. In this case, the cyclic dependence of an element on element formulation, de
ately broken for the software modulization, is re-connected at the run-time by the late-binding techniqu
ported by C++.

Composite Class from a Dependency Graph

In Figure 4•8 and Figure 4•9, the four nodes are actually the software modules in “fe.lib” which are con
the classes. A class dependency graph, not including all classes, is shown in Figure 4•10. The entire p
much more complicated one. The definition of a compoiste class is similar to the partitioning of the graph to
(quotient) tree structure with sets of composite vertices as composite nodes. In software design, the choice
composite class is somewhat more arbitrary than that of composite vertices in graph theory; as long as
ceptual meaningful to emphasis the essential and eliminate the irrelevant (i.e., the process of abstraction). For
example, it makes all sense to combined the level 0 and level 1 together and called it a Global_Discre
which is a discretization made to both the domain and the variables. We can even combin
Global_Discretization class and Element_Formulation class to form a new conceptual cla
“Finite_Element_Approximation”. In this way, the designer may want to emphasize that the finite ele
method is mainly consist of only two steps. One step is the finite element approximation, and the other step is the
solution in its matrix form. The coalescence of several composite classes into yet higher level of compos
shows that the recognition of a composite class may depend on design decision on what conceptual ab
the designer wants to emphasize (an art), not just physical dependency relations and technical require
separate them. Sometimes, the decision depends on the intent of the final product. For a product desig
used as a canned program, the abstraction can be put to a coherently higher level in which all the de
encapsulated from the end users as much as possible. On the contrary, if the product is intended to be o
as “fe.lib” that large-scale change to the backbone structure of the program is to be permissible. Abstra
put down to a granularly lower level to facilitate the re-use of each composite class and therefore more fle
for change.
Workbook of Applications in VectorSpace C++ Library 291

Finite Element Method PrimerChapter 4
Ωh

uh

Node

Ωe
h

uh

Ωh

g Γg h Γh∈,∈

EF

User Defined
Elements

MR

Global
Tensors

Element
Tensors

Finite_Element_Approximation

Global_Discretization

Figure 4•10Composite class in the hierachical level structure.

Level 0

Level 1

Level 2

Level 3

Finite_Element_
Approximation

MR

Globla_Discretization

EF

MR

MR

EF
292 Workbook of Applications in VectorSpace C++ Library

Basics of Finite Element Method

.lib” is a

I kernel
e prob-

ry for
he basic
st area
4.1.4 A Program Template for Using “fe.lib”

We summarize the Section 4.1 with a template for using fe.lib to write finite element programs. It is very
much like we have an extended C++ language features that are specialized in finite element method. “fe
framework-based package very similar to if you are writing a graphic user interface (GUI) program. In GUI pro-
gramming, there are some routine code that you need to incorporate with its framework to make the GU
up and running. On the other hand, since finite element method requires a lot of user input to specified th
lem, the fe.lib acts much like a database engine that you write a database language to define the database
schema, manipulate the data and query its contents. The fancy term client-server package may even more appro-
priate for “fe.lib”. The client-server packages for writing business applications provide a high-level libra
routine database services and GUI interfaces. Under such model, the fe.lib is the server that provides t
mechanisms in finite element method for user programs to implement their own design policies in the va
of finite element problem domain.

A user program template is illustrated in the followings

//==
// Step 1: Global_Discretization
//==

1 Omega_h::Omega_h{ // define discretizaed global domain
// define nodes

2 ...
// define elements

3 ...
4 }
5 gh_on_Gamma_h::gh_on_Gamma_h(int df, Omega_h& oh) { // define boundary conditions
6 __initiialization(df, oh); // initialize internal data structure

// define b.c.
7 ...
8 }

//==
// Step 2: Element_Formulation
//==

9 class UserEL : public Element_Formulation { // define user element
10 public:
11 UserEL(Element_Type_Register a) : Element_Formulation(a) {}
12 Element_Formulation *make(int, Global_Discretization&);
13 UserEL(int, Global_Discretization&);
14 };
15 Element_Formulation* UserEL::make(int en, Global_Discretization& gd) {
16 return new UserEL(en, gd);
17 }
18 UserEL::UserEL(int en, Global_Discretization& gd) : Element_Formulation(en, gd) {
Workbook of Applications in VectorSpace C++ Library 293

Finite Element Method PrimerChapter 4
// define element formulation constructor
19 ...
20 }
21 Element_Formulation* Element_Formulation::type_list = 0; // register elements
22 Element_Type_Register element_type_register_instance;
23 static UserEL userel_instance(element_type_register_instance);

//==
// Step 3: Matrix_Representation and Solution Phase
//==

24 int main() {
25 int ndf = 1; // instantiation of Global_Discretization
26 Omega_h oh;
27 gh_on_Gamma_h gh(ndf, oh);
28 U_h uh(ndf, oh);
29 Global_Discretization gd(oh, gh, uh);
30 Matrix_Representation mr(gd);
31 mr.assembly(); // assemble the global matrix
32 C0 u = ((C0)(mr.rhs())) / ((C0)(mr.lhs())); // solution phase
33 gd.h_h(); = u; gd.u_h() = gd.gh_on_gamma_h(); // update solution
34 cout << gd.u_h(); // output solution
35 return 0;
36 }

Many segments and their variations of this template have been discussed in 4.1.2. The rest of this Chapter con-
sists of concrete examples of writing user programs using this template.
294 Workbook of Applications in VectorSpace C++ Library

One Dimensional Problems

•55 of

e second
moge-

ll, Inc.
4.2 One Dimensional Problems

We intent to go through many proto-type problems, in one dimension, to demonstrate a wide mathematical
variety in the finite element method.

4.2.1 A Second-Order Ordinary Differential Equation (ODE)

Considering a second-order differential equation we have solved using Rayleigh-Ritz method (Eq. 3
Chapter 3 in page 201)1

Eq. 4•16

with three sets of different boundary conditions

1. Dirichlet boundary conditions—u(0) = u(1) = 0
2. Neumann boundary condition—u’(0) = u’(1) = 0
3. Mixed boundary conditions—u(0) = 0, and u’(1) = 0

The Galerkin weak formulation is

a(φe
i, φe

j) - (φe
i , f) =

 Eq. 4•17

1. Dirichlet boundary conditions: From Eq. 4•9 and Eq. 4•10 we have the element stiffness matrix as

Eq. 4•18

and the element force vector as

Eq. 4•19

The last identity is obtained, since the essential and natural boundary conditions are all homogeneous th
term and the third term always vanish. In more general cases that they are not ho

1. p. 367-371 in J.N. Reddy, 1986, “Applied functional analysis and variational methods in engineering”, McGraw-Hi

x
2

2

d

d u
– πx 0 x 1< <,cos=

φe
i
d2φe

j

dx2
----------- φe

i πxcos–
 dx

0

1

∫
dφe

i

dx
---------–

dφe
j

dx
--------- φe

i πxcos+
 dx φe

i
dφe

j

dx

0

1

+

0

1

∫
dφe

i

dx
---------–

dφe
j

dx
--------- φe

i πxcos+
 dx

0

1

∫ 0= = =

ke
ij a φe

i φe
j,()

dφe
i

dx

dφe
j

dx

 dx

0

1

∫= =

fe
i φe

i f,() φe
i h,()Γ a φe

i φe
j,()ue

j–+ φe
i πxcos()dx

0

1

∫= =

φe
i h,()Γ a φe

i φe
j,()ue

j–
Workbook of Applications in VectorSpace C++ Library 295

Finite Element Method PrimerChapter 4

 as you

) and

q. 3•10

ent is
des and
th their

de seg-
nous conditions, the default behaviors of “fe.lib” will deal with these two terms behind the scene as long
have not overwritten them as we have discussed in the previous section.

Linear Line Element

We can choose the linear interpolation functions for both variable interpolation (Eq. 4•1
coordinate transformation rule (Eq. 4•6); i.e., an isoparametric element as

Eq. 4•20

This is the linear interpolation functions we have used for integration of a line segment in Chapter 3 (E
and Eq. 3•11 of Chapter 3).

The finite element program using VectorSpace C++ Library and “fe.lib” to implement the linear elem
shown in Program Listing 4•1. We use the program template in the previous section. First, we define no
elements in “Omega_h::Omega_h()”. This constructor for the discretized global domain defines nodes wi
node numbers and nodal coordinates as

1 double v = (double)i/(double)element_no; // nodal coordinates, 0 < x < 1
2 Node *node = new Node(global_node_number,
3 spatial_dimension_number,
4 &v);
5 the_node_array.add(node);

The elements are defined with global node number associated with the element as

1 int ena[2]; ena[0] = first_node_number; ena[1] = ena[0]+1;
2 Omega_eh* elem = new Omega_eh(element_number,
3 element_type_number,
4 matrial_type_number,
5 number_of_node_per_element,
6 ena);
7 the_omega_eh_array.add(elem);

Three sets of boundary conditions are (1) Dirichlet (2) Neumann, and (3) Mixed. The corresponding co
ments can be turned on or off with a macro definitions set, at compile time, as

1 #if defined(__TEST_MIXED_BOUNDARY_CONDITION)
2 gh_on_Gamma_h::gh_on_Gamma_h(int df, Omega_h& omega_h) {
3 __initialization(df, omega_h);
4 the_gh_array[node_order(0)](0) = gh_on_Gamma_h::Dirichlet;
5 the_gh_array[node_order(0)][0] = 0.0;
6 the_gh_array[node_order(node_no-1)](0) = gh_on_Gamma_h::Neumann;
7 the_gh_array[node_order(node_no-1)][0] = 0.0;

ue
h φe

i ûe
i≡

x φe
i xe

i≡

φe
0 1

2
--- 1 ξ–() and φe

1 1
2
--- 1 ξ+()=,=
296 Workbook of Applications in VectorSpace C++ Library

One Dimensional Problems
#include "include\fe.h"
static const int node_no = 9; static const int element_no = 8; static const int spatial_dim_no = 1;
Omega_h::Omega_h() {

for(int i = 0; i < node_no; i++) {
double v; v = ((double)i)/((double)element_no);
Node* node = new Node(i, spatial_dim_no, &v); the_node_array.add(node);

}
int ena[2];
for(int i = 0; i < element_no; i++) {

ena[0] = i; ena[1] = ena[0]+1;
Omega_eh* elem = new Omega_eh(i, 0, 0, 2, ena); the_omega_eh_array.add(elem);

}
}
gh_on_Gamma_h::gh_on_Gamma_h(int df, Omega_h& omega_h) {

__initialization(df, omega_h);
the_gh_array[node_order(0)](0) = gh_on_Gamma_h::Dirichlet;
the_gh_array[node_order(node_no-1)](0) = gh_on_Gamma_h::Dirichlet;

}
class ODE_2nd_Order : public Element_Formulation {

public:
ODE_2nd_Order(Element_Type_Register a) : Element_Formulation(a) {}
Element_Formulation *make(int, Global_Discretization&);
ODE_2nd_Order(int, Global_Discretization&);

};
Element_Formulation* ODE_2nd_Order::make(int en, Global_Discretization& gd) {

return new ODE_2nd_Order(en,gd);
}
static const double PI = 3.14159265359;
ODE_2nd_Order::ODE_2nd_Order(int en, Global_Discretization& gd)

: Element_Formulation(en, gd) {
Quadrature qp(spatial_dim_no, 2);
H1 Z(qp),

N=INTEGRABLE_VECTOR_OF_TANGENT_BUNDLE("int, int, Quadrature", 2, 1, qp);
N[0] = (1-Z)/2; N[1] = (1+Z)/2;
H1 X = N*xl;
H0 Nx = d(N)(0)/d(X);
J dv(d(X));
stiff &= (Nx * (~Nx)) | dv;
force &= (((H0)N)*cos(PI*((H0)X)))| dv;

}
Element_Formulation* Element_Formulation::type_list = 0;
static Element_Type_Register element_type_register_instance;
static ODE_2nd_Order ode_2nd_order_instance(element_type_register_instance);
int main() {

const int ndf = 1;
Omega_h oh; gh_on_Gamma_h gh(ndf, oh);
U_h uh(ndf, oh); Global_Discretization gd(oh, gh, uh);
Matrix_Representation mr(gd);
mr.assembly();
C0 u = ((C0)(mr.rhs())) / ((C0)(mr.lhs()));
gd.u_h() = u; gd.u_h() = gd.gh_on_gamma_h();
cout << gd.u_h();
return 0;

}

Definte discretizaed global domain

define nodes

define elements

define boundary conditions
u(0) = u(1) = 0

instantiate fixed and free variables and
Global_Discretization

Define user element “ODE_2nd_Order”

1d Gauss Quadrature

N0 = (1-ξ)/2, N1 = (1+ξ)/2
coordinate transformation rule
N,x
the Jacobian

, and

register element
Matrix Form
assembly all elements
solve linear algebraic equations
update solution and B.C.
output

ke
ij

dφe
i

dx

dφe
j

dx

 dx

0

1

∫= fe
i φe

i πxcos dx

0

1

∫=

Listing 4•1 Dirichlet boundary condition u(0) = u(1) = 0, for the differential equation - u” = f (project:
“2nd_order_ode” in project workspace file “fe.dsw” (in case of MSVC) under directory “vs\ex\fe”).
Workbook of Applications in VectorSpace C++ Library 297

Finite Element Method PrimerChapter 4

m as
 con-

r

17) are
der such

ass
8 }
9 #elif defined(__TEST_NEUMANN_BOUNDARY_CONDITION)
10 gh_on_Gamma_h::gh_on_Gamma_h(int df, Omega_h& omega_h) {
11 __initialization(df, omega_h);
12 the_gh_array[node_order(0)](0) = gh_on_Gamma_h::Neumann;
13 the_gh_array[node_order(0)][0] = 0.0;
14 the_gh_array[node_order(node_no-1)](0) = gh_on_Gamma_h::Neumann;
15 the_gh_array[node_order(node_no-1)][0] = 0.0;
16 the_gh_array[node_order((node_no-1)/2)](0) = gh_on_Gamma_h::Dirichlet;
17 the_gh_array[node_order((node_no-1)/2)][0] = 0.0;
18 }
19 #else
20 gh_on_Gamma_h::gh_on_Gamma_h(int df, Omega_h& omega_h) {
21 __initialization(df, omega_h);
22 the_gh_array[node_order(0)](0) = gh_on_Gamma_h::Dirichlet;
23 the_gh_array[node_order(0)][0] = 0.0;
24 the_gh_array[node_order(node_no-1)](0) = gh_on_Gamma_h::Dirichlet;
25 the_gh_array[node_order(node_no-1)][0] = 0.0;
26 }
27 #endif

The Dirichlet boundary conditions is taken as the default macro definition. The constraint type selector is the
“operator () (int dof)”. We can assign type of constraint to the corresponding degree of freedo
“gh_on_Gamma_h::Neumann” or “gh_on_Gamma_h::Dirichlet”. The default constraint type is Neumann
dition. The constraint value selector is the “operator [](int dof)”. The default constraint value is “0.0”. In othe
words, you can eliminate lines 5-7, lines12-15, and lines 17, 23, 25, and the results should be the same.

The added essential boundary conditions on the middle point of the problem domain (line 16, and
necessary for the Neumann boundary conditions for this problem, because the solution is not unique un
boundary conditions only.

“fe.lib” requires the following codes to ochestrate the polymorphic mechanism of the Element_Formulation
to setup the element type register. For a user defined class of “ODE_2nd_Order” derived from cl
Element_Formulation we have

1 class ODE_2nd_Order : public Element_Formulation {
2 public:
3 ODE_2nd_Order(Element_Type_Register a) : Element_Formulation(a) {}
4 Element_Formulation *make(int, Global_Discretization&);
5 ODE_2nd_Order(int, Global_Discretization&);
6 };
7 Element_Formulation* ODE_2nd_Order::make(int en, Global_Discretization& gd) {
8 return new ODE_2nd_Order(en,gd);
9 }
10 Element_Formulation* Element_Formulation::type_list = 0;
298 Workbook of Applications in VectorSpace C++ Library

One Dimensional Problems

Order”.
lation as
11 static Element_Type_Register element_type_register_instance;
12 static ODE_2nd_Order ode_2nd_order_instance(element_type_register_instance);

Lines 10 and 11 setup the data for registration and Line 12 register the element formulation “ODE_2nd_
Line 5 is the constructor for class ODE_2nd_Order where we defined the user customized element formu

1 static const double PI = 3.14159265359;
2 ODE_2nd_Order::ODE_2nd_Order(int en, Global_Discretization& gd)
3 : Element_Formulation(en, gd) {
4 Quadrature qp(spatial_dim_no, 2); // 1d, 2-pts Gauss quadrature
5 H1 Z(qp), // natural coordinate—ξ
6 N = INTEGRABLE_VECTOR_OF_TANGENT_BUNDLE(// “shape functions”
7 "int, int, Quadrature", 2/*nen*/, 1/*nsd*/, qp);
8 N[0] = (1-Z)/2; N[1] = (1+Z)/2; // N0=(1-ξ)/2, N1 = (1+ξ)/2
9 H1 X = N*xl; // coordinate transformation
10 H0 Nx = d(N)(0)/d(X); // N,x
11 J dv(d(X)); // the Jacobian, X,ξ
12 stiff &= (Nx * (~Nx)) | dv;
13 force &= (((H0)N)*cos(PI*((H0)X)))| dv; // , and

14 }

For the element stiffness matrix, instead of “stiff &= (Nx* (~Nx)) | dv;”, the tensor product operator “H0&
H0::operator%(const H0&)” in VectorSpace C++ can be used for expressing

Eq. 4•21

as

stiff &= (Nx%Nx) | dv;

The instantiation of global discretized domain, fixed and free variables, and matrix representation and solu-
tion phase are taken directly from the template without modification

1 int main() {
2 const int ndf = 1;
3 Omega_h oh; // global discretizaed domain—
4 gh_on_Gamma_h gh(ndf, oh); // fixed variables —
5 U_h uh(ndf, oh); // free variables—
6 Global_Discretization gd(oh, gh, uh); // the class Global_Discretization
7 Matrix_Representation mr(gd);
8 mr.assembly(); // assembly all elements
9 C0 u = ((C0)(mr.rhs())) / ((C0)(mr.lhs())); // matrix solver

x Ni xe
i≡

ke
ij

dφe
i

dx

dφe
j

dx

 dx

0

1

∫=
fe

i φe
i πxcos dx

0

1

∫=

ke

dφe

dx

dφe

dx
--------⊗

 dx

0

1

∫=

Ωh

g Γg h Γh∈,∈
uh
Workbook of Applications in VectorSpace C++ Library 299

Finite Element Method PrimerChapter 4

e then
lement

inate

e ele-
10 gd.u_h() = u; gd.u_h() = gd.gh_on_gamma_h(); // update free and fixed degree of freedom
11 cout << gd.u_h(); // output solution
12 return 0;
13}

The instances of global discretization, “oh”, and fixed and free variables, “gh” and “uh”, respectively, ar
all go to instantiate an instance of class Global_Discretization, “gd”. The results of using the linear line e
for the second order differential equation in finite element method are shown in Figure 4•11.

Quadratic Line Element

The quadratic interpolation functions for both variable interpolation (Eq. 4•1) and coord
transformation rule (Eq. 4•6) are

Eq. 4•22

These are the same quadratic interpolation functions in the Chapter 3 (Eq. 3•22).

The finite element program using VectorSpace C++ Library and “fe.lib” to implement the quadratic lin
ment is shown in Program Listing 4•2. The definitions of 5 nodes and 2 quadratic elements are

1 static const int node_no = 5;
2 static const int element_no = 2;
3 static const int spatial_dim_no = 1;
4 Omega_h::Omega_h() {
5 for(int i = 0; i < node_no; i++) {
6 double v; v = ((double)i)/((double)(node_no-1));
7 Node* node = new Node(i, spatial_dim_no, &v);
8 the_node_array.add(node);

0.2 0.4 0.6 0.8 1

-0.2

-0.15

-0.1

-0.05

0.2 0.4 0.6 0.8 1

-0.1

-0.05

0.05

0.1

0.2 0.4 0.6 0.8 1

-0.02

-0.01

0.01

0.02

Figure 4•11 The results from eight linear elements for (1) Dirichelt (2) Neumann and (3) Mixed
boundary condtions for the second-order ordinary differentail equation. Line segments with open
squares are finite element solutions, and continuous curves are analytical solutions.

Dirichlet Neumann Mixed

ue
h φe

i ûe
i≡

x φe
i xe

i≡

φe
0 ξ–

2
------ 1 ξ–() φe

1, 1 ξ–() 1 ξ+() and φe
2 ξ

2
--- 1 ξ+()== =
300 Workbook of Applications in VectorSpace C++ Library

One Dimensional Problems
#include "include\fe.h"
static const int node_no = 5; static const int element_no = 2; static const int spatial_dim_no = 1;
Omega_h::Omega_h() {

for(int i = 0; i < node_no; i++) {
double v; v = ((double)i)/((double)element_no);
Node* node = new Node(i, spatial_dim_no, &v); the_node_array.add(node);

}
int ena[3];
for(int i = 0; i < element_no; i++) {

ena[0] = i; ena[1] = ena[0]+1; ean[2] = ena[0] + 2;
Omega_eh* elem = new Omega_eh(i, 0, 0, 3, ena); the_omega_eh_array.add(elem);

}
}
gh_on_Gamma_h::gh_on_Gamma_h(int df, Omega_h& omega_h) {

__initialization(df, omega_h);
the_gh_array[node_order(0)](0) = gh_on_Gamma_h::Dirichlet;
the_gh_array[node_order(node_no-1)](0) = gh_on_Gamma_h::Dirichlet;

}
class ODE_2nd_Order_Quadratic : public Element_Formulation {

public:
ODE_2nd_Order_Quadratic(Element_Type_Register a) : Element_Formulation(a) {}
Element_Formulation *make(int, Global_Discretization&);
ODE_2nd_Order_Quadratic(int, Global_Discretization&);

};
Element_Formulation* ODE_2nd_Order_Quadratic::make(int en, Global_Discretization& gd) {

return new ODE_2nd_Order_Quadratic(en,gd);
}
static const double PI = 3.14159265359;
ODE_2nd_Order::ODE_2nd_Order_Quadratic(int en, Global_Discretization& gd)

: Element_Formulation(en, gd) {
Quadrature qp(spatial_dim_no, 2);
H1 Z(qp),

N=INTEGRABLE_VECTOR_OF_TANGENT_BUNDLE("int, int, Quadrature", 3, 1, qp);
N[0] = -Z*(1-Z)/2; N[1] = (1-Z)*(1+Z); N[2] = Z*(1+Z)/2;
H1 X = N*xl;
H0 Nx = d(N)(0)/d(X);
J dv(d(X));
stiff &= (Nx * (~Nx)) | dv;
force &= (((H0)N)*cos(PI*((H0)X)))| dv;

}
Element_Formulation* Element_Formulation::type_list = 0;
static Element_Type_Register element_type_register_instance;
static ODE_2nd_Order_Quadratic

ode_2nd_order_quadratic_instance(element_type_register_instance);
int main() {

const int ndf = 1; Omega_h oh; gh_on_Gamma_h gh(ndf, oh);
U_h uh(ndf, oh); Global_Discretization gd(oh, gh, uh);
Matrix_Representation mr(gd);
mr.assembly();
C0 u = ((C0)(mr.rhs())) / ((C0)(mr.lhs()));
gd.u_h() = u; gd.u_h() = gd.gh_on_gamma_h();
cout << gd.u_h();
return 0;

}

Definte discretizaed global domain

define nodes

define elements

define boundary conditions
u(0) = u(1) = 0

instantiate fixed and free variables and
Global_Discretization

Define user element “ODE_2nd_Order”

1d Gauss Quadrature
N0=-ξ (1-ξ) / 2, N1=(1-ξ) (1+ξ),
N2 = ξ (1+ξ) / 2
coordinate transformation rule
N,x
the Jacobian

, and

register element
Matrix Form
assembly all elements
solve linear algebraic equations
update solution and B.C.
output

ke
ij

dφe
i

dx

dφe
j

dx

 dx

0

1

∫= fe
i φe

i πxcos dx

0

1

∫=

Listing 4•2 Quadratic Element for Dirichlet boundary condition u(0) = u(1) = 0 of the differential equa-
tion - u” = f (project: “quadratic_ode” in project workspace file “fe.dsw” under directory “vs\ex\fe”).
Workbook of Applications in VectorSpace C++ Library 301

Finite Element Method PrimerChapter 4

nder

m”,

9 }
10 int ena[3];
11 for(int i = 0; i < element_no; i++) {
12 ena[0] = i*2; ena[1] = ena[0]+1; ena[2] = ena[0]+2;
13 Omega_eh* elem = new Omega_eh(i, 0, 0, 3, ena);
14 the_omega_eh_array.add(elem);
15 }
16 }

The interpolation functions for Eq. 4•22 in the constructor of the user defined element is

1 H1 Z(qp),
2 N = INTEGRABLE_VECTOR_OF_TANGENT_BUNDLE(
3 "int, int, Quadrature", 3/*nen*/, 1/*nsd*/, qp);
4 N[0] = -Z*(1-Z)/2; N[1]=(1-Z)*(1+Z); N[2]=Z*(1+Z)/2; //

The results of using only two quadratic elements are shown in Figure 4•12.

Cylindrical Coordinates For Axisymmetrical Problem

In cylindrical coordinates (r, θ, z), the Laplace operator is written as1

Eq. 4•23

We consider an axisymmetrical heat conduction problem governing by the Laplace equation
shown in Figure 4•13.2 This is a cross-section of two coaxial hollow cylinders. The inner and outer cyli

1. see for example p. 667, Eq (II.4.C4) in L.E. Malvern, 1969, “Introduction to the mechanics of a continuous mediu
Prentice-Hall, Inc., Englewood Cliffs, N.J.

2. example in p. 364-367 in J.N. Reddy, 1986, “Applied functional analysis and variational methods in engineering”,
McGraw-Hill, Inc.

φe
0 ξ–

2
------ 1 ξ–() φe

1, 1 ξ–() 1 ξ+() φ, e
2 ξ

2
--- 1 ξ+()== =

0.2 0.4 0.6 0.8 1

-0.2

-0.15

-0.1

-0.05

0.2 0.4 0.6 0.8 1

-0.02

-0.01

0.01

0.02

0.2 0.4 0.6 0.8 1

-0.1

-0.05

0.05

0.1

Figure 4•12 The results from two quadratic elements for (1) Dirichelt (2) Neumann and (3)
Mixed boundary condtions for the second-order ordinary differentail equation. Dashed curves
with open squares are finite element solutions, and continuous curves are analytical solutions.

Dirichlet Neumann Mixed

∇2u
1
r
--- ∂

∂r
----- r

∂u
∂r

 1
r2
----∂2u

∂θ2
--------- ∂2u

∂z2
--------+ +=

∇2u– 0=
302 Workbook of Applications in VectorSpace C++ Library

One Dimensional Problems

ly on
omes

ed by

g

have different thermal diffusivity “5” and “1”, respectively. For this axisymmetrical problem u depends on
r, the second and the third terms in the left-hand-side of Eq. 4•23 dropped out. The Laplace equation bec

Eq. 4•24

Replace dΩ = 2πr dr in the volume integral, the element stiffness matrix in Eq. 4•9 and Eq. 4•10 is obtain
integration by parts of the weighted-residual statement with Eq. 4•24

Eq. 4•25

The C++ code for Eq. 4•25 is

“stiff &= (kapa[matrial_type_no] *(Nr%Nr)*2*PI((H0)r)) | dr”

where “Nr” is the derivative of shape functions “N” with respect to “r”. This is implemented in Program Listin
4•3. The results are shown in Figure 4•14.

Figure 4•13Cross-section of two hollow cylinder with diffusivity of k = 5, and k =
1 for the inner and outer cylinder, respectively.

20mm
31.6mm

50mm

κ = 5

κ = 1

r

20mm 31.6mm 50mm

κ = 5 κ = 1
100oC 0oC

1
r

d
dr
----- κr

du
dr

 – 0=

ke κ
dφe

dr

dφe

dr
--------⊗

 2πrdr∫=

25 30 35 40 45 50

20

40

60

80

100

Figure 4•14The solution of heat conduction of an axisymmetrical problem with two
hollow cylinders.

r

T oC
Workbook of Applications in VectorSpace C++ Library 303

Finite Element Method PrimerChapter 4
#include "include\fe.h"
static const int node_no = 9; static const int element_no = 8; static const int spatial_dim_no = 1;
Omega_h::Omega_h() {

double r[9] = {20.0, 22.6, 25.1, 28.4, 31.6, 35.7, 39.8, 44.9, 50.0};
for(int i = 0; i < node_no; i++) {
Node* node = new Node(i, spatial_dim_no, r+i); the_node_array.add(node); }
int ena[2], material_type_no;
for(int i = 0; i < element_no; i++) {

ena[0] = i; ena[1] = ena[0]+1;
if(i < element_no / 2) material_type_no = 0; else material_type_no = 1;
Omega_eh* elem = new Omega_eh(i, 0, material_type_no, 2, ena);
the_omega_eh_array.add(elem);

}
}
gh_on_Gamma_h::gh_on_Gamma_h(int df, Omega_h& omega_h) {

__initialization(df, omega_h);
 the_gh_array[node_order(0)](0) = gh_on_Gamma_h::Dirichlet;
 the_gh_array[node_order(0)][0] = 100.0;
 the_gh_array[node_order(node_no-1)](0) = gh_on_Gamma_h::Dirichlet;
 the_gh_array[node_order(node_no-1)][0] = 0.0;
}class ODE_Cylindrical_Coordinates : public Element_Formulation {

public:
ODE_Cylindrical_Coordinates(Element_Type_Register a) : Element_Formulation(a) {}
Element_Formulation *make(int, Global_Discretization&);
ODE_Cylindrical_Coordinates(int, Global_Discretization&);

};
Element_Formulation* ODE_Cylindrical_Coordinates::make(int en, Global_Discretization& gd) {

return new ODE_Cylindrical_Coordinates(en,gd); }
static const double PI = 3.14159265359; static const double kapa[2] = {5.0, 1.0};
ODE_Cylindrical_Coordinates::ODE_Cylindrical_Coordinates(int en, Global_Discretization& gd)

: Element_Formulation(en, gd) {
Quadrature qp(spatial_dim_no, 2);
H1 Z(qp),

N=INTEGRABLE_VECTOR_OF_TANGENT_BUNDLE("int, int, Quadrature", 2, 1, qp);
N[0] = (1-Z)/2; N[1] = (1+Z)/2;
H1 r = N*xl;
H0 Nr = d(N)(0)/d(r);
J dr(d(r));
stiff &= ((kapa[material_type_no]*2.0*PI*((H0)r)) * (Nr%Nr)) | dr;

}
Element_Formulation* Element_Formulation::type_list = 0;
static Element_Type_Register element_type_register_instance;
static ODE_Cylindrical_Coordinates ode_cylindrical_instance(element_type_register_instance);
int main() {

const int ndf = 1; Omega_h oh; gh_on_Gamma_h gh(ndf, oh);
U_h uh(ndf, oh); Global_Discretization gd(oh, gh, uh);
Matrix_Representation mr(gd);
mr.assembly();
C0 u = ((C0)(mr.rhs())) / ((C0)(mr.lhs()));
gd.u_h() = u; gd.u_h() = gd.gh_on_gamma_h();
cout << gd.u_h();
return 0;

}

Definte discretizaed global domain

define 9 nodes

define 8 elements

define boundary conditions
u(20) = 100, u(50) = 0

instantiate fixed and free variables and
Global_Discretization

Define user element “ODE_2nd_Order”

1d Gauss Quadrature

N0= (1-ξ) / 2, N1= (1+ξ) / 2
coordinate transformation rule
N,x, and the Jacobian

register element
Matrix Form
assembly all elements
solve linear algebraic equations
update solution and B.C.
output

ke κ
dφe

dr

dφe

dr
--------⊗

 2πrdr∫=

Listing 4•3 Axisymmetrical problem using cylindrical coordinates for the differential equation - u” = 0
(project: “cylindrical_ode” in project workspace file “fe.dsw” under directory “vs\ex\fe”).
304 Workbook of Applications in VectorSpace C++ Library

One Dimensional Problems

nce of

u-
4.2.2 A Fourth-Order ODE —the Beam Bending Problem

We recall, from the last chapter in the sub-section on fourth-order ODE (in page 205), that from bala
force, the transverse loading (f) is equal to the derivative of shear force (V) as

dV/dx =- f Eq. 4•26

and the shear force V is equal to the derivative of bending moment (M) as

dM/dx =- V Eq. 4•27

Therefore,

Eq. 4•28

The transverse deflection of the beam is denoted as w, and the curvature (d2w/dx2) of the beam is related to the
bending moment “M” and the flexure rigidity “EI” as

Eq. 4•29

Substituting “M” in Eq. 4•29 into Eq. 4•28 gives the fourth-order ordinary differential equation

Eq. 4•30

We consider a boundary value problem that the Eq. 4•30 is subject to the boundary conditions1

Eq. 4•31

In the previous chapter, we solved this boundary value problem using Rayleigh-Ritz method with four weak for-
mulations—(1) irreducible formulation, (2) mixed formulation, (3) Lagrange multiplier formulation, and (4)
penalty function formulation. We use finite element method in this section to implement these four weak form
lations.

1. J.N. Reddy, 1986, “Applied functional analysis and variational methods in engineering”, McGraw-Hill, Inc.

x2

2

d
d M

f=

x2

2

d
d w M

2EI
---------=

x2

2

d
d

EI
x2

2

d
d w

f 0 x L< <,=

w 0()
xd

dw
0() 0 EI

x2

2

d
d w

L(), M,
xd

d
EI

x2

2

d
d w

– L() V L() 0= = = = =
Workbook of Applications in VectorSpace C++ Library 305

Finite Element Method PrimerChapter 4

t

tegrable
tegra-
and its
tegra-
s. This

two
[w
ables,

,
Irreducible Formulation—Piecewise Cubic Hermite Shape Functions

The Lagrangian functional is obtained from integrating by parts twice on the weighted residual statemen
from Eq. 4•30

Eq. 4•32

The last two terms are natural boundary conditions generated from integration by parts. Using δw = εv, where ε
is a small real number. Taking the variation of J and setting δJ(u) = 0 gives

Dropping ε, since it is arbitrary, we have

Eq. 4•33

The integrand of Eq. 4•33 contains derivative of variables up to second order. For this equation to be in
through out Ω, we have to require that the first derivative of the variable be continuous through out the in
tion domain. If the first derivative of the variable is not continuous at any point on the integration domain
boundaries, the second derivative of the variable on that point will be infinite, therefore, Eq. 4•33 is not in
ble. In other words, the first derivative of the variable at nodal points should be required to be continuou
is to satisfy the so-called continuity requirement. For example, we consider a two nodes line element with
degrees of freedom associated with each notes. That is the nodal degrees of freedom are set to be = 0, -dw0/
dx, w1, -dw1/dx] on the two nodes. The node numbers are indicated by subscripts “0” and “1”. The vari
defined in an element domain, are defined as

Eq. 4•34

where the piecewise cubic Hermit shape functions , i = 0, 1, 2, 3 are1, 2

1. see derivation in p. 383 in J.N. Reddy, 1986, “Applied functional analysis and variational methods in engineering”
McGraw-Hill, Inc.

J w() EI
2

x2

2

d
d w

2

fw– x w– VΓh xd
dw

– MΓh
d

Ω
∫=

δJ w() EI
d2δw
dx2

x2

2

d
d w

δwf– x δ– wVΓh

dδw
dx

-----------–
 MΓh+d

Ω
∫=

ε EI
x2

2

d
d v

x2

2

d
d w

vf– x v– VΓh

dv
dx
------–

 MΓh
+d

Ω
∫

0= =

EI
x2

2

d
d v

x2

2

d
d w

vf– x vVΓh

dv
dx
------–

 MΓh
+–d

Ω
∫ 0=

ûe

ue
h φe

i ûe
i≡

φe
i

306 Workbook of Applications in VectorSpace C++ Library

One Dimensional Problems

nding
ary con-
e left-
his is the

ng
apter in
the exact

lement
Eq. 4•35

The element stiffness matrix is

Eq. 4•36

The element force vector is

Eq. 4•37

where essential boundary conditions are = [w0, , w1,], and

Eq. 4•38

where P = {V0,- M0, VL, -ML} T is the natural boundary conditions on boundary shear forces and boundary bend-
ing moments. Notice that in the previous chapter we take counter clockwise direction as positive for be
moment. The sign convention taken here for the bending moment is just the opposite. The natural bound
ditions are programmed to automatically taken care of in “Matrix_Representation::assembly()” where th
hand-side is assumed to be a positive term instead of what happened in the left-hand-side of Eq. 4•43. T
reason of take a minus sign in front of M for the definition of the vector P. The Program Listing 4•4 implemented
the irreducible formulation for the beam bending problem.

The solutions of the transverse deflection w and slope -dw/dx can be calculated from nodal values accordi
to Eq. 4•34. They are almost identical to the exact solutions in Figure 3•16 and Figure 3•17 of the last ch
page 208 and page 212, respectively. Therefore, the error instead are shown in Figure 4•15. Note that

2. or alternative form from p. 49 in T.J.R. Hughes, 1987,”The finite element method: Linear static and dynamic finite e
analysis”, Prentice-Hall, Inc.

φe
0 1 3

ξ
he

 2
– 2

ξ
he

 3
+=

φe
1 ξ– 1

ξ
he

 –
2

=

φe
2 3

ξ
he

 2
2

ξ
he

 3
–=

φe
3 ξ–

ξ
he

 2 ξ
he

 –=

ke a φe φe,() EI
x2

2

d

d φe

x2

2

d

d φe⊗

dx
Ωe

∫= =

fe
i φe

i f,() φe
i h,()Γ a φe

i φe
j,()ue

j–+=

ue xd
dw

0
–

xd
dw

1
–

φe
i f,() φe

i fdx and φe
i h,()Γ,

Ωe

∫ φe
i Pdx

Γ
∫= =
Workbook of Applications in VectorSpace C++ Library 307

Finite Element Method PrimerChapter 4
#include "include\fe.h"
static const int node_no = 5; static const int element_no = 4; static const int spatial_dim_no = 1;
static const double L_ = 1.0; static const double h_e = L_/((double)(element_no));
static const double E_ = 1.0; static const double I_ = 1.0; static const double f_0 = 1.0;
static const double M_ = -1.0;
Omega_h::Omega_h() {

for(int i = 0; i < node_no; i++) {
double v = ((double)i)*h_e;
Node* node = new Node(i, spatial_dim_no, &v); the_node_array.add(node); }

int ena[2];
for(int i = 0; i < element_no; i++) {

ena[0] = i; ena[1] = ena[0]+1;
Omega_eh* elem = new Omega_eh(i, 0, 0, 2, ena); the_omega_eh_array.add(elem); }

}
gh_on_Gamma_h::gh_on_Gamma_h(int df, Omega_h& omega_h) {

__initialization(df, omega_h);
the_gh_array[node_order(0)](0) = gh_on_Gamma_h::Dirichlet;
the_gh_array[node_order(0)](1) = gh_on_Gamma_h::Dirichlet;
the_gh_array[node_order(node_no-1)][1] = M_;

}
static const int ndf = 2; static Omega_h oh; static gh_on_Gamma_h gh(ndf, oh);
static U_h uh(ndf, oh); static Global_Discretization gd(oh, gh, uh);
class Beam_Irreducible_Formulation : public Element_Formulation {

public:
Beam_Irreducible_Formulation(Element_Type_Register a) : Element_Formulation(a) {}
Element_Formulation *make(int, Global_Discretization&);
Beam_Irreducible_Formulation(int, Global_Discretization&);

};
Element_Formulation* Beam_Irreducible_Formulation::make(int en,Global_Discretization& gd) {

return new Beam_Irreducible_Formulation(en,gd); }
Beam_Irreducible_Formulation::Beam_Irreducible_Formulation(int en, Global_Discretization&
gd) : Element_Formulation(en, gd) {

double weight[3] = {1.0/3.0, 4.0/3.0, 1.0/3.0},
h_e = fabs(((double)(xl[0] - xl[1])));
Quadrature qp(weight, 0.0, h_e, 3);
J d_l(h_e/2.0);
H2 Z((double*)0, qp), z = Z/h_e,
N = INTEGRABLE_VECTOR_OF_TANGENT_OF_TANGENT_BUNDLE(

"int, int, Quadrature", 4/*nen x ndf*/, 1/*nsd*/, qp);
N[0] = 1.0-3.0*z.pow(2)+2.0*z.pow(3); N[1] = -Z*(1.0-z).pow(2);
N[2] = 3.0*z.pow(2)-2.0*z.pow(3); N[3] = -Z*(z.pow(2)-z);
H0 Nxx = INTEGRABLE_VECTOR("int, Quadrature", 4, qp);
for(int i = 0; i < 4; i++) Nxx[i] = dd(N)(i)[0][0];
stiff &= ((E_*I_)* (Nxx*(~Nxx))) | d_l;
force &= (((H0)N) * f_0) | d_l;

}
Element_Formulation* Element_Formulation::type_list = 0;
static Element_Type_Register element_type_register_instance;
static Beam_Irreducible_Formulation beam_irreducible_instance(element_type_register_instance);
static Matrix_Representation mr(gd);
int main() {

mr.assembly(); C0 u= ((C0)(mr.rhs())) / ((C0)(mr.lhs()));
gd.u_h() = u; gd.u_h() = gd.gh_on_gamma_h(); cout << gd.u_h(); return 0;

}

Definte discretizaed global domain
define nodes

define elements

define boundary conditions
M(L) = -1 (positive clockwise)

instantiate fixed and free variables and
Global_Discretization

“Beam_Irreducible_Formulation”
Simpson’s rule
Hermit cubics

φe
0 1 3

ξ
he

 2
– 2

ξ
he

 3
+=

φe
1 ξ– 1

ξ
he

 –
2

=

φe
2 3

ξ
he

 2
2

ξ
he

 3
–=

φe
3 ξ–

ξ
he

 2 ξ
he

 –=

ke EI
x2

2

d

d φe

x2

2

d

d φe⊗

dx
Ωe

∫=

fe
i φe

i fdx
Ωe

∫=

Listing 4•4 Beam-bending problem irreducible formulation using Hermit cubics (project:
“beam_irreducible_formulation” in project workspace file “fe.dsw” under directory “vs\ex\fe”).
308 Workbook of Applications in VectorSpace C++ Library

One Dimensional Problems

). The

xure
bic

ering”,
solution of the transverse deflection w is a polynomial of x up to fourth-order (see Eq. 3•68 in page 207
cubic approximation will not give solution identical to the exact solution.

We consider two more examples for different types of boundary conditions and loads.1 The first example is to
have unit downward nodal load on a simply supported beam at location of x = 120 in. (Figure 4•16). The fle
rigidity of the beam is EI = 3.456x1010 lb in.2 The length of the beam is 360 in. We divide the beam to two cu
Hermit elements. The definitions of the problem is now

1 static const int node_no = 3; static const int element_no = 2; static const int spatial_dim_no = 1;
2 static const double L_ = 360.0; static const double E_I_ = 144.0*24.0e6;
3 Omega_h::Omega_h() { // discritized global 4domain
5 double v = 0.0; Node* node = new Node(0, spatial_dim_no, &v);
6 the_node_array.add(node);
7 v = 120.0; node = new Node(1, spatial_dim_no, &v);
8 the_node_array.add(node);
9 v = 360.0; node = new Node(2, spatial_dim_no, &v);
10 the_node_array.add(node);

1. Example problems from p. 390 in J.N. Reddy, 1986, “Applied functional analysis and variational methods in engine
McGraw-Hill, Inc.

0.2 0.4 0.6 0.8 1

-0.0001

-0.00005

0.00005

0.0001

0.2 0.4 0.6 0.8 1

 -6
2. 10

 -6
4. 10

 -6
6. 10

 -6
8. 10

0.00001

Figure 4•15 The error (= exact solution - finite element solution) of the irreducible
formulation for beam bending problem.

∆w

x

Error

x
Error

dw
dx

∆

Figure 4•16 Unit downward nodal loading on position x = 120. The flexure
rigidity of the beam is 3.456x1010. Two cubic Hermict elements are used.

120 in. 240 in.

P = -1.0 lb

flexure rigidity (EI) = 3.456x1010 lb in.2

0 1 20 1
Workbook of Applications in VectorSpace C++ Library 309

Finite Element Method PrimerChapter 4

t the
11 int ena[2];
12 for(int i = 0; i < element_no; i++) {
13 ena[0] = i; ena[1] = ena[0]+1;
14 Omega_eh* elem = new Omega_eh(i, 0, 0, 2, ena);
15 the_omega_eh_array.add(elem);
16 }
17 }
18 gh_on_Gamma_h::gh_on_Gamma_h(int df, Omega_h& omega_h) { // boundary conditions
19 __initialization(df, omega_h);
20 the_gh_array[node_order(0)](0) = gh_on_Gamma_h::Dirichlet; // w(0) = 0
21 the_gh_array[node_order(0)][0] = 0.0;
22 the_gh_array[node_order(1)](0) = gh_on_Gamma_h::Neumann; // P(120) = -1.0
23 the_gh_array[node_order(1)][0] = -1.0;
24 the_gh_array[node_order(2)](0) = gh_on_Gamma_h::Dirichlet; // w(360) = 0
25 the_gh_array[node_order(2)][0] = 0.0;
26 }

Now in the computation for element force vector, you can either set f_0 = 0.0, or use conditional compilation,
with macro definition, to leave that line out. The results of this problem is shown in Figure 4•17.

The second example have distributed load

Eq. 4•39

where L = 180 in. and set f0 = -1.0. This distributed load is a linear downward loading increases from zero a
left to unity at the right. The moment of inertia is I = 723 in.4, and Young’s modulus is E = 29x106 psi. with
boundary conditions w(0) = w(L) = dw/dx (L) = 0. We divide the beam into four equal size cubic Hermit ele-
ments. The problem definitions for nodes, elements, and boundary conditions are

1 static const int node_no = 5; static const int element_no = 4; static const int spatial_dim_no = 1;
2 static const double L_ = 180.0; static const double element_size = L_/((double)(element_no));
3 static const double E_ = 29.0e6; static const double I_ = 723.0; static const double f_0 = -1.0;
4 Omega_h::Omega_h() { // discritized global domain

50 100 150 200 250 300 350

-0.0002

-0.00015

-0.0001

-0.00005

50 100 150 200 250 300 350

 -6
-2. 10

 -6
-1. 10

 -6
1. 10

Figure 4•17 Finite element solution for the nodal load problem for irreducible
formulation of beam bending problem.

dw
dxw

x

x

f x() f0
x
L
---=
310 Workbook of Applications in VectorSpace C++ Library

One Dimensional Problems

 These
kspace
ng
5 for(int i = 0; i < node_no; i++) {
6 double v = ((double)i)*element_size;
7 Node* node = new Node(i, spatial_dim_no, &v);
8 the_node_array.add(node);
9 }
10 int ena[2]; // element node number array
11 for(int i = 0; i < element_no; i++) {
12 ena[0] = i; ena[1] = ena[0]+1;
13 Omega_eh* elem = new Omega_eh(i, 0, 0, 2, ena);
14 the_omega_eh_array.add(elem);
15 }
16 }
17 gh_on_Gamma_h::gh_on_Gamma_h(int df, Omega_h& omega_h) { // boundary conditions
18 __initialization(df, omega_h);
19 the_gh_array[node_order(0)](0) = gh_on_Gamma_h::Dirichlet; // w(0) = 0
20 the_gh_array[node_order(0)][0] = 0.0;
21 the_gh_array[node_order(node_no-1)](0) = gh_on_Gamma_h::Dirichlet; // w(L) = 0
22 the_gh_array[node_order(node_no-1)][0] = 0.0;
23 the_gh_array[node_order(node_no-1)](1) = gh_on_Gamma_h::Dirichlet; // dw/dx(L) = 0
24 the_gh_array[node_order(node_no-1)][1] = 0.0;
25 }

In the constructor of the class Beam_Irreducible_Formulation the element force vector is computed as

1 H0 X = (1-((H0)z))*xl[0]+((H0)z)*xl[1], // global coordinates; xl is the nodal coordinates
2 f = (f_0/L_)*X; // distributed load function
3 force &= (((H0)N) * f) | d_l;

The results of this distributed load problem using the irreducible formulation are shown in Figure 4•18.
two extra problems are actually coded in the same project “beam_irreducible_formulation” in project wor
file “fe.dsw” (in case of MSVC) under directory “vs\ex\fe”. They can be activated by setting correspondi
macro definitions at compile time.

25 50 75 100 125 150 175

-0.00012

-0.0001

-0.00008

-0.00006

-0.00004

-0.00002

25 50 75 100 125 150 175

 -6
-2. 10

 -6
-1. 10

 -6
1. 10

Figure 4•18 Finite element solution of the distributed load problem for the irreducible formulation of beam
bending problem. The distributed load is a linear downward loading increases from zero at the left to unit
load at the right.

w

x

xdw
dx
Workbook of Applications in VectorSpace C++ Library 311

Finite Element Method PrimerChapter 4

n, we
e first
s sec-
ducible
 develop

entice-
Mixed Formulation

In the irreducible formulation the second derivative appears in the weak formulation. We use the cubic Her-
mite functions, however, these interpolation functions are quite formidable. In the mixed formulation, we trade
somewhat more complicated variational formulations for reducing the order of derivative to satisfy the continu-
ity requirement (stated earlier in page 268). That is if “n” order derivative appears in the weak formulatio
should have Cn-1-continuity at the nodes, in order to have entire domain to be integrable. For example, th
derivative w,x is included in the nodal variables in the irreducible formulation in the last section, which ha
ond derivative in the weak formulation. In the cases of higher dimensions, e.g., plate and shell, the irre
formulations always lead to extremely complicated schemes. The current trend for these problems is to
formulations that requires only C0-continuity.1

Recall Eq. 4•28 and Eq. 4•29

Eq. 4•40

Integration by parts on both equations, we have the Lagrangian functional

Eq. 4•41

where the boundary conditions on the shear force and slope are and

The Euler-Lagrange equations are obtained by setting δJ(w, M)= 0 (where δw = εw vw and δM = εM vM)

Eq. 4•42

For the Bubnov-Galerkin method we use interpolation functions for both w and vw, and interpolation func-
tions for both M and vM. In matrix form finite element formulation from Eq. 4•42 is (dropping εw and εM)

1. p. 310 in T.J.R. Hughes, 1987, “The finite element method: Linear static and dynamic finite element analysis”, Pr
Hall, inc., Englewood cliffs, New Jersey.

x2

2

d
d w M

2EI
--------- and

x2

2

d
d M, f= =

JM w M,()
xd

dw
xd

dM M2

2EI
--------- fw+ +

 dx M
xd

dw

Γh
w

xd
dM

Γh
––

0

L

∫=

V
xd

dM
–= ψ

xd
dw

–=

δwJM εw xd

dvw

xd
dM

vw f+
 dx vw xd

dM

Γh
–

0

L

∫ 0= =

δMJM εM xd

dvM

xd
dw

vM
M
EI
------+

 dx vM xd
dw

Γh
–

0

L

∫ 0= =

φe
w

φe
M

312 Workbook of Applications in VectorSpace C++ Library

One Dimensional Problems

n
of what
oundary
n. The

hat may
 what is

, using
-arrange

ned as

of
Eq. 4•43

The natural boundary conditions specified through V is hard-wired in “fe.lib” to be automatically taken care of i
“Matrix_Representation::assembly()” where the left-hand-side is assumed to be a positive term instead
happened in the left-hand-side of Eq. 4•43. We can choose to take an opposite sign convention on the b
condition as what we have done for the bending moment boundary condition in the irreducible formulatio
disadvantage of doing that is that we have put the burden on user to specify the program correctly. T
often cause serious confusion. Therefore, we prefer to make the sign of Eq. 4•43 to be consistent with
done in the “assembly()” by changing sign as

Eq. 4•44

The Program Listing 4•5 implement the beam bending problem subject to boundary conditions in Eq. 4•31
Eq. 4•44. In finite element convention, the degree of freedoms for a node are packed together. We can re
the degree of freedom, for every node, corresponding to the essential boundary conditions as {w, M} T, and natu-
ral boundary conditions are {V, ψ} T The Eq. 4•44 becomes

Eq. 4•45

where subscripts indicate the element nodal number and each component in the matrix or vectors is defi

Eq. 4•46

The submatrix/subvector component access through either continuous block selector “operator ()(int, int)” or
regular increment selector “operator[](int)” in VectorSpace C++ library makes the coding in the formula
either Eq. 4•44 or Eq. 4•45 equally convenient.

0
dφe

w

dx

dφe
M

dx
----------⊗

 dx
Ωe

∫

dφe
M

dx

dφe
w

dx
----------⊗

 dx
Ωe

∫
φe

M φe
M⊗

EI

 dx
Ωe

∫

ŵe

M̂e

φ– e
wfdx φe

wVΓh
–

Ωe

∫

φ– e
MψΓh

=

0
dφe

w

dx

dφe
M

dx
----------⊗

 dx
Ωe

∫–

dφe
M

dx

dφe
w

dx
----------⊗

 dx
Ωe

∫–
φe

M φe
M⊗

EI

 dx
Ωe

∫–

ŵe

M̂e

φe
wfdx φe

wVΓh
+

Ωe

∫

φe
MψΓh

=

0 a00 0 a01

a00
T b00 a01

T b01

0 a10 0 a11

a10
T b10 a11

T b11

ŵ0

M̂0

ŵ1

M̂1

f0

r0

f1

r1

=

ai j

dφi
w

dx

dφj
M

dx
----------dx bi j,

Ωe

∫–
φi

Mφj
M

EI
---------------dx fi,

Ωe

∫– φi
wfdx φi

wVΓh and ri,+
Ωe

∫ φi
MψΓh

= = = =
Workbook of Applications in VectorSpace C++ Library 313

Finite Element Method PrimerChapter 4
#include "include\fe.h"
static const int node_no = 5; static const int element_no = node_no-1;
static const int spatial_dim_no = 1; static const double L_ = 1.0;
static const double h_e = L_/((double)(element_no)); static const double E_ = 1.0;
static const double I_ = 1.0; static const double f_0 = 1.0; static const double M_ = 1.0;
Omega_h::Omega_h() {

for(int i = 0; i < node_no; i++) {
double v = ((double)i)*h_e;
Node* node = new Node(i, spatial_dim_no, &v); the_node_array.add(node); }

int ena[2];
for(int i = 0; i < element_no; i++) {

ena[0] = i; ena[1] = ena[0]+1;
Omega_eh* elem = new Omega_eh(i, 0, 0, 2, ena); the_omega_eh_array.add(elem); }

}
gh_on_Gamma_h::gh_on_Gamma_h(int df, Omega_h& omega_h) {

__initialization(df, omega_h);
the_gh_array[node_order(0)](0) = gh_on_Gamma_h::Dirichlet; // w(0) = 0
the_gh_array[node_order(node_no-1)](1) = gh_on_Gamma_h::Dirichlet; // M(L) = M_
the_gh_array[node_order(node_no-1)][1] = M_;

}
class Beam_Mixed_Formulation : public Element_Formulation {

public:
Beam_Mixed_Formulation(Element_Type_Register a) : Element_Formulation(a) {}
Element_Formulation *make(int, Global_Discretization&);
Beam_Mixed_Formulation(int, Global_Discretization&);

};
Element_Formulation* Beam_Mixed_Formulation::make(int en, Global_Discretization& gd) {

return new Beam_Mixed_Formulation(en,gd); }
Beam_Mixed_Formulation::Beam_Mixed_Formulation(int en, Global_Discretization& gd)

: Element_Formulation(en, gd) {
Quadrature qp(spatial_dim_no, 2);
H1 Z(qp),

N = INTEGRABLE_VECTOR_OF_TANGENT_BUNDLE(
"int, int, Quadrature", 2/*nen*/, 1/*nsd*/, qp);

N[0] = (1-Z)/2; N[1] = (1+Z)/2;
H1 X = N*xl;
H0 Nx = d(N)(0)/d(X); J d_l(d(X));
stiff &= C0(4, 4, (double*)0); C0 stiff_sub = SUBMATRIX("int, int, C0&", 2, 2, stiff);
stiff_sub[0][1] = -(Nx * (~Nx)) | d_l; stiff_sub[1][0] = stiff_sub[0][1];
stiff_sub[1][1] = -(1.0/E_/I_)* ((((H0)N)*(~(H0)N)) | d_l);
force &= C0(4, (double*)0); C0 force_sub = SUBVECTOR("int, C0&", 2, force);
force_sub[0] = ((((H0)N)*f_0) | d_l);

}
Element_Formulation* Element_Formulation::type_list = 0;
static Element_Type_Register element_type_register_instance;
static Beam_Mixed_Formulation beam_mixed_instance(element_type_register_instance);
int main() {

const int ndf = 2;
Omega_h oh; gh_on_Gamma_h gh(ndf, oh);
U_h uh(ndf, oh); Global_Discretization gd(oh, gh, uh);
Matrix_Representation mr(gd);
mr.assembly(); C0 u = ((C0)(mr.rhs()))/((C0)(mr.lhs()));
gd.u_h() = u; gd.u_h() = gd.gh_on_gamma_h(); cout << gd.u_h();
return 0;

Definte discretizaed global domain
define nodes

define elements

define boundary conditions
M(L) = 1

instantiate fixed and free variables and
Global_Discretization

“Beam_Mixed_Formulation”

 = {(1-ξ)/2, (1+ξ)/2}T φe
w φe

M=

ke
10 ke

01
dφe

w

dx

dφe
M

dx
----------⊗

 dx
Ωe

∫–= =

ke
11

φe
M φe

M⊗
EI

 dx

Ωe

∫–=

fe
0 φe

w fdx
Ωe

∫=

Listing 4•5 Beam-bending problem mixed formulation using linear line element (project:
“beam_mixed_formulation” in project workspace file “fe.dsw” under directory “vs\ex\fe”).
314 Workbook of Applications in VectorSpace C++ Library

One Dimensional Problems

trans-

-

The results are shown in Figure 4•19. The solutions at the nodal points match the exact solutions of the
verse deflection and the bending moment. That is,

wexact(x) = ((2M+fL2)/4EI) x2 - fL/(6EI) x3 + f/(24EI) x4, and

Mexact(x) = f/2 (x-L)2 + M Eq. 4•47

Now we proceed to the same (1) nodal loading and (2) distributed loading cases solved in the irreducible for
mulation. For the nodal loading case, the code for the definition of the problem gives

1 static const int node_no = 3; static const int element_no = 2; static const int spatial_dim_no = 1;
2 static const double L_ = 360.0; static const double E_ = 24.0e6; static const double I_ = 144.0;
3 Omega_h::Omega_h() {
4 double v = 0.0; Node* node = new Node(0, spatial_dim_no, &v); the_node_array.add(node);
5 v = 120.0; node = new Node(1, spatial_dim_no, &v); the_node_array.add(node);
6 v = 360.0; node = new Node(2, spatial_dim_no, &v); the_node_array.add(node);
7 int ena[2];
8 for(int i = 0; i < element_no; i++) {
9 ena[0] = i; ena[1] = ena[0]+1;
10 Omega_eh* elem = new Omega_eh(i, 0, 0, 2, ena);
11 the_omega_eh_array.add(elem);
12 }
13 }
14 gh_on_Gamma_h::gh_on_Gamma_h(int df, Omega_h& omega_h) {
15 __initialization(df, omega_h);
16 the_gh_array[node_order(0)](0) = gh_on_Gamma_h::Dirichlet; // w(0) = 0
17 the_gh_array[node_order(0)](1) = gh_on_Gamma_h::Dirichlet; // M(0) = 0
18 the_gh_array[node_order(1)](0) = gh_on_Gamma_h::Neumann; // V(120) = -1.0; shear force
19 the_gh_array[node_order(1)][0] = -1.0;
20 the_gh_array[node_order(2)](0) = gh_on_Gamma_h::Dirichlet; // w(360) = 0
21 the_gh_array[node_order(2)](1) = gh_on_Gamma_h::Dirichlet; // M(360) = 0
22 }

0.2 0.4 0.6 0.8 1

1.1

1.2

1.3

1.4

1.5

0.2 0.4 0.6 0.8 1

0.1

0.2

0.3

0.4

0.5

0.6

Figure 4•19 Transverse deflection “w” and bending moment “M” from mixed
formulation. The dashed line segments with open squares are finite element
solutions, and the solid curves are the exact solutions.

w
M

x x
Workbook of Applications in VectorSpace C++ Library 315

Finite Element Method PrimerChapter 4

or

For the element force vector we can either set f_0 = 0 or just comment out the corresponding statement for effi-
ciency. The result of the nodal loading case is shown in Figure 4•20. The bending moment solution is exact f
this case.

The problem definition in C++ code for the distributed loading case is

1 static const int node_no = 5; static const int element_no = 4; static const int spatial_dim_no = 1;
2 static const double L_ = 180.0; static const double element_size = L_/((double)(element_no));
3 static const double E_ = 29.0e6; static const double I_ = 723.0; static const double f_0 = -1.0;
4 Omega_h::Omega_h() {
5 for(int i = 0; i < node_no; i++) {
6 double v = ((double)i)*element_size;
7 Node* node = new Node(i, spatial_dim_no, &v); the_node_array.add(node);
8 }
9 int ena[2];
10 for(int i = 0; i < element_no; i++) {
11 ena[0] = i; ena[1] = ena[0]+1;
12 Omega_eh* elem = new Omega_eh(i, 0, 0, 2, ena); the_omega_eh_array.add(elem);
13 }
14 }
15 gh_on_Gamma_h::gh_on_Gamma_h(int df, Omega_h& omega_h) {
16 __initialization(df, omega_h);
17 the_gh_array[node_order(0)](0) = gh_on_Gamma_h::Dirichlet; // w(0) = 0
18 the_gh_array[node_order(0)](1) = gh_on_Gamma_h::Dirichlet; // M(0) = 0
19 the_gh_array[node_order(node_no-1)](0) = gh_on_Gamma_h::Dirichlet; // w(L) = 0
20 the_gh_array[node_order(node_no-1)](1) = gh_on_Gamma_h::Neumann; // dw/dx(L) = 0
21 }

50 100 150 200 250 300 350

20

40

60

80
50 100 150 200 250 300 350

-0.0002

-0.00015

-0.0001

-0.00005

Figure 4•20Transverse deflection w and bending moment M for the nodal loading
problem using linear interpolation functions for both w and M.

x

x

w M
316 Workbook of Applications in VectorSpace C++ Library

One Dimensional Problems

n

 using
oth the

n be dis-
The element force vector in the constructor of class “Beam_Mixed_Formulation” is to define the loading functio

1 H0 f = (f_0/L_)*((H0)X);
2 force &= C0(4, (double*)0);
3 C0 force_sub = SUBVECTOR("int, C0&", 2, force);
4 force_sub[0] = ((((H0)N)*f) | d_l);

The results of this problem are shown in Figure 4•21.

In the irreducible formulation, we are required to include the higher-order derivatives be interpolated
the abstruse cubic Hermite functions. In the mixed formulation this requirement is relaxed. However, b
irreducible and the mixed formulation require one more variable (-dw/dx, and M, respectively) to be solved
together with w. This increases the number of degrees of freedom in the matrix solution process. This ca
advantageous for a large-size problem.

25 50 75 100 125 150 175

-2000

-1500

-1000

-500

500

1000
25 50 75 100 125 150 175

-0.00012

-0.0001

-0.00008

-0.00006

-0.00004

-0.00002

Figure 4•21Transverse deflection w and bending moment M for the distributed
loading problem using linear interpolation functions for both w and M.

w

x

xM
Workbook of Applications in VectorSpace C++ Library 317

Finite Element Method PrimerChapter 4

r nega-

h the
 as
Lagrange Multiplier Formulation

Recall Eq. 4•32 that the Lagrangian functional for the irreducible formulation is

Eq. 4•48

Now, in the context of constrained optimization discussed in Chapter 2, we define constraint equation fo
tive slope ψ that

Eq. 4•49

Substituting into Eq. 4•48, we have

Eq. 4•50

The minimization of Eq. 4•50 subject to constraint of Eq. 4•49 using Lagrange multiplier method (wit
Lagrange multiplier λ) leads to the Lagrangian functional in the form of Eq. 2•11 of Chapter 2 in page 118

Eq. 4•51

The Euler-Lagrange equations are obtained from δL = 0 as (where δψ = εψ vψ, δw = εw vw, and δλ = ελ vλ)

Eq. 4•52

Dropping the arbitrary constants of εψ, εw, and ελ and use interpolation functions for each of the variables {ψ, w,
λ} T we have, in matrix form, the finite element formulation as

J w() EI
2

x2

2

d
d w

2

fw– x w– VΓh xd
dw

– MΓh
d

Ω
∫=

C ψ w,() ψ dw
dx
-------+≡ 0=

ψ dw
dx
-------–=

J ψ w,() EI
2

xd

dψ

2

fw– x w– VΓh
ψMΓh

+d
Ω
∫=

ψ w λ, ,() J ψ w,() λ C ψ w,()+≡ EI
2

xd

dψ

2

fw– x λ ψ dw
dx
-------+

 x w–d
Ω
∫ VΓh

ψMΓh
+ +d

Ω
∫=

δψ εψ EI
dvψ

dx

xd
dψ

x vψλ xd
Ω
∫ vψMΓh+ +d

Ω
∫ 0= =

δw εw vwf x
dvw

dx
----------λ x vw–d

Ω
∫ VΓh+d

Ω
∫– 0= =

δλ ελ vλ ψ dw
dx
-------+

 xd
Ω
∫ 0= =
318 Workbook of Applications in VectorSpace C++ Library

One Dimensional Problems

egative.
tation

ion as

the regu-
the
tions

ns.

fini-
Eq. 4•53

Again, the bending moment boundary conditions appears on the right-hand-side of the first equation is n
This is in conflict with the nodal loading input is positive on the right-hand-side assumed in the implemen
of the “Matrix_Rxpresentation::assembly()”. In order to keep the convention of counter clock-wise rotat
positive, we can change sign on the first row of Eq. 4•53 as

Eq. 4•54

Again, the degree of freedoms for each node can be packed together just as in Eq. 4•45. With the aid of
lar increment selector “operator[](int), the Eq. 4•54 is sufficient clear without really needing to rewrite to
form of Eq. 4•45. The Program Listing 4•6 implemented the Eq. 4•54 with linear interpolation func
{ } T for all three variables. The essential boundary conditions are {ψ, w, λ} T, and the natural boundary
conditions are {M, V, 0}T The results are shown in Figure 4•22 which are compared to the exaction solutio

Eq. 4•55

ψ and λ is obtained by differentiating the exact solution of w(x) in the first line from the corresponding de
tions. The shear force solution, the lagrange multiplier λ per se, coincides with the exact solution..

EI
dφe

ψ

dx

dφe
ψ

dx
----------⊗ xd

Ωe

∫ 0 φe
ψ φe

λ⊗ xd
Ωe

∫

0 0
dφe

w

dx
---------- φe

λ⊗ xd
Ωe

∫

φe
λ φe

ψ⊗ xd
Ωe

∫ φe
λ

dφe
w

dx
----------⊗ xd

Ωe

∫ 0

ψ̂e

ŵe

λ̂e

φe
ψMΓh

–

φe
wf x φe

wVΓh
+d

Ωe

∫
0

=

E– I
dφe

ψ

dx

dφe
ψ

dx
----------⊗ xd

Ωe

∫ 0 φe
ψ φe

λ⊗ xd
Ωe

∫–

0 0
dφe

w

dx
---------- φe

λ⊗ xd
Ωe

∫

φe
λ φe

ψ⊗ xd
Ωe

∫ φe
λ

dφe
w

dx
----------⊗ xd

Ωe

∫ 0

ψ̂e

ŵe

λ̂e

φe
ψMΓh

φe
wf x φe

wVΓh
+d

Ωe

∫
0

=

φe
ψ φe

w φe
λ, ,

w x() 2M fL2+
4EI

 x2 fL

6EI
---------x3–

f
24EI
------------x4+=

ψ x()
2M fL2+()–

2EI
------------------------------ x

fL
2EI
--------- x2

f
6EI
--------- x3–+=

λ x() f L x–()=
Workbook of Applications in VectorSpace C++ Library 319

Finite Element Method PrimerChapter 4
#include "include\fe.h"
static const int node_no = 5; static const int element_no = 4; static const int spatial_dim_no = 1;
static const double L_ = 1.0; static const double h_e = L_/((double)(element_no));
static const double E_ = 1.0; static const double I_ = 1.0; static const double f_0 = 1.0;
static const double M_ = 1.0;
Omega_h::Omega_h() {

 for(int i = 0; i < node_no; i++) {
double v = ((double)i)*h_e;
Node* node = new Node(i, spatial_dim_no, &v); the_node_array.add(node); }

 for(int i = 0; i < element_no; i++) {
 int ena[2]; ena[0] = i; ena[1] = ena[0]+1;
Omega_eh* elem = new Omega_eh(i, 0, 0, 2, ena); the_omega_eh_array.add(elem); }

}
gh_on_Gamma_h::gh_on_Gamma_h(int df, Omega_h& omega_h) {

__initialization(df, omega_h);
the_gh_array[node_order(0)](0) = gh_on_Gamma_h::Dirichlet; // psi(0) = -dw/dx(0) = 0
the_gh_array[node_order(0)](1) = gh_on_Gamma_h::Dirichlet; // w(0) = 0
the_gh_array[node_order(node_no-1)](2) = gh_on_Gamma_h::Dirichlet; // lambda(L) = 0;
the_gh_array[node_order(node_no-1)](0) = gh_on_Gamma_h::Neumann; // M(L) = M_
the_gh_array[node_order(node_no-1)][0] = M_; // end bending moment

}
class Beam_Lagrange_Multiplier_Formulation : public Element_Formulation {

public:
Beam_Lagrange_Multiplier_Formulation(Element_Type_Register a)

: Element_Formulation(a) {}
Element_Formulation *make(int, Global_Discretization&);
Beam_Lagrange_Multiplier_Formulation(int, Global_Discretization&);

};
Element_Formulation* Beam_Lagrange_Multiplier_Formulation::make(int en,

Global_Discretization& gd) { return new Beam_Lagrange_Multiplier_Formulation(en,gd); }
Beam_Lagrange_Multiplier_Formulation::Beam_Lagrange_Multiplier_Formulation(int en,

Global_Discretization& gd) : Element_Formulation(en, gd) {
Quadrature qp(spatial_dim_no, 2);
H1 Z(qp), N = INTEGRABLE_VECTOR_OF_TANGENT_BUNDLE(

"int, int, Quadrature", 2/*nen*/, 1/*nsd*/, qp);
N[0] = (1-Z)/2; N[1] = (1+Z)/2;
H1 X = N*xl; H0 Nx = d(N)(0)/d(X); J d_l(d(X));
stiff &= C0(6, 6, (double*)0); C0 stiff_sub = SUBMATRIX("int, int, C0&", 3, 3, stiff);
stiff_sub[0][0] = -((E_*I_) * Nx * (~Nx)) | d_l; stiff_sub[0][2] = -(((H0)N) % ((H0)N)) | d_l;
stiff_sub[2][0] = -(~stiff_sub[0][2]); stiff_sub[1][2] = (Nx % ((H0)N)) | d_l;
stiff_sub[2][1] = ~stiff_sub[1][2];
force &= C0(6, (double*)0); C0 force_sub = SUBVECTOR("int, C0&", 3, force);
force_sub[1] = (((H0)N)*f_0) | d_l;

}
Element_Formulation* Element_Formulation::type_list = 0;
static Element_Type_Register element_type_register_instance;
static Beam_Lagrange_Multiplier_Formulation lagrange(element_type_register_instance);int
main() {

const int ndf = 3; Omega_h oh; gh_on_Gamma_h gh(ndf, oh);
U_h uh(ndf, oh); Global_Discretization gd(oh, gh, uh);
Matrix_Representation mr(gd);
mr.assembly(); C0 u = ((C0)(mr.rhs()))/((C0)(mr.lhs()));
gd.u_h() = u; gd.u_h() = gd.gh_on_gamma_h();cout << gd.u_h(); return 0;

}

Definte discretizaed global domain
define nodes

define elements

define boundary conditions

M(L) = 1
instantiate fixed and free variables and
Global_Discretization

“Beam_Lagrange_Multiplier_Formulati
on”

 = {(1-ξ)/2, (1+ξ)/2}T φe
ψ φe

w φe
λ= =

ke
00 EI

dφe
ψ

dx

dφe
ψ

dx
----------⊗

 dx
Ωe

∫–=

ke
02 ke

20()– T
dφe

ψ

dx

dφe
λ

dx
---------⊗

 dx
Ωe

∫–= =

ke
12 ke

21()T
dφe

w

dx
---------- φe

λ⊗ dx
Ωe

∫= =

fe
1 φe

w fdx
Ωe

∫=

Listing 4•6 Beam-bending problem Lagrange multipler formulation using linear line element (project:
“beam_lagrange_multiplier” in project workspace file “fe.dsw” under directory “vs\ex\fe”).
320 Workbook of Applications in VectorSpace C++ Library

One Dimensional Problems

ndary
 use lin-
e slope
oice of
eaning-
The problem definitions for the nodal load case can be coded as the followings

1 static const int node_no = 4; static const int element_no = node_no-1; static const int spatial_dim_no = 1;
2 static const double L_ = 360.0; static const double E_ = 24.0e6; static const double I_ = 144.0;
3 static const double P_ = 1.0;
4 Omega_h::Omega_h() {
5 double v = 0.0; Node* node = new Node(0, spatial_dim_no, &v); the_node_array.add(node);
6 v = 120.0; node = new Node(1, spatial_dim_no, &v); the_node_array.add(node);
7 v = 240.0; node = new Node(2, spatial_dim_no, &v); the_node_array.add(node);
8 v = 360.0; node = new Node(3, spatial_dim_no, &v); the_node_array.add(node);
9 for(int i = 0; i < element_no; i++) {
10 int ena[2]; ena[0] = i; ena[1] = ena[0]+1;
11 Omega_eh* elem = new Omega_eh(i, 0, 0, 2, ena); the_omega_eh_array.add(elem);
12 }
13 }
14 gh_on_Gamma_h::gh_on_Gamma_h(int df, Omega_h& omega_h) {
15 __initialization(df, omega_h);
16 the_gh_array[node_order(0)](1) = gh_on_Gamma_h::Dirichlet; // w(0) = 0
17 the_gh_array[node_order(1)](1) = gh_on_Gamma_h::Neumann; // f(120) = - P; shear force
18 the_gh_array[node_order(1)][1] = -P_;
19 the_gh_array[node_order(node_no-1)](1) = gh_on_Gamma_h::Dirichlet; // w(360) = 0
20 }

Again, we can just comment out the element force vector computation in the constructor of class
Beam_Lagrange_Multiplier for efficiency. The results are shown in Figure 4•23. The solution for this bou
condition case is not acceptable. The exact solution shear force is constant within each element, while we
ear interpolation functions for the shear force. The problem is overly constrained. On the other hand, th
and transverse deflection require higher order of interpolation functions than the linear functions. The ch
different order of interpolation functions and the number of nodes per variable/per element to obtain a m

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

0.2 0.4 0.6 0.8 1

0.1

0.2

0.3

0.4

0.5

0.60.2 0.4 0.6 0.8 1

-1

-0.8

-0.6

-0.4

-0.2

Figure 4•22 Lagrange multiplier formulation for beam bending problem using
linear interpolation function for all three variables.

ψ

x

x x

w λ
Workbook of Applications in VectorSpace C++ Library 321

Finite Element Method PrimerChapter 4
ful result depends on the so-called LBB-condition in finite element method that we will discussed in details in
Section 4.4

The distributed load case is defined as

1 static const int node_no = 5; static const int element_no = 4; static const int spatial_dim_no = 1;
2 static const double L_ = 180.0; static const double element_size = L_/((double)(element_no));
3 static const double E_ = 29.0e6; static const double I_ = 723.0; static const double f_0 = -1.0;
4 Omega_h::Omega_h() {
5 for(int i = 0; i < node_no; i++) {
6 double v = ((double)i)*element_size;
7 Node* node = new Node(i, spatial_dim_no, &v); the_node_array.add(node);
8 }
9 for(int i = 0; i < element_no; i++) {
10 int ena[2]; ena[0] = i; ena[1] = ena[0]+1;
11 Omega_eh* elem = new Omega_eh(i, 0, 0, 2, ena); the_omega_eh_array.add(elem);
12 }
13 }
14 gh_on_Gamma_h::gh_on_Gamma_h(int df, Omega_h& omega_h) {
15 __initialization(df, omega_h);
16 the_gh_array[node_order(0)](0) = gh_on_Gamma_h::Neumann; // M(0) = 0
17 the_gh_array[node_order(0)](1) = gh_on_Gamma_h::Dirichlet; // w(0) = 0
18 the_gh_array[node_order(node_no-1)](0) = gh_on_Gamma_h::Dirichlet; // psi(L) = -dw/dx(L) = 0
19 the_gh_array[node_order(node_no-1)](1) = gh_on_Gamma_h::Dirichlet; // w(L) = 0
20 }

The element force vector is implemented as

1 H0 f = (f_0/L_)*((H0)X);
2 force &= C0(6, (double*)0); C0 force_sub = SUBVECTOR("int, C0&", 3, force);
3 force_sub[1] = (((H0)N)*f) | d_l;

50 100 150 200 250 300 350

-2

-1.5

-1

-0.5

0.5
50 100 150 200 250 300 350

-0.0002

-0.00015

-0.0001

-0.00005

50 100 150 200 250 300 350

 -6
-1. 10

 -7
-5. 10

 -7
5. 10

 -6
1. 10

 -6
1.5 10

 -6
2. 10

 -6
2.5 10

Figure 4•23 The Lagrange multiplier method with all three variables interpolated
using linear element for the nodal load problem does not produce satisfactory
result.

ψ w λ

x

x

x

exact soln.
322 Workbook of Applications in VectorSpace C++ Library

One Dimensional Problems

 exact

The results of the distributed load case are un-acceptable that the solution of λ and ψ show oscillation, while

transverse deflection w is partially “locking” which systematically underestimates the magnitude of the
solution (see Figure 4•24).

0.2 0.4 0.6 0.8 1

-50

-25

25

50

75

1000.2 0.4 0.6 0.8 1

-0.0001

-0.00008

-0.00006

-0.00004

-0.00002

0.2 0.4 0.6 0.8 1

 -6
-1.5 10

 -6
-1. 10

 -7
-5. 10

 -7
5. 10

 -6
1. 10

 -6
1.5 10

Figure 4•24 The results of the distrubted loading case using Lagrange
multiplier formulation for the beam bending problem.

ψ w λ

x

x

x

Workbook of Applications in VectorSpace C++ Library 323

Finite Element Method PrimerChapter 4

tten in

ed from

t with a
 mini-
onstraint
Penalty Function Formulation

From Eq. 4•49 and Eq. 4•50, the Lagrangian functional for the penalty function formulation can be wri
the form of Eq. 2•61 of Chapter 2 in page 153

Eq. 4•56

where the popular quadratic form of the penalty function is taken. The Euler-Lagrange equations obtain
setting δ = 0 are (where δψ = εψ vψ, δw = εw vw)

Eq. 4•57

Dropping the arbitrary constants εψ and εw and substituting interpolation functions for {ψ, w}, and {vψ, vw}, the
Euler-Lagrange equations, Eq. 4•57, are re-written for the element formulation in matrix form as

Eq. 4•58

Changing the sign of the first equation to keep the right-hand-side positive, we have

Eq. 4•59

As discussed in a sub-section “Penalty Methods” on page 153 in Chapter 2, the penalty parameter ρ should be
initially set to a small number, then gradually increase its values in subsequent iterations. Starting ou
small ρ means we are to weight more on the minimization of the objective functional (for this problem the
mum energy principle in mechanics). Subsequently increasing the penalty parameter enforces the c

p ψ w ρ;,() J ψ w,() ρ
2
---C2 ψ w,()+≡ EI

2

xd
dψ

2

fw– x
ρ
2
--- ψ dw

dx
-------+

 2
x w–d

Ω
∫ VΓh

ψMΓh
+ +d

Ω
∫=

p

δψ p εψ EI
dvψ

dx

xd
dψ

x ρ vψ ψ dw
dx
-------+

 xd
Ω
∫ vψMΓh+ +d

Ω
∫ 0= =

δw p εw vwf x ρ dvw

dx
---------- ψ dw

dx
-------+

 xd
Ω
∫ vw– VΓh+d

Ω
∫– 0= =

EI
dφe

ψ

dx

dφe
ψ

dx
----------⊗ x ρ φe

ψ φe
ψ⊗ xd

Ω
∫+d

Ωe

∫

ρ φe
ψ

dφe
w

dx
----------⊗ xd

Ω
∫

ρ
dφe

w

dx
---------- φe

ψ⊗ xd
Ω
∫ ρ

dφe
w

dx

dφe
w

dx
----------⊗ xd

Ω
∫

ψ̂e

ŵe

φe
ψMΓh–

φe
wf x φe

wVΓh
+d

Ωe

∫
=

EI
dφe

ψ

dx

dφe
ψ

dx
----------⊗ x ρ φe

ψ φe
ψ⊗ xd

Ω
∫+d

Ωe

∫

– ρ– φe
ψ

dφe
w

dx
----------⊗ xd

Ω
∫

ρ
dφe

w

dx
---------- φe

ψ⊗ xd
Ω
∫ ρ

dφe
w

dx

dφe
w

dx
----------⊗ xd

Ω
∫

ψ̂e

ŵe

φe
ψMΓh

φe
wf x φe

wVΓh
+d

Ωe

∫
=

324 Workbook of Applications in VectorSpace C++ Library

One Dimensional Problems

l

alue of
ns are

us. The
t in the
l formu-
gradually. In principle the, exact solution is obtained at . However, when ρ is too large the left-hand-side
matrix in Eq. 4•59 becomes ill-conditioned. The solution will be corrupted.

The Program Listing 4•7 implements Eq. 4•59 with an ad hoc penalty iterative procedure which find a loca
minimum solution with respect to “w” by monitoring the convergence of “∆w”. When the divergence of ∆w first
occurs we terminate the penalty loop The choice of this termination criterion is that we do not have the v
the original objective functional available for determining the convergence of this problem. The solutio
shown in Figure 4•25.

In general, the two constrained cases using lagrange multiplier formulation and penalty function formulation
do not work well. The penalty method is also not very efficient. Sometimes, the results are even disastro
conditions to obtain an accurate formulation in constrained formulations were area of intensive interes
development of the finite element method. We devote entire Section 5.1 to this issue with some canonica
lations in two-dimension are discussed in details.

ρ ∞→

0.2 0.4 0.6 0.8 1

0.1

0.2

0.3

0.4

0.5

0.60.2 0.4 0.6 0.8 1

-1

-0.8

-0.6

-0.4

-0.2

Figure 4•25 The solutions of end-bending moment case with penalty formulation.

ψ

x

w

x

Workbook of Applications in VectorSpace C++ Library 325

Finite Element Method PrimerChapter 4
Definte discretizaed global domain
define nodes
define elements

define boundary conditions
M(L) = 1
instantiate fixed and free variables and
Global_Discretization

 = {(1-ξ)/2, (1+ξ)/2}T

monitor convergence with norm(∆w)

φe
ψ φe

w=

ke
00 EI

dφe
ψ

dx

dφe
ψ

dx
----------⊗

 dx –
Ωe

∫–=

ρ φe
ψ φe

ψ⊗ xd
Ω
∫

ke
01 ke

10()– T ρ
dφe

ψ

dx

dφe
λ

dx
---------⊗

 dx
Ωe

∫–= =

ke
11 ρ

dφe
w

dx

dφe
w

dx
----------⊗ xd

Ω
∫=

fe
1 φe

w fdx
Ωe

∫=

Listing 4•7 Beam-bending problem with penalty function formulation using linear line element (project:
“beam_penalty_function_formulation” in project workspace file “fe.dsw” under directory “vs\ex\fe”).

#include "include\fe.h"
static const int node_no = 5; static const int element_no = 4; static const int spatial_dim_no = 1;
static const double L_ = 1.0; static const double h_e = L_/((double)(element_no));
static const double E_ = 1.0; static const double I_ = 1.0; static const double f_0 = 1.0;
static const double M_ = 1.0; static double k_ = 1.0;
Omega_h::Omega_h() { for(int i = 0; i < node_no; i++) { double v = ((double)i)*h_e;

Node* node = new Node(i, spatial_dim_no, &v); the_node_array.add(node); }
for(int i = 0; i < element_no; i++) { int ena[2]; ena[0] = i; ena[1] = ena[0]+1;

Omega_eh* elem = new Omega_eh(i, 0, 0, 2, ena); the_omega_eh_array.add(elem); } }
gh_on_Gamma_h::gh_on_Gamma_h(int df, Omega_h& omega_h) {__initialization(df, omega_h);
the_gh_array[node_order(0)](0)=the_gh_array[node_order(0)](1)=gh_on_Gamma_h::Dirichlet;

the_gh_array[node_order(node_no-1)][0] = M_; }class Beam_Penalty_Function_Formulation :
public Element_Formulation { public:

Beam_Penalty_Function_Formulation(Element_Type_Register a) : Element_Formulation(a) {}
Element_Formulation *make(int, Global_Discretization&);
Beam_Penalty_Function_Formulation(int, Global_Discretization&); };

Element_Formulation* Beam_Penalty_Function_Formulation::make(int en,
Global_Discretization& gd) { return new Beam_Penalty_Function_Formulation(en,gd); }

Beam_Penalty_Function_Formulation::Beam_Penalty_Function_Formulation(int en,
Global_Discretization& gd) : Element_Formulation(en, gd) {
Quadrature qp(spatial_dim_no, 2);
H1 Z(qp), N = INTEGRABLE_VECTOR_OF_TANGENT_BUNDLE(

"int, int, Quadrature", 2/*nen*/, 1/*nsd*/, qp);
N[0] = (1-Z)/2; N[1] = (1+Z)/2; H1 X = N*xl; H0 Nx = d(N)(0)/d(X); J d_l(d(X));
stiff &= C0(4, 4, (double*)0); C0 stiff_sub = SUBMATRIX("int, int, C0&", 2, 2, stiff);
stiff_sub[0][0] = -((E_*I_) * Nx * (~Nx) + k_ * (((H0)N)*(~(H0)N))) | d_l;
stiff_sub[0][1] = -k_* ((((H0)N) * (~Nx)) | d_l); stiff_sub[1][0] = -(~stiff_sub[0][1]);
stiff_sub[1][1] = k_* ((Nx * (~Nx)) | d_l);
force &= C0(4, (double*)0); C0 force_sub = SUBVECTOR("int, C0&", 2, force);
force_sub[1] = (((H0)N)*f_0) | d_l;

}
Element_Formulation* Element_Formulation::type_list = 0;
static Element_Type_Register element_type_register_instance;
static Beam_Penalty_Function_Formulation beam_penalty_function_formulation_instance(

element_type_register_instance);
int main() {

const int ndf = 2; Omega_h oh; gh_on_Gamma_h gh(ndf, oh);
U_h uh(ndf, oh); Global_Discretization gd(oh, gh, uh);
Matrix_Representation mr(gd);
C0 w(node_no, (double*)0), w_old(node_no, (double*)0),

delta_w(node_no, (double*)0), u_optimal;
double min_energy_norm = 1.e20, k_optimal;
for(int i = 0; i < 10; i++) {

mr.assembly(); C0 u = ((C0)(mr.rhs()))/((C0)(mr.lhs()));
gd.u_h() = u; gd.u_h() = gd.gh_on_gamma_h();
for(int j = 0; j < node_no; j++) w[j] = gd.u_h()[j][1];
delta_w = ((i) ? w-w_old : w); w_old = w;
if((double)norm(delta_w) < min_energy_norm) {

min_energy_norm = norm(delta_w); u_optimal = u; k_optimal = k_; }
cout << "penalty parameter: " << k_ << " energy norm: " << norm(delta_w) << endl

<< gd.u_h() << endl; k_ *= 2.0; }
gd.u_h() = u_optimal; gd.u_h() = gd.gh_on_gamma_h();
cout << "penalty parameter: " << k_optimal << endl << gd.u_h() << endl; return 0;

}

326 Workbook of Applications in VectorSpace C++ Library

One Dimensional Problems

s

4.2.3 Nonlinear ODE

Consider the nonlinear problem in Chapter 3 (page 236)

Eq. 4•60

with exact solution

Eq. 4•61

Eq. 4•60 can be rewritten as,

Eq. 4•62

Parallel to the development in Chapter 3, we solve this problem in finite element with (1) Galerkin formulation,
and (2) least squares formulation.

Galerkin Formulation

Define the residuals of the problem as

Eq. 4•63

With Galerkin weightings vh , which is homogeneous at the boundaries, and uh = vh + uΓg
, where uΓg

 is the essen-
tial boundary conditions, the weighted residuals statement gives

Eq. 4•64

Integrating by parts on the first term gives the weak formulation

Eq. 4•65

An iterative algorithm is employed for this non-linear problem with uh interpolated at the element level a
, where “hat” denotes the nodal values.

u
x2

2

d
d u

xd
du

2

+ 1 0 x 1 with u’ 0(),< <, 0 and u 1(), 2= = =

uexact x() 1 x2+=

xd
d u

xd
du

1 0 x 1 with u’ 0(),< <, 0 u 1(), 2= = =

R uh()
xd

d uhduh

dx
-------- 1–≡

I uh() vh R uh() xd

0

1

∫≡ vh
xd

d uhduh

dx

 1– xd

0

1

∫ 0= =

I uh() u– hdvh

dx
--------duh

dx
-------- vh– xd

0

1

∫ 0= =

ue
h φe

i ûe
i≡
Workbook of Applications in VectorSpace C++ Library 327

Finite Element Method PrimerChapter 4

tives.

r of Eq.

 solve

values to
Eq. 4•66

where . The approximation in this equation is the Taylor expansion to the first-order deriva
That is the increment of the solution can be solved by

Eq. 4•67

where the tangent stiffness matrix, IT, can be defined as

Eq. 4•68

and,

Eq. 4•69

 is an arbitrary constant of global nodal vector and appears on both the nominator and denominato
4•67. Therefore, it can be dropped. We define the element tangent stiffness matrix and element residual vector as

, and Eq. 4•70

The Program Listing 4•8 implements element formulation in Eq. 4•70, then, uses an iterative algorithmic
for the increment of the solution with Eq. 4•67. An initial values of zero, u0 = 0, will lead to singular left-
hand-side matrix, therefore, the initial values are set to unity, u0 = 1.0. In the element level the nodal value of ue
is supplied by a private member function __initialization(int) of class Non_Linear_ODE_Quadratic as “ul”

1 static int initial_newton_flag;
2 void Non_Linear_ODE_Quadratic::__initialization(int en) {
3 ul &= gd.element_free_variable(en) + gd.element_fixed_variable(en);
4 if(!initial_newton_flag) gl = 0.0;
5 }

The line 3 in the above assigns nodal free degree of freedom values plus nodal fixed degree of freedom
“ul”. The values of ue itself can be computed at the element level as

I ûk 1+() I ûk δûk+() I ûk()
û∂

∂I

ûk

δûk+≅ 0= =

ûk 1+ ûk δûk+≡
δûk

δûk

û∂
∂I

ûk

1–

I ûk() I– ûk()
IT

----------------= =

IT û∂
∂I

ûk

≡ A
e∀

d v̂iφe
i()

dx
------------------ φe

j
due

k

dx
--------- ue

k
dφe

j

dx
---------+

 xd
Ωe

∫–

v̂A
e∀

dφe

dx
-------- φe

due
k

dx
--------- ue

k
dφe

dx
--------+

 ⊗ xd
Ωe

∫–

= =

I ûk() v̂A
e∀

u– e
k
dφe

dx

due
k

dx
--------- φe– xd

Ωe

∫=

v̂

keT

dφe

dx
-------- φe

due
k

dx

dφe

dx
--------ue

k+
 ⊗– xd

Ωe

∫≡ re ue
k
dφe

dx

due
k

dx
--------- φe+ xd

Ωe

∫≡

δuh()k
328 Workbook of Applications in VectorSpace C++ Library

One Dimensional Problems
#include "include\fe.h"
static const int node_no = 5; static const int element_no = 2; static const int spatial_dim_no = 1;
Omega_h::Omega_h() {

for(int i = 0; i < node_no; i++) {
double v; v = ((double)i)/((double)(node_no-1));
Node* node = new Node(i, spatial_dim_no, &v); the_node_array.add(node); }

for(int i = 0; i < element_no; i++) {
int ena[3]; ena[0] = i*2; ena[1] = ena[0]+1; ena[2] = ena[0]+2;
Omega_eh* elem = new Omega_eh(i, 0, 0, 3, ena); the_omega_eh_array.add(elem); }

}
gh_on_Gamma_h::gh_on_Gamma_h(int df, Omega_h& omega_h) {

__initialization(df, omega_h);
the_gh_array[node_order(node_no-1)](0) = gh_on_Gamma_h::Dirichlet;
the_gh_array[node_order(node_no-1)][0] = sqrt(2.0); }

static const int ndf = 1; static Omega_h oh; static gh_on_Gamma_h gh(ndf, oh);
static U_h uh(ndf, oh); static Global_Discretization gd(oh, gh, uh);
class Non_Linear_ODE_Quadratic : public Element_Formulation {

C0 ul; void __initialization(int);
public:

Non_Linear_ODE_Quadratic(Element_Type_Register a) : Element_Formulation(a) {}
Element_Formulation *make(int, Global_Discretization&);
Non_Linear_ODE_Quadratic(int, Global_Discretization&); };

static int initial_newton_flag;
void Non_Linear_ODE_Quadratic::__initialization(int en) {

ul &= gd.element_free_variable(en) + gd.element_fixed_variable(en);
if(!initial_newton_flag) gl = 0.0; }

Element_Formulation* Non_Linear_ODE_Quadratic::make(int en, Global_Discretization& gd) {
return new Non_Linear_ODE_Quadratic(en,gd); }

Non_Linear_ODE_Quadratic::Non_Linear_ODE_Quadratic(int en, Global_Discretization& gd)
: Element_Formulation(en, gd) {
__initialization(en); Quadrature qp(spatial_dim_no, 3);
H1 Z(qp), N = INTEGRABLE_VECTOR_OF_TANGENT_BUNDLE(

"int, int, Quadrature", 3/*nen*/, 1/*nsd*/, qp);
N[0] = -Z*(1-Z)/2; N[1] = (1-Z)*(1+Z); N[2] = Z*(1+Z)/2;
H1 X = N*xl; J d_l(d(X)); H0 Nx = d(N)(0)/d(X); H1 U = N*ul; H0 Ux = d(U)/d(X);
stiff &= -(Nx * ~(((H0)N)*Ux + Nx * ((H0)U))) | d_l;
force &= (((H0)U) * Nx * Ux + ((H0)N)) | d_l; }

Element_Formulation* Element_Formulation::type_list = 0;
static Element_Type_Register element_type_register_instance;
static Non_Linear_ODE_Quadratic non_linear_ode_quadratic_instance
(element_type_register_instance);
static Matrix_Representation mr(gd); static const double EPSILON = 1.e-12;
int main() {

C0 u, du, unit(gd.u_h().total_node_no(), (double*)0); unit = 1.0; gd.u_h() = unit;
gd.u_h() = gd.gh_on_gamma_h(); initial_newton_flag = TRUE;
do {

mr.assembly(); initial_newton_flag = FALSE; du = ((C0)(mr.rhs())) / ((C0)(mr.lhs()));
if(!(u.rep_ptr())) { u = du; u = 1.0; }
u += du; gd.u_h() = u;
cout << norm((C0)(mr.rhs())) << " , " << norm(du) << endl << gd.u_h();
(C0)(mr.lhs()) = 0.0; (C0)(mr.rhs()) = 0.0;

} while((double)norm(du) > EPSILON);
cout << gd.u_h();
return 0; }

Definte discretizaed global domain
define nodes

define elements

define boundary conditions

instantiate fixed and free variables and
Global_Discretization

reset left-hand-side and right-hand-side

xd
du

0() 0 u 1(), 2= =

keT

dφe

dx
-------- φe

due
k

dx

dφe

dx
--------ue

k+
 ⊗– xd

Ωe

∫≡

re ue
k
dφe

dx

due
k

dx
--------- φe+ xd

Ωe

∫≡

δûk

û∂
∂I

ûk

1–

I– ûk()[] IT
1–

I– ûk()[]= =

ûk 1+ ûk δûk+≡

Listing 4•8 Solution of nonlinear ordinary differential equation using Galerkin formulation for finite ele-
ment (project: “nonlinear_ode” in project workspace file “fe.dsw” under directory “vs\ex\fe”).
Workbook of Applications in VectorSpace C++ Library 329

Finite Element Method PrimerChapter 4

be
de
 = 0)
 0, “gl”

een
ement
utation,
 Fig-
H1 U = N*ul; //
H0 Ux = d(U)/d(X); // due/dx

The default behavior of the class Element_Formulation is that essential boundary conditions “gl” will
included in the computation of reaction, which is “stiff * gl”, and to be subtracted out from the right-hand-si
vector. For the iterative algorithm which solves the increment of solution, , only at the initial loop (k
when we compute , the reaction need to be subtracted out of the right-hand-side once for all. For k >
is set to zero, as in line 4, to prevent the reaction to be subtracted out of the right-hand-side at every iteration.
This ad hoc mechanism is incorporated by a “initial_newton_flag” in the main() function as

1 int main() {
...

2 initial_newton_flag = TRUE;
3 do { // Newton iteration loop
4 mr.assembly();
5 intial_newton_flag = FALSE;

...
6 } while (...);

...
7 }

The “initial_newton_flag” is set to TRUE initially (line 2). After the global matrix and global vector have b
assembled for the first time (line 4), the initial_newton_flag is set to FALSE (line 5). Therefore, at the el
level the reaction can be prevent from subtracting out of the right-hand-side again. The error of this comp
defined as the difference of the exact solution () and finite element solution, is shown in
ure 4•26.The nodal solutions are almost identical to the exact solution.

ue
h φe

i ûe
i≡

δûk

δû0

uex x() 1 x2+=

0.2 0.4 0.6 0.8 1

-0.0008

-0.0006

-0.0004

-0.0002

0.0002

0.0004

0.0006

Figure 4•26 Nonlinear finite element method using Galerkin formulation.

Error =
exact - f.e. solution x
330 Workbook of Applications in VectorSpace C++ Library

One Dimensional Problems

-order
Least Squares Formulation

The basic idea of the least squares method is introduced in Eq. 1•26 of Chapter 1 in page 35. The first
condition for the minimization of the squares of the residual (Euclidean-) norm is

Eq. 4•71

Comparing to the weighted-residual statement , the weighting function w is

 Eq. 4•72

For a non-linear problem, we define

Eq. 4•73

For the non-linear problem in the previous section, the residual, at the element level, is

Eq. 4•74

and the first derivative of the residual, with respect to the nodal variables (), is

Eq. 4•75

The second derivatives is

Eq. 4•76

From Eq. 4•73, the element tangent stiffness matrix and the element residual vector are

R uh() 2
2∂

uh∂
------------------------- 2

R uh()∂
uh∂

------------------ R uh(),
 0= =

w R uh(),() 0=

w
R uh()∂

uh∂
------------------=

I uh() R uh()∂
uh∂

------------------ R uh(),
 and IT uh∂

∂I

uh

≡,≡ ∂2R uh()
uh∂ 2

--------------------- R uh(),
 R uh()∂

uh∂
------------------ R uh()∂

uh∂
------------------,

 +=

R ue() ue

d2ue

dx2

due

dx

2

1–+≡

ue φe
i ûe

i≡

R ûe
i()∂

ûe
i∂

------------------ φe
i
d2ue

dx2
----------- ue

d2φe
i

dx2
----------- 2

dφe
i

dx

due

dx
--------+ +=

∂2R ûe
i()

ûe
i∂ 2

--------------------- φe

d2φe

dx2
-----------⊗

d2φe

dx2
----------- φe⊗ 2

dφe

dx

dφe

dx
--------⊗+ +=
Workbook of Applications in VectorSpace C++ Library 331

Finite Element Method PrimerChapter 4

formu-
r beam

gra-
e, and

ending
e

 signs for
metry
, and

Eq. 4•77

The Program Listing 4•9 implements Eq. 4•77. An immediate difficulty associates with the least squares
lation is the presence of the second derivatives. As we have discussed in the irreducible formulation fo
bending problem in page 306, the C1-continuity on node is required for the entire problem domain to be inte
ble. Otherwise, if first derivative is not continuous on node, the second derivative on node will be infinit
the entire problem domain is not integrable. This means that we need to have du/dx in the set of nodal variables
to ensure the first derivative is continuous on the nodes. As in the irreducible formulation for beam b
problem, a 2-node element can be used with the Hermite cubics discussed previously. At the element level, w
have

1 double weight[3] = {1.0/3.0, 4.0/3.0, 1.0/3.0},
2 h_e = fabs(((double)(xl[0] - xl[1])));
3 Quadrature qp(weight, 0.0, h_e, 3);
4 J d_l(h_e/2.0);
5 H2 Z((double*)0, qp),
6 z = Z/h_e,
7 N = INTEGRABLE_VECTOR_OF_TANGENT_OF_TANGENT_BUNDLE(
8 "int, int, Quadrature", 4/*nen x ndf*/, 1/*nsd*/, qp); // Hermite cubics
9 N[0] = 1.0-3.0*z.pow(2)+2.0*z.pow(3); // u0
10 N[1] = Z*(1.0-z).pow(2); // du0/dx
11 N[2] = 3.0*z.pow(2)-2.0*z.pow(3); // u1
12 N[3] = Z*(z.pow(2)-z); // du1/dx
13 H0 Nx = INTEGRABLE_VECTOR("int, Quadrature", 4, qp),
14 Nxx = INTEGRABLE_VECTOR("int, Quadrature", 4, qp);
15 Nx = d(N)(0);
16 for(int i = 0; i < 4; i++) { Nxx[i] = dd(N)(i)[0][0]; }
17 H2 U = N*ul;
18 H0 Ux, Uxx; // due/dx, d2ue/dx2

19 Ux = d(U)(0);
20 Uxx = dd(U)[0][0];
21 H0 uR = ((H0)U)*Uxx + Ux.pow(2) - 1.0, // R(u)
22 Ru = ((H0)N)*Uxx + ((H0)U)*Nxx + 2.0*Nx*Ux, // dR/du
23 Ruu = (((H0)N)%Nxx) + (Nxx%((H0)N)) + 2.0*(Nx%Nx); // d2R/du2

24 stiff &= ((Ru%Ru + Ruu*uR)) | d_l; // tangent stiffness
25 force &= -(Ru*uR) | d_l ; // residual

The Hermite cubics (lines 9-12) are the same as those in the irreducible formulation except that we have positive
both du0/dx and du1/dx variables (which is taken as negative in bending problem conventionally to improve the sym
of the formulation).

keT

R ûe()∂
ûe∂

R ûe()∂

ûe∂

∂2R ûe()
ûe∂ 2

--------------------R ue()+⊗ dx
Ωe

∫≡

re

R ûe()∂
ûe∂

-----------------R ue() xd
Ωe

∫–≡
332 Workbook of Applications in VectorSpace C++ Library

One Dimensional Problems
#include "include\fe.h"
static const int node_no = 5;
static const int element_no = 4;
static const int spatial_dim_no = 1;
Omega_h::Omega_h() {

for(int i = 0; i < node_no; i++) {
double v; v = ((double)i)/((double)(node_no-1));
Node* node = new Node(i, spatial_dim_no, &v); the_node_array.add(node);

}
for(int i = 0; i < element_no; i++) {

 int ena[2]; ena[0] = i; ena[1] = ena[0]+1;
Omega_eh* elem = new Omega_eh(i, 0, 0, 2, ena); the_omega_eh_array.add(elem);

}
}
gh_on_Gamma_h::gh_on_Gamma_h(int df, Omega_h& omega_h) {

__initialization(df, omega_h);
the_gh_array[node_order(0)](1) = gh_on_Gamma_h::Dirichlet;
the_gh_array[node_order(node_no-1)](0) = gh_on_Gamma_h::Dirichlet;
the_gh_array[node_order(node_no-1)][0] = sqrt(2.0);

}
static const int ndf = 2; static Omega_h oh;
static gh_on_Gamma_h gh(ndf, oh);
static U_h uh(ndf, oh);
static Global_Discretization gd(oh, gh, uh);
class Non_Linear_Least_Squares : public Element_Formulation {

C0 ul; void __initialization(int);
public:

Non_Linear_Least_Squares(Element_Type_Register a) : Element_Formulation(a) {}
Element_Formulation *make(int, Global_Discretization&);
Non_Linear_Least_Squares(int, Global_Discretization&);

};
static int initial_newton_flag;
void Non_Linear_Least_Squares::__initialization(int en) {

ul &= gd.element_free_variable(en) + gd.element_fixed_variable(en);
if(!initial_newton_flag) gl = 0.0;

}
Element_Formulation* Non_Linear_Least_Squares::make(int en,

Global_Discretization& gd) { return new Non_Linear_Least_Squares(en,gd); }
Non_Linear_Least_Squares::Non_Linear_Least_Squares(int en,

Global_Discretization& gd) : Element_Formulation(en, gd) {
__initialization(en);
double weight[3] = {1.0/3.0, 4.0/3.0, 1.0/3.0},

h_e = fabs(((double)(xl[0] - xl[1])));
Quadrature qp(weight, 0.0, h_e, 3);
J d_l(h_e/2.0);
H2 Z((double*)0, qp),

z = Z/h_e,
N = INTEGRABLE_VECTOR_OF_TANGENT_OF_TANGENT_BUNDLE(

 "int, int, Quadrature", 4/*nen x ndf*/, 1/*nsd*/, qp);
N[0] = 1.0-3.0*z.pow(2)+2.0*z.pow(3);
N[1] = Z*(1.0-z).pow(2);
N[2] = 3.0*z.pow(2)-2.0*z.pow(3);
N[3] = Z*(z.pow(2)-z);
H0 Nx = INTEGRABLE_VECTOR("int, Quadrature", 4, qp),

Nxx = INTEGRABLE_VECTOR("int, Quadrature", 4, qp);
Nx = d(N)(0);
for(int i = 0; i < 4; i++) { Nxx[i] = dd(N)(i)[0][0]; }

Definte discretizaed global domain
define nodes

define elements

define boundary conditions

instantiate fixed and free variables and
Global_Discretization

Hermite cubics

xd
du

0() 0 u 1(), 2= =
Workbook of Applications in VectorSpace C++ Library 333

Finite Element Method PrimerChapter 4
H2 U = N*ul;
H0 Ux, Uxx;
Ux = d(U)(0);
Uxx = dd(U)[0][0];
H0 uR = ((H0)U)*Uxx + Ux.pow(2) - 1.0,
Ru = ((H0)N)*Uxx + ((H0)U)*Nxx + 2.0*Nx*Ux,
Ruu = (((H0)N)%Nxx) + (Nxx%((H0)N)) + 2.0*(Nx%Nx);
stiff &= ((Ru%Ru + Ruu*uR)) | d_l;
force &= -(Ru*uR) | d_l ;

}
Element_Formulation* Element_Formulation::type_list = 0;
static Element_Type_Register element_type_register_instance;
static Non_Linear_Least_Squares

non_linear_least_squares_instance(element_type_register_instance);
static Matrix_Representation mr(gd);
static const double EPSILON = 1.e-12;
int main() {

C0 p, u, du;
gd.u_h() = gd.gh_on_gamma_h();
C0 unit(gd.u_h().total_node_no()*ndf, (double*)0);
unit = 1.0;
gd.u_h() = unit;
do {

mr.assembly();
p = ((C0)(mr.rhs())) / ((C0)(mr.lhs()));
if(!(u.rep_ptr())) { u = p; u = 1.0; }
double left = 0.0, right = 1.0, length = right-left;
do {

Matrix_Representation::Assembly_Switch = Matrix_Representation::RHS;
du = (left + 0.618 * length) * p;
gd.u_h() = u + du;
(C0)(mr.rhs()) = 0.0;
mr.assembly();
double residual_golden_right = norm((C0)(mr.rhs()));
du = (left + 0.382 * length)* p;
gd.u_h() = u + du;
(C0)(mr.rhs())=0.0;
mr.assembly();
double residual_golden_left = norm((C0)(mr.rhs()));
if(residual_golden_right < residual_golden_left) left = left + 0.382 * length;
else right = left+0.618*length;
length = right - left;

} while(length > 1.e-2);
cout << "bracket: (" << left << ", " << right << ")" << endl;
u += du;
cout << "residual norm: " << norm((C0)(mr.rhs())) <<
" search direction norm: " << norm(p) << endl << “solution: “ << gd.u_h() << endl;
Matrix_Representation::Assembly_Switch = Matrix_Representation::ALL;
(C0)(mr.lhs()) = 0.0;
(C0)(mr.rhs()) = 0.0;

} while((double)norm(p) > EPSILON);
cout << gd.u_h();
return 0;

}

line search
golden section

R ue() ue

d2ue

dx2

due

dx

2

1–+≡

R ûe
i()∂

ûe
i∂

------------------ φe
i
d2ue

dx2
----------- ue

d2φe
i

dx2
----------- 2

dφe
i

dx

due

dx
--------+ +=

∂2R ûe()
ûe∂ 2

-------------------- φe

d2φe

dx2
-----------⊗

d2φe

dx2
----------- φe +⊗+=

2
dφe

dx

dφe

dx
--------⊗

keT

R ûe()∂
ûe∂

R ûe()∂

ûe∂
----------------- +⊗

Ωe

∫≡

∂2R ûe()
ûe∂ 2

--------------------R ue() dx

re

R ûe()∂
ûe∂

-----------------R ue() xd
Ωe

∫–≡

ûk 1+ ûk δûk+≡

Listing 4•9 Solution of nonlinear ordinary differential equation using least squares formulation for finite
element (project: “nonlinear_least_squares_ode” in project workspace file “fe.dsw” under directory
334 Workbook of Applications in VectorSpace C++ Library

One Dimensional Problems

ce. A
h
r 2 (see

ed the
ssemble
he line

ine 19).
The nonlinear iterative algorithm with classical Newton’s method shows difficulty in getting convergen
quick fixed is to add line search algorithm, with golden section, on top of the classical Newton’s method, whic
is implemented to tame the wild search path of the classical Newton’ method as introduced in Chapte
page 125).

1 double left = 0.0, right = 1.0, length = right-left;
2 do {
3 Matrix_Representation::Assembly_Switch = Matrix_Representation::RHS;
4 du = (left + 0.618 * length) * p;
5 gd.u_h() = u + du;
6 (C0)(mr.rhs()) = 0.0;
7 mr.assembly();
8 double residual_golden_right = norm((C0)(mr.rhs()));
9 du = (left + 0.382 * length)* p;
10 gd.u_h() = u + du;
11 (C0)(mr.rhs())=0.0;
12 mr.assembly();
13 double residual_golden_left = norm((C0)(mr.rhs()));
14 if(residual_golden_right < residual_golden_left) left = left + 0.382 * length;
15 else right = left+0.618*length;
16 length = right - left;
17 } while(length > 1.e-2);
18 ...
19 Matrix_Representation::Assembly_Switch = Matrix_Representation::ALL;

In place of evaluating the objective functional value in Chapter 2, the finite element method is to minimiz
residuals of the problem. In the loop for the golden section line search, the assembly flag is set to only a
the right-hand-side vector (line 3). The norm of the right-hand-side vector is used as the criterion for t
search minimization. At outer loop where Newton’s formula is used to compute the next search directionp, the
assembly flag is reset back to assembly both the left-hand-side matrix and the right-hand-side vector (l
The results are shown in Figure 4•27.

0.2 0.4 0.6 0.8 1

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.2 0.4 0.6 0.8 1

1.1

1.2

1.3

1.4

Figure 4•27 Nodal solutions (open squares) comparing to the exact solutions (solid
curves) for the nonlinear least squares formulation.

u

x x

du/dx
Workbook of Applications in VectorSpace C++ Library 335

Finite Element Method PrimerChapter 4

-

 Eq.

and
4.2.4 Transient Problems

The transient problem is introduced in Section 3.3.4. We consider the parabolic equation for heat conduction

Eq. 4•78

where C is the heat capacity matrix, K is the conductivity matrix, and f is heat source vector. The variable u is
the temperature and is the time derivative of temperature. And, the hyperbolic equation for structural dynam
ics

Eq. 4•79

where M is the consistent mass matrix, K the stiffness matrix and f the force vector. The variable u is the dis-
placement and , the second time derivative of the displacement, gives the acceleration.

Parabolic Equation

From Eq. 3•191 of Chapter 3 (in page 253),

Eq. 4•80

Considering the initial-boundary value problem in page 253

 subject to Eq. 4•81

The finite element formulation for C and K is

Eq. 4•82

θ is a scalar parameter and ∆t is the time step length. The Program Listing 4•10 implements Eq. 4•80 and
4•82. At the element level, the heat capacity matrix ce is the additional term to the static case as

mass &= ((H0)N)%((H0)N) | dv;

The protected member functions of the base class, “Element_Formulation::__lhs()”
“Element_Formulation::__rhs()”, need to be overwritten in the derived class Parabolic_Equation as

1 C0& Parabolic_Equation::__lhs() {
2 the_lhs &= mass + theta_* dt_*stiff; //
3 return the_lhs;
4 }

Cu· Ku f+ + 0=

u·

Mu·· Ku f+ + 0=

u··

C ∆tθK+()un 1+ C ∆t 1 θ–()K–()un f̂–=

u∂
t∂

----- ∂2u
∂x2
--------– 0 0 x 1< <,= u 0 t,() 0

∂u
∂x
------ 1 t,(), 0 and u x 0,(), 1= = =

ce φe φe⊗ xd
Ωe

∫ and ke,
∂φe

∂x

∂φe

∂x
--------⊗ xd

Ωe

∫= =

C ∆tθK+
336 Workbook of Applications in VectorSpace C++ Library

One Dimensional Problems
#include "include\fe.h"
static const int node_no = 5; static const int element_no = 4; static const int spatial_dim_no = 1;
Omega_h::Omega_h(){

for(int i = 0; i < node_no; i++) { double v;v=((double)i)/((double)element_no);
Node* node = new Node(i, spatial_dim_no, &v); the_node_array.add(node); }

for(int i = 0; i < element_no; i++) { int ena[2]; ena[0] = i; ena[1] = ena[0]+1;
Omega_eh* elem = new Omega_eh(i, 0, 0, 2, ena); the_omega_eh_array.add(elem); } }

gh_on_Gamma_h::gh_on_Gamma_h(int df, Omega_h& omega_h) { __initialization(df, omega_h);
the_gh_array[node_order(0)](0) = gh_on_Gamma_h::Dirichlet;
the_gh_array[node_order(node_no-1)](0) = gh_on_Gamma_h::Neumann; }

static const int ndf = 1; static Omega_h oh; static gh_on_Gamma_h gh(ndf, oh);
static U_h uh(ndf, oh); static Global_Discretization gd(oh, gh, uh);
class Parabolic_Equation : public Element_Formulation { C0 mass, ul;

void __initialization(int, Global_Discretization&);
public:

Parabolic_Equation(Element_Type_Register a) : Element_Formulation(a) {}
Element_Formulation *make(int, Global_Discretization&);
Parabolic_Equation(int, Global_Discretization&);
C0& __lhs(); C0& __rhs(); };

void Parabolic_Equation::__initialization(int en, Global_Discretization& gd) {
ul &= gd.element_free_variable(en); }

Element_Formulation* Parabolic_Equation::make(int en, Global_Discretization& gd) {
return new Parabolic_Equation(en,gd); }

Parabolic_Equation::Parabolic_Equation(int en, Global_Discretization& gd) :
Element_Formulation(en, gd) { __initialization(en, gd);
Quadrature qp(spatial_dim_no, 2);
H1 Z(qp),
N = INTEGRABLE_VECTOR_OF_TANGENT_BUNDLE("int, int, Quadrature", 2, 1, qp);
N[0] = (1-Z)/2; N[1] = (1+Z)/2; H1 X = N*xl; H0 Nx = d(N)(0)/d(X); J dv(d(X));
stiff &= (Nx % Nx) | dv; mass &= (((H0)N)%((H0)N)) | dv; }

Element_Formulation* Element_Formulation::type_list = 0;
static Element_Type_Register element_type_register_instance;
static Parabolic_Equation parabolic_equation_instance(element_type_register_instance);
static Matrix_Representation mr(gd);
static double theta_ = 0.5; static double dt_ = 0.05;
C0& Parabolic_Equation::__lhs() { the_lhs &= mass + theta_* dt_*stiff; return the_lhs; }
C0& Parabolic_Equation::__rhs() {

Element_Formulation::__rhs();
the_rhs += (mass - (1.0-theta_)*dt_*stiff)*ul;
return the_rhs; }

int main() {
for(int i = 0; i < node_no; i++) uh[i][0] = 1.0;
gd.u_h() = gd.gh_on_gamma_h();
mr.assembly();
C0 decomposed_LHS = !((C0)(mr.lhs()));
for(int i = 0; i < 28; i++) {

C0 u = decomposed_LHS*((C0)(mr.rhs())); gd.u_h() = u;
double iptr;
if(modf(((double)(i+1))/4.0, &iptr)==0) {

cout << "time: " << (((double)(i+1))*dt_) << ", at (0.5, 1.0), u = (" <<
gd.u_h()[(node_no-1)/2][0] << ", " << gd.u_h()[node_no-1][0] << ")" << endl; }

if(i < 27) { (C0)(mr.rhs()) = 0.0; (C0)(mr.lhs()) = 0.0; mr.assembly(); }
}
return 0;

}

Definte discretizaed global domain
define nodes

define elements

define boundary conditions
instantiate fixed and free variables and
Global_Discretization

overwrite protected member functions

heat capacitance

conductivity

initial conditions

ce φe φe⊗ xd
Ωe

∫=

ke

∂φe

∂x

∂φe

∂x
--------⊗ xd

Ωe

∫=

C ∆tθK+

C ∆t 1 θ–()K–()un f̂–

un 1+

C ∆t 1 θ–()K–()un f̂–

C ∆tθK+()
---=

Listing 4•10 Solution of hyperbolic equation using center difference scheme in time dimension (project:
“hyperbolic_equation” in project workspace file “fe.dsw” under directory “vs\ex\fe”).
Workbook of Applications in VectorSpace C++ Library 337

Finite Element Method PrimerChapter 4
5 C0& Parabolic_Equation::__rhs() {
6 Element_Formulation::__rhs(); //
7 the_rhs += (mass - (1.0-theta_)*dt_*stiff)*ul; //
8 return the_rhs;
9 }

In the main() function the decomposition of the left-hand-side matrix is done only once, which is outside of the
time integration loop. The results of this program are shown in Program Listing 4•10.

f̂–
C ∆t 1 θ–()K–()un f̂–

0 0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

Figure 4•28Finite element solutions for the hyperbolic equation for heat conduction.
x

u

t0

t0.2

t0.4

t0.6
t0.8

t1.2t1.4

t1.0
338 Workbook of Applications in VectorSpace C++ Library

One Dimensional Problems

ess
ts the

nction

l, inc.,
Hyperbolic Equation

From Eq. 3•211 of Chapter 3 (see page 257), is defined as

Eq. 4•83

where and , the Newmark coefficients ai are

Eq. 4•84

Consider the initial boundary value problem in page 258,

boundary conditions

and initial conditions u(x, 0) = sin(πx)-πx(1-x), and Eq. 4•85

The finite element formulation for consistent mass matrix and stiffness matrix is

Eq. 4•86

The damping matrix ce is either in the form of me times damping parameter or in the form of Raleigh damping as
a linear combination of me and ke.

1 Again, for two-node element the Hermite cubics are required for the stiffn
matrix as in the irreducible formulation of beam bending problem. The Program Listing 4•11 implemen
hyperbolic equation. Now variables , , at tn and , , at tn+1 need to be registered as

1 static U_h u_old(ndf, oh); static U_h du_old(ndf, oh); static U_h ddu_old(ndf, oh);
2 static U_h u_new(ndf, oh); static U_h du_new(ndf, oh); static U_h ddu_new(ndf, oh);

These variables are supplied to the element constructor by a private member fu
Hyperbolic_Equation::__initialization(int, Global_Discretization&) as

1 void Hyperbolic_Equation::__initialization(int en, Global_Discretization& gd) {
2 Omega_h& oh = gd.omega_h();

1. p. 93 and p. 339 in K-J Bathe and E.L.Wilson, 1976, “Numerical methods in finite element analysis”, Prentice-Hal
Englewood Cliffs, New Jersey.

K̂un 1+ R̂n 1+=

K̂ K a0M a1C and R̂n 1+,++ fn 1+– a0un a2u·n a3u··n+ +()M a1un a4u·n a5u··n+ +()C+ += =

u··n 1+ a0 un 1+ un–() a2u·n– a3u··n–= u·n 1+ u·n a6u··n a7u··n 1++ +=

a0
1

β∆t2
----------- a1, γ

β∆t
--------- a2, 1

β∆t
--------- a3, 1

2β
------ 1 a4,–

γ
β
--- 1 a5,–

∆t
2
----- γ

β
--- 2–

 a6, ∆t 1 γ–() a7, γ∆t= = = = = = = =

∂2u
∂t2

∂4u
∂x4
-------- 0 x 1 t 0>,< <,–=

u 0 t,() u 1 t,() ∂u 0 t,()
∂x

------------------- ∂u 1 t,()
∂x

------------------- 0= = = =

∂u x 0,()
∂t

-------------------- 0=

me φe φe⊗ xd
Ωe

∫ and ke,
∂2φe

∂x2

∂2φe

∂x2
-----------⊗ xd

Ωe

∫= =

un u·n u··n un 1+ u·n 1+ u··n 1+
Workbook of Applications in VectorSpace C++ Library 339

Finite Element Method PrimerChapter 4
#include "include\fe.h"
static const int node_no = 5;
static const int element_no = node_no-1;
static const int spatial_dim_no = 1;
static const double L_ = 1.0;
static const double h_e = L_/((double)(element_no));
Omega_h::Omega_h() {

for(int i = 0; i < node_no; i++) {
double v = ((double)i)*h_e;
Node* node = new Node(i, spatial_dim_no, &v);
the_node_array.add(node);

}
for(int i = 0; i < element_no; i++) {

int ena[2]; ena[0] = i; ena[1] = ena[0]+1;
Omega_eh* elem = new Omega_eh(i, 0, 0, 2, ena);
the_omega_eh_array.add(elem);

}
}
gh_on_Gamma_h::gh_on_Gamma_h(int df, Omega_h& omega_h) {

__initialization(df, omega_h);
the_gh_array[node_order(0)](0) =
the_gh_array[node_order(0)](1) =
the_gh_array[node_order(node_no-1)](0) =
the_gh_array[node_order(node_no-1)](1) =

gh_on_Gamma_h::Dirichlet;
}
static const int ndf = 2;
static Omega_h oh;
static gh_on_Gamma_h gh(ndf, oh);
static U_h uh(ndf, oh);
static Global_Discretization gd(oh, gh, uh);
static U_h u_old(ndf, oh); static U_h du_old(ndf, oh); static U_h ddu_old(ndf, oh);
static U_h u_new(ndf, oh); static U_h du_new(ndf, oh); static U_h ddu_new(ndf, oh);
class Hyperbolic_Equation : public Element_Formulation {

C0 mass, ul, dul, ddul;
void __initialization(int, Global_Discretization&);

public:
Hyperbolic_Equation(Element_Type_Register a) : Element_Formulation(a) {}
Element_Formulation *make(int, Global_Discretization&);
Hyperbolic_Equation(int, Global_Discretization&);
C0& __lhs();
C0& __rhs();

};
void Hyperbolic_Equation::__initialization(int en, Global_Discretization& gd) {

Omega_h& oh = gd.omega_h();
gh_on_Gamma_h& gh = gd.gh_on_gamma_h();
Global_Discretization gd_u_old(oh, gh, u_old);
ul &= gd_u_old.element_free_variable(en);
Global_Discretization gd_du_old(oh, gh, du_old);
dul &= gd_du_old.element_free_variable(en);
Global_Discretization gd_ddu_old(oh,gh,ddu_old);
ddul &=gd_ddu_old.element_free_variable(en);

}
Element_Formulation* Hyperbolic_Equation::make(int en, Global_Discretization& gd) {

return new Hyperbolic_Equation(en,gd);
}

Definte discretizaed global domain
define nodes

define elements

define boundary conditions

instantiate fixed and free variables and
Global_Discretization

overwrite protected member functions

un
u·n

u··n
340 Workbook of Applications in VectorSpace C++ Library

One Dimensional Problems
Hyperbolic_Equation::Hyperbolic_Equation(int en, Global_Discretization& gd) :
Element_Formulation(en, gd) {
 __initialization(en, gd);
double weight[3] = {1.0/3.0, 4.0/3.0, 1.0/3.0},
h_e = fabs(((double)(xl[0] - xl[1])));
Quadrature qp(weight, 0.0, h_e, 3);
J d_l(h_e/2.0);
H2 Z((double*)0, qp),

z = Z/h_e,
N = INTEGRABLE_VECTOR_OF_TANGENT_OF_TANGENT_BUNDLE(

"int, int, Quadrature", 4/*nen x ndf*/, 1/*nsd*/, qp);
N[0] = 1.0-3.0*z.pow(2)+2.0*z.pow(3);
N[1] = -Z*(1.0-z).pow(2);
N[2] = 3.0*z.pow(2)-2.0*z.pow(3);
N[3] = -Z*(z.pow(2)-z);
H0 Nxx = INTEGRABLE_VECTOR("int, Quadrature", 4, qp);
for(int i = 0; i < 4; i++) Nxx[i] = dd(N)(i)[0][0];
stiff &= (Nxx % Nxx) | d_l; mass &= (((H0)N)%((H0)N)) | d_l;

}
Element_Formulation* Element_Formulation::type_list = 0;
static Element_Type_Register element_type_register_instance;
static Hyperbolic_Equation hyperbolic_equation_instance(element_type_register_instance);
static Matrix_Representation mr(gd);
static const double gamma_ = 0.5;
static const double beta_ = 0.25;
static const double dt_ = 0.01;
static double a[8];
C0& Hyperbolic_Equation::__lhs() { the_lhs &= stiff + a[0]*mass; return the_lhs; }
C0& Hyperbolic_Equation::__rhs() { Element_Formulation::__rhs();

the_rhs += mass * (a[0]*ul+a[2]*dul+a[3]*ddul); return the_rhs; }
int main() {

for(int i = 0; i < node_no; i++) {
C1 x(((double)i)*h_e), w_0 = sin(PI*x)-PI*x*(1.0-x);
u_old[i][0] = ((C0)w_0); u_old[i][1] = -d(w_0);
for(int j = 0; j < ndf; j++) du_old[i][j] = ddu_old[i][j] = 0.0;

}
gd.u_h() = gd.gh_on_gamma_h();
a[0] = 1.0/(beta_*pow(dt_,2)); a[1] = gamma_/(beta_*dt_); a[2] = 1.0/(beta_*dt_);
a[3] = 1.0/(2.0*beta_)-1.0; a[4] = gamma_/beta_-1.0; a[5] = dt_/2.0*(gamma_/beta_-2.0);
a[6] = dt_*(1.0-gamma_); a[7] = gamma_*dt_;
mr.assembly(); C0 decomposed_LHS = !((C0)(mr.lhs()));
for(int i = 0; i < 28; i++) {

C0 u = decomposed_LHS*((C0)(mr.rhs()));
gd.u_h() = u;
u_new = ((C0)(gd.u_h()));
ddu_new = a[0]*(((C0)u_new)-((C0)u_old))-a[2]*((C0)du_old)-a[3]*((C0)ddu_old);
du_new = ((C0)du_old) + a[6]*((C0)ddu_old)+a[7]*((C0)ddu_new);
u_old = ((C0)u_new); du_old = ((C0)du_new); ddu_old = ((C0)ddu_new);
double iptr;
if(modf(((double)(i+1))/2.0, &iptr)==0) { cout << "time: " << (((double)(i+1))*dt_)

 << ", u: " << u_new[(node_no-1)/2][0] << endl; }
if(i < 27) { (C0)(mr.rhs()) = 0.0; (C0)(mr.lhs()) = 0.0; mr.assembly(); }

}
return 0;

}

Hermite cubics

 +

u(x, 0) = sin(πx)-πx(1-x),

and

me φe φe⊗ xd
Ωe

∫=

ke

∂2φe

∂x2

∂2φe

∂x2
-----------⊗ xd

Ωe

∫=

K a0M a1C++

fn 1+– a0un a2u·n a3u··n+ +()M+

a1un a4u·n a5u··n+ +()C

∂u x 0,()
∂t

-------------------- 0=

a0
1

β∆t2
----------- a1, γ

β∆t
--------- a2, 1

β∆t
---------= = =

a3
1

2β
------ 1 a4,–

γ
β
--- 1 a5,–

∆t
2
----- γ

β
--- 2–

 = = =

a6 ∆t 1 γ–() a7, γ∆t= =

u··n 1+ a0 un 1+ un–() a2u·n– a3u··n–=

u·n 1+ u·n a6u··n a7u··n 1++ +=

Listing 4•11 Newmark scheme for hyperbolic equation using finite element method.
Workbook of Applications in VectorSpace C++ Library 341

Finite Element Method PrimerChapter 4

as

and
ure
3 gh_on_Gamma_h& gh = gd.gh_on_gamma_h();
4 Global_Discretization gd_u_old(oh, gh, u_old);
5 ul &= gd_u_old.element_free_variable(en);
6 Global_Discretization gd_du_old(oh, gh, du_old);
7 dul &= gd_du_old.element_free_variable(en);
8 Global_Discretization gd_ddu_old(oh,gh,ddu_old);
9 ddul &=gd_ddu_old.element_free_variable(en);
10 }

Basically, the time integration algorithm is to update variables , , at time tn to , , at
time tn+1. At the beginning of time tn+1, , , are given, and is solved from back-substitution of glo-
bal stiffness matrix and global residual vector. The velocity and acceleration and at time tn+1 are
computed at the global level in the main() program, when the variable “u_new”, , is available, such

1 ddu_new = a[0]*(((C0)u_new)-((C0)u_old))-a[2]*((C0)du_old)-a[3]*((C0)ddu_old);
2 du_new = ((C0)du_old) + a[6]*((C0)ddu_old)+a[7]*((C0)ddu_new);

This is implemented according to the formula for acceleration (line 1)
velocity (line 2), respectively. The results of this computation are shown in Fig
4•29.

un u·n u··n un 1+ u·n 1+ u··n 1+

un u·n u··n un 1+
u··n 1+

u·n 1+

un 1+

u··n 1+ a0 un 1+ un–() a2u·n– a3u··n–=
u·n 1+ u·n a6u··n a7u··n 1++ +=

0.2 0.4 0.6 0.8 1

-0.2

-0.1

0.1

0.2

0.2 0.4 0.6 0.8 1

-0.2

-0.1

0.1

0.2

Figure 4•29 Beam vibration using finite element method with Newmark scheme to solve the
hyperbolic equation. The finite element solutions of downward deflection are piece-wise cubic
functions of nodal deflection “ ” and nodal negative slope “ -du/dx” (i.e., u = f(,) for
two-node Hermite cubic element). Solutions of every four time steps are shown.

û ψ̂ ≡ û ψ̂

t = 0.02

t = 0.16

t = 0.04

t = 0.06

t = 0.08

t = 0.10

t = 0.12
t = 0.14

t = 0.18

t = 0.20

t = 0.22

t = 0.24

t = 0.26
t = 0.28

u u

x x

initial condition t = 0

t = 0.0 to 0.14 t = 0.16 to 0.28
342 Workbook of Applications in VectorSpace C++ Library

One Dimensional Problems

Hermit
in the
ent stiff-
h

wing the
e

d even
e global
the ele-
4.2.5 The Mixed Formulation Revisited—Matrix Substructure Method

In the irreducible formulation for the beam bending problem (see page 306) the unwieldy piece-wise
cubic functions are used for the C1-continuity on the nodes since the second-order derivatives appeared
element stiffness matrix. The mixed formulation for the same problem (see page 312) reduces the elem
ness matrix to have the first-order derivatives and only C0-continuity is required. However, this is achieved wit
the expense of add nodal variables in addition to . Recall Eq. 4•44 for the element formulation

Eq. 4•87

Assign symbols for submatrices and subvectors in Eq. 4•87, we have

Eq. 4•88

where the stiffness matrix has the size of 4x4 and the solution and force vectors have the sizes of 4. Follo
finite element convention, we collect degree of freedoms w and M together for each node. At the global level, th
matrix form is

Eq. 4•89

For large-size problem, the stiffness matrix size could be critical for limited computer memory space , an
more seriously for the computation time. One approach to reduce the number of degree of freedom in th
matrix solution process is to separate the variables and in Eq. 4•89 at the global level. Rewriting
ment formulation of Eq. 4•89 in global submatrix form as

Eq. 4•90

where B is symmetric negative definite.1

M̂ ŵ

0
dφe

w

dx

dφe
M

dx
----------⊗

 dx
Ωe

∫–

dφe
M

dx

dφe
w

dx
----------⊗

 dx
Ωe

∫–
φe

M φe
M⊗

EI

 dx
Ωe

∫–

ŵe

M̂e

φe
wfdx φe

wVΓh+
Ωe

∫

φe
MψΓh

=

0 ae

ae
T be

ŵe

M̂e

fe

re

=

0 a00 0 a01 … … 0 a0 n 1–()

a00
T b00 a01

T b01 … … a0 n 2–()
T b0 n 1–()

0 a10 0 a11 … … 0 a1 n 1–()

a10
T b10 a11

T b11 … … a1 n 2–()
T b1 n 1–()

… … … … … … … …
… … … … … … … …
0 a n 1–()0 0 a n 1–()1 … … 0 a n 1–() n 1–()

a n 1–()0
T b n 1–()0 a n 1–()1

T b n 1–()1 … … a n 1–() n 1–()
T b n 1–() n 1–()

ŵ0

M̂0

ŵ1

M̂1

…
…

ŵ n 1–()

M̂ n 1–()

f0

r0

f1

r1

…
…

f n 1–()

r n 1–()

=

ŵ M̂

0 A

AT B

ŵ

M̂

f
r

=

Workbook of Applications in VectorSpace C++ Library 343

Finite Element Method PrimerChapter 4

f each

also

we

q.
ly
and-side

 power
f
 quar-

 to

d

 use
osition
Matrix Substructuring

We can solve the Eq. 4•90 with “matrix substructuring” (or static condensation). This is only possible
because of the special properties of the submatrices in Eq. 4•90 that (1) the diagonal submatrix B is symmetric
positive definite (or negative definite) which is invertible, and (2) the off-diagonal matrices are transpose o
other. Therefore, pre-and post- multiplication of the symmetric positive definitive matrix B-1 such as “AB-1AT”
is a similarity transformation which preserves the symmetric positive definitive property. Therefore, it can
be inverted. Now, let’s proceed with the substructuring. From second equation of Eq. 4•90, we have

Eq. 4•91

Therefore,

Eq. 4•92

Note we have use the property that B is invertible. Observing that the first equation of Eq. 4•90 is ,
pre-multiply Eq. 4•92 with A, such that

Eq. 4•93

Now we can solve for as

Eq. 4•94

We have relied on the property that AB-1AT is invertible. With solved, can be recovered according to E
4•92, if necessary. The solution using the substructuring technique has two major advantages. Firstly, onA and
B need to be stored in memory space that is only half of the memory space comparing to the entire left-h
matrix in Eq. 4•90. Secondly, the matrix solver in substructuring deals with B-1 and AB-1AT which are smaller
matrices than the left-hand-side matrix in Eq. 4•90. The cost for a matrix solver can be a function of cubic
of size. For the present case, each of the inverse of B and the inverse of AB-1AT requires about one-eighth o
computation time comparing to that of the solution of the left-hand-side matrix in Eq. 4•90. That is only a
ter of computation time is needed for the matrix solver using substructuring.1

1. Note that the term f includes (1) the distributed load term, the term contains “f” in Eq. 4•87, (2) shear force
(V), the “nodal loading boundary condition” VΓ(treated as natural boundary condition specified corresponding
“w”-dof), and (3) essential boundary condition of MΓ by subtracting “AMΓ” out of f. The term r includes (1)
negative slope (ψ), the “nodal loading boundary condition” ψ Γ(treated as natural boundary condition specifie
corresponding to “M”-dof), and (2) the essential boundary conditions of {wΓ, MΓ} by subtracting “AT wΓ+BMΓ”
out of r .
1. Moreover, Eq. 4•89 has a lot of zero diagonals, which is not without trouble for the matrix solver. We either need to
modified Cholesky decomposition with the diagonal pivoting or we need to ignore the symmetry and use LU decomp
with complete pivoting.

ATŵ BM̂+ r=

M̂ B 1– r ATŵ–()=

AM̂ f=

f AM̂ AB 1– r ATŵ–() AB 1– r AB 1– ATŵ–= = =

ŵ

ŵ AB 1– AT() 1– AB 1– r f–()=

ŵ M̂
344 Workbook of Applications in VectorSpace C++ Library

One Dimensional Problems

iately
object-
global

luded.
Object-Oriented Modeling for Matrix Substructuring

With the understanding that we want to implement finite element in terms of Eq. 4•90, we may immed
recognize that the “fe.lib” has no provision to define and to solve a problem described by Eq. 4•90. The
oriented modeling of the finite element method in fe.lib has four strong components, (1) discretized
domain Ωh, (2) discretized variables uh, (3) element formulation “EF”, and (4) matrix representation “MR”.

Firstly, instead of one set of nodal variables combined together in the irreducible formulation as {i, i}
now we have two (separate) sets of variables {i} and { i}. The combination of Ωh and uh now yield two dif-
ferent Global_Discretizations with {Ωh, h} and {Ωh, h} as their constituents.

1 const int ndf = 1;
2 Omega_h oh; // Ωh

3 gh_on_Gamma_h_i wgh(0, ndf, oh); //
4 U_h wh(ndf, oh); // h

5 Global_Discretization wgd(oh, wgh, wh);
6 gh_on_Gamma_h_i mgh(1, ndf, oh); //
7 U_h mh(ndf, oh); // h

8 Global_Discretization mgd(oh, mgh, mh);

The two sets of boundary conditions “gh_on_Gamm_h_i” corresponding to two set of variables {i} and { i}.
The new class “gh_on_Gamma_h_i” is derived from the”gh_on_Gamma_h” with a subscript index inc
The constructor of this class is defined as

1 gh_on_Gamma_h_i::gh_on_Gamma_h_i(int i, int df, Omega_h& omega_h) :
2 gh_on_Gamma_h() {
3 gh_on_Gamma_h::__initialization(df, omega_h);
4 if(i == 0) {

// wΓ(0) = 0; deflection essential boundary condition
5 the_gh_array[node_order(0)](0) = gh_on_Gamma_h::Dirichlet;
6 the_gh_array[node_order(0)][0] = 0.0;

// VΓ(L) = d/dx M(L) = d/dx (EI d2w/dx2) = 0; shear force natural boundary condition
7 the_gh_array[node_order(node_no-1)](0) = gh_on_Gamma_h::Neumann;
8 the_gh_array[node_order(node_no-1)][0] = 0.0;
9 } else if(i == 1) {

// MΓ(L) = M_; bending moment essential boundary condition
10 the_gh_array[node_order(node_no-1)](0) = gh_on_Gamma_h::Dirichlet;
11 the_gh_array[node_order(node_no-1)][0] = M_;

// -dw/dx(0) = ψΓ(0) = 0; rotation natural boundary condition
12 the_gh_array[node_order(0)](0) = gh_on_Gamma_h::Neumann;
13 the_gh_array[node_order(0)][0] = 0.0;
14 }
15 }

Secondly, for the definition of submatrix B we need the “Global_Discretization” with {Ωh, h}. The rows
and columns of submatrix B corresponding both to the -dof. However, for the definition of submatrix A, we

ŵ M̂
ŵ M̂

ŵ M̂

w Γg and V Γh∈,∈
ŵ

M Γg and ψ Γh∈,∈
M̂

ŵ M̂

M̂
M̂

Workbook of Applications in VectorSpace C++ Library 345

Finite Element Method PrimerChapter 4

 in
of

 as

an-
this
need both “Global_Discretization” with {Ωh, h} and {Ωh, h}. Since the row of submatrix A corresponding
to the -dof, and columns of submatrix A corresponding to the -dof. Therefore, the definition of submatrixB
reference only to the single Global_Discretization of {Ωh, h}, which is the same as what is already available
fe.lib. For the definition of submatrix A it needs to refer to a newly defined class
“Global_Dsicretization_Couple” which is consists of “dual” Global_Discritization with both {Ωh, h} and
{ Ωh, h}. We have the declaration of the “deflection-and-bending moment” coupled global discretization

static Global_Discretization_Couple gdc(wgd, mgd);

Thirdly, in the element formulation “EF”, we not only need to define the diagonal submatrix B, but also need
to define the off-diagonal submatrix A. The newly defined class is the “Element_Formulation_Couple” to h
dle this additional complexity. The user defined element formulation is derived from
“Element_Formulation_Couple” instead of the “Element_Formulation” such as

1 class Beam_Mixed_Formulation : public Element_Formulation_Couple {
2 public:
3 Beam_Mixed_Formulation(Element_Type_Register a) : Element_Formulation_Couple(a) {}

// diagonal block formulation; submatrix B
4 Element_Formulation *make(int, Global_Discretization&);
5 Beam_Mixed_Formulation(int, Global_Discretization&);

// off-diagonal block formulation; submatrix A
6 Element_Formulation_Couple *make(int, Global_Discretization_Couple&);
7 Beam_Mixed_Formulation(int, Global_Discretization_Couple&);
8 };
9 Element_Formulation* Beam_Mixed_Formulation::make(int en, Global_Discretization& gd) {
10 return new Beam_Mixed_Formulation(en,gd); }
11 Element_Formulation_Couple* Beam_Mixed_Formulation::make(int en,
12 Global_Discretization_Couple& gdc) { return new Beam_Mixed_Formulation(en,gdc); }

For the diagonal submatrix B, the constructor of element formulation is

1 Beam_Mixed_Formulation::Beam_Mixed_Formulation(int en, Global_Discretization& gd) :
2 Element_Formulation_Couple(en, gd) {
3 Quadrature qp(spatial_dim_no, 2); // 1-dimension, 2 Gaussian integration points
4 H1 Z(qp),
5 N = INTEGRABLE_VECTOR_OF_TANGENT_BUNDLE(
6 "int, int, Quadrature", 2/*nen*/, 1/*nsd*/, qp);
7 N[0] = (1-Z)/2; N[1] = (1+Z)/2;
8 H1 X = N*xl;
9 H0 Nx = d(N)(0)/d(X);
10 J d_l(d(X));
11 stiff &= -(1.0/E_/I_)* ((((H0)N)*(~(H0)N)) | d_l); // B =
12 }

For the off-diagonal submatrix A, the constructor of element formulation is

ŵ M
M̂ ŵ

M̂

ŵ
M̂

φe
M φe

M⊗
EI

 dx

Ωe

∫–
346 Workbook of Applications in VectorSpace C++ Library

One Dimensional Problems

is

th argu-
ubordi-

ot
and-
1 Beam_Mixed_Formulation::Beam_Mixed_Formulation(int en, Global_Discretization_Couple& gdc)
2 : Element_Formulation_Couple(en, gdc) {
3 Quadrature qp(spatial_dim_no, 2); // 1-dimension, 2 integration points
4 H1 Z(qp),
5 N = INTEGRABLE_VECTOR_OF_TANGENT_BUNDLE(
6 "int, int, Quadrature", 2/*nen*/, 1/*nsd*/, qp);
7 N[0] = (1-Z)/2; N[1] = (1+Z)/2;
8 H1 X = N*xl;
9 H0 Nx = d(N)(0)/d(X);
10 J d_l(d(X));
11 stiff &= -(Nx * (~Nx)) | d_l; // A =
12 force &= ((((H0)N)*f_0) | d_l); // f =
13 }

Finally, we recall the global submatrix form in Eq. 4•90

Eq. 4•95

The matrix representation, “MR”, for the diagonal submatrix B and its corresponding right-hand-side r is
declared as standard class of “Matrix_Representation”

Matrix_Representation mr(mgd);

This matrix representation instance “mr” can be called to assemble and instantiate the submatrix B and the sub-
vector r. They can be retrieved by

1 mr.assembly();
2 C0 B = ((C0)(mr.lhs())), // diagonal submatrix B
3 r = ((C0)(mr.rhs())); // r

The rows of submatrix A corresponding to “w”-dof, the principal discretization, and the columns of submatrix A
corresponding to “M”-dof, the subordinate discretization. The class “Matrix_Representation_Couple”
declared instead as

Matrix_Representation_Couple mrc(gdc, 0, 0, &(mr.rhs()));

The second argument of this constructor is reserved for instantiation sparse matrix, the third and the four
ments of this constructor referencing to right-hand-side vectors corresponding to the principal and the s
nate discretization of submatrix A. In the above example, the principal right-hand-side is supplied with a “0”, the
null pointer. In this case, the principal right-hand-side vector f will be instantiated. When the argument is n
null, such as the subordinate right-hand-side is reference to “mr.rhs()” in this case. The subordinate right-h

dφe
w

dx

dφe
M

dx
----------⊗

 dx
Ωe

∫–
φe

wfdx
Ωe

∫

0 A

AT B

ŵ

M̂

f
r

=

Workbook of Applications in VectorSpace C++ Library 347

Finite Element Method PrimerChapter 4

e can

 nodal
 setting
e

create
ed ele-
 is cre-

class
oriented

s the
lement
code in
as
mbled

r For-
s, this
e most
side will not be instantiated but will be referring to “mr.rhs()”, which has already been instantiated. Now w
solve Eq. 4•90 with the matrix substructuring such as

1 int main() {
2 mrc.assembly();
3 C0 f = ((C0)(mrc.rhs())),
4 A = ((C0)(mrc.lhs()));
5 mr.assembly();
6 C0 B = ((C0)(mr.lhs())),
7 r = ((C0)(mr.rhs()));
8 C0 B_inv = B.inverse(),
9 w = (A*B_inv*r - f)/(A*B_inv*(~A)), //
10 M = B_inv*(r-(~A)*w); //
11 wh = w; wh = wgd.gh_on_gamma_h();
13 mh = M; mh = mgd.gh_on_gamma_h();
14 cout << "deflection:" << endl << wh << endl << "bending moment:" << endl << mh;
15 return 0;
16 }

The complete listing of the substructure mixed formulation is in Program Listing 4•12. The cases for
loading and distributed loading, discussed in the mixed formulation of Section 4.2.2, can be turn on by
macro definitions “__TEST_NODAL_LOAD” and “__TEST_DISTRIBUTED_LOAD” . The results of th
present computation are completely identical to those of the previous section on mixed formulation..

The nonlinear and transient problems bring only marginal changes to the “fe.lib”. We certainly can
new classes of “Nonlinear_Element_Formulation” and “Transient_Element_Formulation” for a user defin
ment to derived from. This is similar to the class “Element_Formulation_Couple” in the present example
ated for user to derived a user defined element formulation from it. We can even create a multiple inheritance (an
advanced but controversial C++ feature) of class Nonlinear_Element_Formulation and
Transient_Element_Formulation to capture both the nonlinear and the transient capabilities. The object-
programming provides the basic mechanisms for a smooth code evolution of “fe.lib” to be extended to vastly
different area of problems. However, the problem of “mixed formulation with separate variables” bring
greatest impact of change to fe.lib. We need to change all four strong components of the “fe.lib” to imp
this problem. With mechanisms of the object-oriented programming, we are not only able to reuse the
“fe.lib” by deriving from it, but also are able to keep the simplicity of the “fe.lib” intact. After the “fe.lib” h
been modified to deal with the new problem, the beginner of the fe.lib still only need to learn the unscra
basic set of “fe.lib” without to confront all kinds of more advanced problems in finite element at once. Fo
tran/C programmers who are already familiar with a couple of existing full-fledged finite element program
advantage of using object-oriented programming to accommodate vastly different problems would b
immediately apparent.

ŵ AB 1– AT() 1– AB 1– r f–()=

M̂ B 1– r ATŵ–()=
348 Workbook of Applications in VectorSpace C++ Library

One Dimensional Problems
#include "include\fe.h"
#include "include\omega_h_n.h"
Matrix_Representation_Couple::assembly_switch

Matrix_Representation_Couple::Assembly_Switch = Matrix_Representation_Couple::ALL;

static const int node_no = 5;
static const int element_no = 4;
static const int spatial_dim_no = 1;
static const double L_ = 1.0;
static const double h_e = L_/((double)(element_no));
static const double E_ = 1.0;
static const double I_ = 1.0;
static const double f_0 = 1.0;
static const double M_ = 1.0;
Omega_h::Omega_h() {

for(int i = 0; i < node_no; i++) {
double v = ((double)i)*h_e;
Node* node = new Node(i, spatial_dim_no, &v);
the_node_array.add(node);

}
for(int i = 0; i < element_no; i++) {

int ena[2];
ena[0] = i;
ena[1] = ena[0]+1;
Omega_eh* elem = new Omega_eh(i, 0, 0, 2, ena);
the_omega_eh_array.add(elem);

}
}
gh_on_Gamma_h_i::gh_on_Gamma_h_i(int i, int df, Omega_h& omega_h) : gh_on_Gamma_h() {

gh_on_Gamma_h::__initialization(df, omega_h);
if(i == 0) {

the_gh_array[node_order(0)](0) = gh_on_Gamma_h::Dirichlet;
} else if(i == 1) {

the_gh_array[node_order(node_no-1)](0) = gh_on_Gamma_h::Dirichlet;
the_gh_array[node_order(node_no-1)][0] = M_;

}
}
static const int ndf = 1;
static Omega_h oh;
static gh_on_Gamma_h_i wgh(0, ndf, oh);
static U_h wh(ndf, oh);
static Global_Discretization wgd(oh, wgh, wh);
static gh_on_Gamma_h_i mgh(1, ndf, oh);
static U_h mh(ndf, oh);
static Global_Discretization mgd(oh, mgh, mh);
static Global_Discretization_Couple gdc(wgd, mgd);
class Beam_Mixed_Formulation : public Element_Formulation_Couple {
public:

Beam_Mixed_Formulation(Element_Type_Register a) : Element_Formulation_Couple(a) {}
Element_Formulation *make(int, Global_Discretization&);
Beam_Mixed_Formulation(int, Global_Discretization&);
Element_Formulation_Couple *make(int, Global_Discretization_Couple&);
Beam_Mixed_Formulation(int, Global_Discretization_Couple&);

};
Element_Formulation* Beam_Mixed_Formulation::make(int en, Global_Discretization& gd) {

return new Beam_Mixed_Formulation(en,gd);
}

initialize static member of class
“Matrix_Representation_Couple”

Definte discretizaed global domain
define nodes

define elements

define boundary conditions

instantiate fixed and free variables and
Global_Discretization
{ Ωh, h}

{ Ωh, h}

Global_Discretization_Couple

ŵ

M̂

Workbook of Applications in VectorSpace C++ Library 349

Finite Element Method PrimerChapter 4
Beam_Mixed_Formulation::Beam_Mixed_Formulation(int en, Global_Discretization& gd) :
Element_Formulation_Couple(en, gd) {
Quadrature qp(spatial_dim_no, 2);
H1 Z(qp),

N = INTEGRABLE_VECTOR_OF_TANGENT_BUNDLE(
"int, int, Quadrature", 2/*nen*/, 1/*nsd*/, qp);

N[0] = (1-Z)/2;
N[1] = (1+Z)/2;
H1 X = N*xl;
H0 Nx = d(N)(0)/d(X);
J d_l(d(X));
stiff &= -(1.0/E_/I_)* ((((H0)N)*(~(H0)N)) | d_l);

}
Element_Formulation_Couple* Beam_Mixed_Formulation::make(int en,

Global_Discretization_Couple& gdc) {
return new Beam_Mixed_Formulation(en,gdc);

}
Beam_Mixed_Formulation::Beam_Mixed_Formulation(int en, Global_Discretization_Couple&

gdc) : Element_Formulation_Couple(en, gdc) {
Quadrature qp(spatial_dim_no, 2);
H1 Z(qp),

N = INTEGRABLE_VECTOR_OF_TANGENT_BUNDLE(
"int, int, Quadrature",2,1,qp);

N[0] = (1-Z)/2;
N[1] = (1+Z)/2;
H1 X = N*xl;
H0 Nx = d(N)(0)/d(X);
J d_l(d(X));
stiff &= -(Nx * (~Nx)) | d_l;
force &= ((((H0)N)*f_0) | d_l);

}
Element_Formulation* Element_Formulation::type_list = 0;
static Element_Type_Register element_type_register_instance;
static Beam_Mixed_Formulation

beam_mixed_formulation_instance(element_type_register_instance);
static Matrix_Representation mr(mgd);
static Matrix_Representation_Couple mrc(gdc, 0, 0, &(mr.rhs()), &mr);
int main() {

 mrc.assembly();
C0 f = ((C0)(mrc.rhs())),

A = ((C0)(mrc.lhs()));
mr.assembly();
C0 B = ((C0)(mr.lhs())),

r = ((C0)(mr.rhs()));
 C0 B_inv = B.inverse(),

w = (A*B_inv*r - f)/(A*B_inv*(~A)),
M = B_inv*(r-(~A)*w);

wh = w;
wh = wgd.gh_on_gamma_h();
mh = M;
mh= mgd.gh_on_gamma_h();
cout << "deflection:" << endl << wh<< endl << "bending moment:" << endl << mh;
return 0;

 }

B =

A =

f =

φe
M φe

M⊗
EI

 dx

Ωe

∫–

dφe
w

dx

dφe
M

dx
----------⊗

 dx
Ωe

∫–

φe
wfdx

Ωe

∫

ŵ AB 1– AT() 1– AB 1– r f–()=

M̂ B 1– r ATŵ–()=

Listing 4•12 Substructure solution for the mixed formulation of the beam bending problem.
350 Workbook of Applications in VectorSpace C++ Library

Two Dimensional Problems

s

undary

f the
4.3 Two Dimensional Problems

We went through various 1-D proto-type problems in finite element method. However, we may argue that it is
somewhat un-necessary to use finite element method for the 1-D problems. We can solve these problems with the
classical variational method as in Chapter 3. However, for more complicated geometry with the dimension
greater than or equal 2-D, the finite element method offers a systematic treatment of the complicated geometry
where the use of the finite element method becomes essential.

4.3.1 Heat Conduction

Basic Physics and Element Formulation

For heat conduction problem the divergence of heat flux of a body is equal to the heat generated from the
source contained within the body as

Eq. 4•96

where q is the heat flux and f is the heat source. This is subject to Dirichlet and Neumann boundary condition

, and , Eq. 4•97

respectively. We use “u” for temperature and n as the outward unit surface normal. The Fourier law assumes
that the heat flux can be related to temperature gradient as

Eq. 4•98

where κ is the thermal diffusivity. The weighted residual statement of Eq. 4•96 with the Fourier law gives

Eq. 4•99

Integration by parts and applying divergence theorem of Gauss to transform the volume integral into a bo
integral gives

Eq. 4•100

Since the “w” is homogeneous at Γg, the boundaries with Dirchlet boundary conditions, the second term o
boundary integral becomes

Eq. 4•101

q∇• f=

u g on Γg= q n•– h on Γh=

q κ∇u–=

w q f–∇•() Ωd
Ω
∫ w κ u∇2– f–() Ωd

Ω
∫ 0= =

∇w κ∇u() Ω w κ– ∇u() n• Γ wf Ωd
Ω
∫–d

Γ
∫+d

Ω
∫ 0=

wq n Γd•
Γ
∫ wh Γd

Γh

∫–=
Workbook of Applications in VectorSpace C++ Library 351

Finite Element Method PrimerChapter 4

roblem
ondi-

variable

1,

s

 domain

 trans-
106.
the element stiffness matrix, under finite element approximation, is

Eq. 4•102

and, the element force vector is

Eq. 4•103

The second term is the Neumann boundary conditions, which is most easily specified in the p
definition as equivalent nodal load, and the third term accounts for the Dirichlet boundary c
tions. Again, the default behaviors of “fe.lib” will deal with these two terms automatically.

For an isoparametric bilinear 4-nodes element, the bilinear shape functions are taken for both the
interpolation, , and the coordinate transformation rule, , that is

Eq. 4•104

index “a” indicates element node number, and (ξa, ηa) , for a = 0, 1, 2, 3 are four nodal coordinates {(-1, -1), (
-1), (1, 1), (-1, 1)} of the referential element. The variable interpolation becomes

Eq. 4•105

where is the nodal variables, and the coordinate transformation rule becomes

Eq. 4•106

where is the element nodal coordinates. The integration in Eq. 4•102 and first term of Eq. 4•103 give

, and Eq. 4•107

The Gaussian quadrature requires the integration domain to be transformed from the physical element
“Ωe” to the referential element domain “Ωe” with the Jacobian of the coordinate transformation as “J

” (i.e., the determinant of the Jacobian matrix), where the Jacobian matrix of the coordinate
formation rule, “ ”, is computed from the definition of the coordinate transformation rule in Eq. 4•
The derivatives of the variables are taken from Eq. 4•105 as

ke
ab a φe

a φe
b,() ∇φe

aκ∇φe
b()dx

Ωe

∫= =

fe
a φe

a f,() φe
a h,()Γh

a φe
a φe

b,()ue
b–+=

φe
a h,()Γh

a φe
a φe

b,()ue
b–

ue
h φe

a ûe
a≡ x φe

a xe
a≡

φe
a Na ξ η,()≡ 1

4
--- 1 ξaξ+() 1 ηaη+()=

ue
h ξ η,() Na ξ η,()ûe

a≡

ûe
a

xe
h Na ξ η,()xe

a≡

xe
a

ke ∇N κ∇N⊗()dx
Ωe

∫ ∇N κ∇N⊗()det
∂x
∂ξ

 dξ

Ωe

∫= = fe Nf()dx
Ωe

∫ Nf()det
∂x
∂ξ

 dξ

Ωe

∫= =

d≡ et ∂x ∂ξ⁄()
∂x ∂ξ⁄
352 Workbook of Applications in VectorSpace C++ Library

Two Dimensional Problems

ition of
coordi-

2) for

 and the

m-
Eq. 4•108

The derivative of shape functions with respect to natural coordinates , is computed from the defin
the shape functions in Eq. 4•104. The term is computed from the inverse of the derivative of the
nate transformation rule from Eq. 4•106 as

 Eq. 4•109

That is, Eq. 4•108 gives the formula to compute the derivatives of shape functions matrix (nen dof = 4
the element stiffness matrix in Eq. 4•107

Eq. 4•110

An Example with Bilinear 4-Node Element

We now consider an example of a 3 3 unit square insulated from the two sides with the top boundary
bottom boundary set at 30 oC and 0 oC, respectively. The thermal diffusivity is assumed to be isotropic with κ = 1
(see Figure 4•30). Combinding Eq. 4•96 and Eq. 4•98, we have

Eq. 4•111

Since there is no heat source in the square area “f = 0”, and due to symmetry of the boundary conditions no te
perature gradient can be generated in x-direction, Eq. 4•111 reduces to

∇ue
h ξ η,() ∇Na ξ η,()()Tûe

a ∇N0 ∇N1 ∇N2 ∇N3

ûe
0

ûe
1

ûe
2

ûe
3

∂N0

∂x

∂N1

∂x

∂N2

∂x

∂N3

∂x

∂N0

∂y

∂N1

∂y

∂N2

∂y

∂N3

∂y

ûe
0

ûe
1

ûe
2

ûe
3

= = =

∂ξ
∂x
------ ∂η

∂x

∂ξ
∂y
------ ∂η

∂y

∂N0

∂ξ

∂N1

∂ξ

∂N2

∂ξ

∂N3

∂ξ

∂N0

∂η

∂N1

∂η

∂N2

∂η

∂N3

∂η

ûe
0

ûe
1

ûe
2

ûe
3

∂Na

∂ξ

 ∂ξ
∂x

T

ûe
a= =

∂N ∂ξ⁄
∂ξ ∂x⁄

∂ξ ∂x⁄ ∂x ∂ξ⁄() 1–=

× ×

∇N
∂N
∂ξ

 ∂x
∂ξ

 1–
=

×

κ u∇–()∇• κ u∇2– f= =
Workbook of Applications in VectorSpace C++ Library 353

Finite Element Method PrimerChapter 4

 at

blem.
 constant = = 10 Eq. 4•112

That is the temperature gradient in y-direction is 10 (oC per unit length). In other words, the nodal solutions
the row next to the bottom is u = 10 oC, and the row next to the top is u = 20 oC. The Program Listing 4•13
implements element formulation for the stiffness matrix and force vector in Eq. 4•107 for this simple pro
The nodes and elements can be generated as

1 int row_node_no = 4,
2 row_element_no = row_node_no - 1;
3 double v[2];
4 for(int i = 0; i < row_node_no; i++)
5 for(int j = 0; j < row_node_no; j++) {
6 int nn = i*row_node_no+j;
7 v[0] = (double)j; v[1] = (double)i;
8 Node* node = new Node(nn, 2, v);
9 the_node_array.add(node);
10 }
11 int ena[4];
12 for(int i = 0; i < row_element_no; i++)
13 for(int j = 0; j < row_element_no; j++) {
14 int nn = i*row_node_no+j;
15 ena[0] = nn; ena[1] = ena[0]+1; ena[3] = nn + row_node_no; ena[2] = ena[3]+1;
16 int en = i*row_element_no+j;
17 Omega_eh* elem = new Omega_eh(en, 0, 0, 4, ena);
18 the_omega_eh_array.add(elem);
19 }

Figure 4•30 Conduction in a square insulated from two sides.
ubottom= 0oC

utop= 30oC

q • n = 0q • n = 0

d2u
y2d

-------- 0
du

yd
------⇒= =

utop ubottom–()
3

354 Workbook of Applications in VectorSpace C++ Library

Two Dimensional Problems
#include "include\fe.h"
Omega_h::Omega_h() {

int row_node_no = 4, row_element_no = row_node_no - 1;
for(int i = 0; i < row_node_no; i++)
for(int j = 0; j < row_node_no; j++) {

int nn = i*row_node_no+j; double v[2]; v[0] = (double)j; v[1] = (double)i;
Node* node = new Node(nn, 2, v); the_node_array.add(node);

}
for(int i = 0; i < row_element_no; i++)
for(int j = 0; j < row_element_no; j++) {

int nn = i*row_node_no+j, en = i*row_element_no+j;
int ena[4]; ena[0] = nn; ena[1] = ena[0]+1; ena[3] = nn + row_node_no; ena[2] = ena[3]+1;
Omega_eh* elem = new Omega_eh(en, 0, 0, 4, ena); the_omega_eh_array.add(elem);

}
}
gh_on_Gamma_h::gh_on_Gamma_h(int df, Omega_h& omega_h) {

 __initialization(df, omega_h);
int row_node_no = 4, first_top_node_no = row_node_no*(row_node_no-1);
for(int i = 0; i < row_node_no; i++) {

the_gh_array[node_order(i)](0) = gh_on_Gamma_h::Dirichlet;
the_gh_array[node_order(first_top_node_no+i)](0) = gh_on_Gamma_h::Dirichlet;
the_gh_array[node_order(first_top_node_no+i)][0] = 30.0;

}
}
class HeatQ4 : public Element_Formulation { public:
 HeatQ4(Element_Type_Register a) : Element_Formulation(a) {}
 Element_Formulation *make(int, Global_Discretization&);
 HeatQ4(int, Global_Discretization&);
};
Element_Formulation* HeatQ4::make(int en, Global_Discretization& gd) {

return new HeatQ4(en,gd);
}
HeatQ4::HeatQ4(int en, Global_Discretization& gd) : Element_Formulation(en, gd) {

Quadrature qp(2, 4);
H1 Z(2, (double*)0, qp), Zai, Eta,

N = INTEGRABLE_VECTOR_OF_TANGENT_BUNDLE("int, int, Quadrature", 4, 2, qp);
Zai &= Z[0]; Eta &= Z[1];
N[0] = (1-Zai)*(1-Eta)/4; N[1] = (1+Zai)*(1-Eta)/4;
N[2] = (1+Zai)*(1+Eta)/4; N[3] = (1-Zai)*(1+Eta)/4;
H1 X = N*xl; H0 Nx = d(N) * d(X).inverse(); J dv(d(X).det()); double k = 1.0;
stiff &= (Nx * k * (~Nx)) | dv;

}
Element_Formulation* Element_Formulation::type_list = 0;
Element_Type_Register element_type_register_instance;
static HeatQ4 heatq4_instance(element_type_register_instance);
void output(Global_Discretization&);
int main() {

int ndf = 1; Omega_h oh; gh_on_Gamma_h gh(ndf, oh); U_h uh(ndf, oh);
Global_Discretization gd(oh, gh, uh); Matrix_Representation mr(gd);
mr.assembly();
C0 u = ((C0)(mr.rhs())) / ((C0)(mr.lhs()));
gd.u_h() = u; gd.u_h() = gd.gh_on_gamma_h();
cout << gd.u_h();
return 0;

}

define nodes

define elements

define B.C.

top boundary u = 0oC
bottom boundary u = 30oC

define element

assembly
matrix solver
update free and fixed dof
output

Na ξ η,() 1
4
--- 1 ξaξ+() 1 ηaη+()=

∇N
∂N
∂ξ

 ∂x
∂ξ

 1–
=

ke ∇N κ∇N⊗()det
∂x
∂ξ

 dξ

Ωe

∫=

Listing 4•13 Two-dimensional heat conduction problem (project workspace file “fe.dsw”, project
“2d_heat_conduction”.
Workbook of Applications in VectorSpace C++ Library 355

Finite Element Method PrimerChapter 4

()”. After
 and
and

ectively.
 compli-
 been
metry.

ilinear

nctions
deriv-
nd line
of a 1-

metry.
 Figure

e sec-
 number
d “12”
This code generates 16 nodes and 9 bilinear 4-node elements in the constructor “Omega_h::Omega_h
node and element are created by their own constructors (i.e., “Node:Node(int, int, double*)”
“Omega_eh::Omega_eh(int, int, int, int, int*)”), we use the member functions “Node::add(Node*)”
“Omega_eh::add(Omega_eh*)” to add to the “database” the information on nodes and elements, resp
We observe that defining the nodes and the elements for a two dimensional problem may become a very
cated task. We will discussed this issue later with a simple 2-D tool—“block()” function that has already
introduced in Chapter 3 (see page 192) to enhance the capability to handle increasingly complicated geo

At the heart of the code is the element constructor “HeatQ4::HeatQ4()” which implements a 4-nodes b
quadrilateral element

1 HeatQ4::HeatQ4(int en, Global_Discretization& gd) : Element_Formulation(en, gd) {
2 Quadrature qp(2, 4);
3 H1 Z(2, (double*)0, qp), Zai, Eta,
4 N = INTEGRABLE_VECTOR_OF_TANGENT_BUNDLE("int, int, Quadrature", 4, 2, qp);
5 Zai &= Z[0]; Eta &= Z[1];
6 N[0] = (1-Zai)*(1-Eta)/4; N[1] = (1+Zai)*(1-Eta)/4;
7 N[2] = (1+Zai)*(1+Eta)/4; N[3] = (1-Zai)*(1+Eta)/4;
8 H1 X = N*xl;
9 H0 Nx = d(N) * d(X).inverse();
10 J dv(d(X).det());
11 double k = 1.0;
12 stiff &= (Nx * k * (~Nx)) | dv;
13 }

We use a 2-D 2 2 Gaussian quadrature for all integrable objects (line 2). In line 6 and 7, the shape fu
“N” is defined according to Eq. 4•104. The coordinate transformation rule in line 8 is from Eq. 4•106. The
ative of shape function are calculated according to Eq. 4•109 and Eq. 4•110. Line 10 on “the Jacobian” a
12 on stiffness matrix is the first part of the Eq. 4•107. The rest of the code is not very different from that
D problem.

A 2-D Geometrical Tool — “block()”

Even with the above extremely simple problem, the increasing difficulty in specifying geometry is exposed.
We use a few examples to demonstrate the tool “block()” function that facilitates the definition of 2-D geo
The first example constructs a set of nodes and elements with a single “block()” function call as (see
4•31)

1 double coord[4][2] = {{0.0, 0.0}, {3.0, 0.0}, {3.0, 3.0}, {0.0, 3.0}};
2 int control_node_flag[4] = {TRUE, TRUE, TRUE, TRUE};
3 block(this, 4, 4, 4, control_node_flag, coord[0]);

The first integer argument specifies in “block()” the number of nodes generated row-wise, which is “4”. Th
ond integer argument specifies the number of nodes generated column-wise. The following integer is the
of control nodes. In this example, the four control nodes are located at node numbers “0”, “3”, “15”, an

×

356 Workbook of Applications in VectorSpace C++ Library

Two Dimensional Problems

eans
ess

mpli-

t
kip”.
3”. The
d row is
nodes
ain,
d of

ode
s

e chal-
ordered counter-clockwise starting from the lower-left corner. The components in the int array of the
“control_node_flag” are all set as TRUE (=1). This is followed by the pointer to double array “coord[0]”. Notice
that in the semantics of C language (“pointer arithmatics”), the expression of the symbol “coord” with “[]” m
casting the double** to double*, while the index “0” means with an off-set of zero from the first memory addr
of the double*.

An example with two “block()” function calls has the potential of being more adaptive to deal with co
cated geometry (see Figure 4•32)

1 double coord1[4][2] = {{0.0, 0.0}, {3.0, 0.0}, {3.0, 3.0}, {0.0, 3.0}},
2 coord2[4][2] = {{3.0, 0.0}, {6.0, 0.0}, {6.0, 3.0}, {3.0, 3.0}};
3 int control_node_flag[4] = {1, 1, 1, 1};
4 block(this, 4, 4, 4, control_node_flag, coord1[0], 0, 0, 3, 3);
5 block(this, 4, 4, 4, control_node_flag, coord2[0], 3, 3, 3, 3);

In this example, the coordinates of the control nodes are given as rectangles for simplicity. The first int argument
after the coordinates of type double* is the first node number generated, the next int argument is the first elemen
generated. The last two int arguments are “row-wise node number skip” and “row-wise element number s
For example, in line 5 the second block definition has both its first node and first element numbered as “
row-wise node number and element number both skip “3”. Therefore, the first node number of the secon
“10” and the first element number of the second row is “9”. When we define the first block in line 4 the
numbered “3”, “10”, “17” and “24” has been defined. On line 5, when the “block()” function is called ag
these four nodes will be defined again. In “fe.lib”, the “block()” function use “Omega_h::set()” instea
“Omega_h::add()”, in which the database integrity is accomplished by checking the uniqueness of the n
number. Using the terminology of relational database, the node number is the key of the database tabulae in thi
case. If a node number exist, it will not be added to the database again.

A third example shows a cylinder consists of eight blocks (see Figure 4•33) which is even much mor
lenging. The code for generating these eight blocks is

1 const double PI = 3.141592653509,
2 c4 = cos(PI/4.0), s4 = sin(PI/4.0),

Figure 4•31 16 nodes and 9 elements generated by a single “block()” function call.

0 1 2 3

4 5 6 7

8 9 10
11

12 13 14 15

0 1 2

3 4 5

6 7 8
Workbook of Applications in VectorSpace C++ Library 357

Finite Element Method PrimerChapter 4
Figure 4•32 A contiguous block generated by two “block()” function calls.

0 1 2 3

7 8 9
10

11

14
15

0 1 2

6 7 8

4 5 63

10
12 13

16
17

18 19
20

21 22 23 24 25 26 27

3 4 5

9 10

11

24

17

11

12 13 14 15 16 17

0 1 2

7 8 9 10

14 15

0 1 2

6 7 8
16

21 22 23 24

17

12 13 14

11

4 5 63

10 12 13

17 18 19
20

25 26 27

3 4 5

9 10

11

11

15 16 17

common
nodes

Figure 4•33 A cylinder consists of eight blocks. Open circles in the left-hand-side are
control nodes. Tie nodes 164-132, 131-99, 98-66, 65-33, and 32-0 are shown in the right-
hand-side.

132 133

99 100

66
67

33 34

0 131 32

64 65

97 98

130 131

163
164

ri = 0.5

ro = 1

ui=100oC

uo = 0oC

tie nodes
358 Workbook of Applications in VectorSpace C++ Library

Two Dimensional Problems

er-
re gen-
d later is
ener-
odes
found

, it can
ubsec-
t case

xford,
3 c8 = cos(PI/8.0), s8 = sin(PI/8.0),
4 c83 = cos(3.0*PI/8.0), s83 = sin(3.0*PI/8.0),
5 r1 = 0.5, r2 = 1.0;
6 double coord1[7][2] = {{0.0, r1},{c4*r1, s4*r1},{c4, s4},{0.0, r2},
7 {c83*r1, s83*r1},{0.0, 0.0},{c83*r2, s83*r2}},
8 coord2[7][2] = {{c4*r1, s4*r1},{r1, 0.0},{r2, 0.0},{c4, s4},
9 {c8*r1, s8*r1},{0.0, 0.0},{c8*r2, s8*r2}},
10 coord3[7][2] = {{r1, 0.0},{c4*r1, -s4*r1},{c4, -s4},{r2, 0.0},
11 {c8*r1, -s8*r1},{0.0, 0.0},{c8*r2, -s8*r2}},
12 coord4[7][2] = {{c4*r1, -s4*r1},{0.0, -r1},{0.0, -r2},{c4, -s4},
13 {c83*r1, -s83*r1},{0.0, 0.0},{c83*r2, -s83*r2}},
14 coord5[7][2] = {{0.0, -r1},{-c4*r1, -s4*r1},{-c4, -s4},{0.0, -r2},
15 {-c83*r1, -s83*r1},{0.0, 0.0},{-c83*r2, -s83*r2}},
16 coord6[7][2] = {{-c4*r1, -s4*r1},{-r1, 0.0},{-r2, 0.0},{-c4, -s4},
17 {-c8*r1, -s8*r1},{0.0, 0.0},{-c8*r2, -s8*r2}},
18 coord7[7][2] = {{-r1, 0.0},{-c4*r1, s4*r1},{-c4, s4},{-r2, 0.0},
19 {-c8*r1, s8*r1},{0.0, 0.0},{-c8*r2, s8*r2}},
20 coord8[7][2] = {{-c4*r1, s4*r1},{0.0, r1},{0.0, r2},{-c4, s4},
21 {-c83*r1, s83*r1},{0.0, 0.0},{-c83*r2, s83*r2}};
22 int flag[7] = {1, 1, 1, 1, 1, 0, 1};
23 block(this, 5, 5, 7, flag, coord1[0], 0, 0, 28, 28);
24 block(this, 5, 5, 7, flag, coord2[0], 4, 4, 28, 28);
25 block(this, 5, 5, 7, flag, coord3[0], 8, 8, 28, 28);
26 block(this, 5, 5, 7, flag, coord4[0], 12, 12, 28, 28);
27 block(this, 5, 5, 7, flag, coord5[0], 16, 16, 28, 28);
28 block(this, 5, 5, 7, flag, coord6[0], 20, 20, 28, 28);
29 block(this, 5, 5, 7, flag, coord7[0], 24, 24, 28, 28);
30 block(this, 5, 5, 7, flag, coord8[0], 28, 28, 28, 28);

Five tie nodes “164-132”, “131-99”, “98-66”, “65-33”, and “32-0” (see right-hand-side of Eq. 4•33) are gen
ated when the “tail” of the eighth block comes back to meet the “head” of the first block. The tie nodes a
erated when different node number with same coordinates occurs. In fe.lib the nodes that are generate
“tied” to the nodes that are generated earlier. In this example nodes “0”, “33”, “66”, “99”, and “132” are g
ated when the first “block()” function call is made. When the eighth “block()” function call is made later, n
“32”, “65”, “98”, “131”, and “164” will be generated. The tie nodes are formed when the coordinates are
to be the same as that of any node generated previously.

For heat conduction problem, if the boundary condition is symmetrical with respect to the center axis
well be written with axisymmetrical formulation and solve as an one dimension problem such as in the s
tion under the title of “Cylindrical Coordinates For Axisymmetrical Problem” on page 302. For the presen
of the hollow cylinder made of one material, the Eq. 4•111 expressed in cylindrical coordinates is1

1. p. 189 in Carslaw, H.S., and J.C. Jaeger, 1959, “Conduction of heat in solids”, 2nd ed. Oxford University Press, O
UK.
Workbook of Applications in VectorSpace C++ Library 359

Finite Element Method PrimerChapter 4

 condi-

project
ent

34.For
ks to
h three
resent
Eq. 4•113

The general solution is u = A+B ln r. The constants A and B are determined by imposing the boundary
tions. For example, if at inner side of the cylinder of ri the temperature is kept at ui, and at outer side of the cylin-
der of ro the temperature is kept at uo, we have the solution as

Eq. 4•114

The finite element computation can be turned on using the same project “2d_heat_conduction” in
workspace “fe.dsw” by setting macro definition “__TEST_CYLINDER” at compile time. The finite elem
solution in the radial direction is compared to the analytical solution of Eq. 4•114 and shown in Figure 4•
an additional exercise for function “block()”, we proceed with the fourth example of using three bloc
approximate a quarter of a circle. In Chapter 3 on page 195, we approximate a quarter of a circle wit
“block()” function calls. In that case we do not have provision of repeated definitions of nodes. In the p
case, we try to minimize the number of the tie nodes by the following code

1 const double PI = 3.141592653509, c = cos(PI/4.0), s = sin(PI/4.0), c2 = c/2, s2 = s/2;
2 double coord1[4][2] = {{0.0,0.0},{0.5, 0.0},{c2, s2}, {0.0, 0.5}},
3 coord2[6][2] = {{0.5,0.0},{1.0,0.0},{c, s},{c2, s2}, {0.0,0.0},{cos(PI/8.0),sin(PI/8.0)}},
4 coord3[7][2] = {{0.0, 0.5},{c2, s2},{c, s},{0.0,1.0},
5 {0.0, 0.0},{0.0, 0.0}, {cos(3.0*PI/8.0), sin(3.0*PI/8.0)}};
6 int flag1[4] = {1, 1, 1, 1}, flag2[6] = {1, 1, 1, 1, 0, 1}, flag3[7] = {1, 1, 1, 1, 0, 0, 1};
7 block(this, 5, 5, 4, flag1, coord1[0], 0, 0, 4, 4);
8 block(this, 5, 5, 6, flag2, coord2[0], 4, 4, 4, 4);
9 block(this, 5, 5, 7, flag3, coord3[0], 45, 32, 0, 0);

d
dr
----- r

du
dr

 0=

uexact

uiln
ro

r

 uoln
r
ri

 +

ln
ro

ri

---=

Figure 4•34 Finite element nodal solutions in the radial direction comparing to the
analytical solution in Eq. 4•114 for the heat conduction of the cylinder.

0.5 0.6 0.7 0.8 0.9

20

40

60

80

100

oC

r

360 Workbook of Applications in VectorSpace C++ Library

Two Dimensional Problems

-39”,

 intro-

e

The numbering of the elements and nodes for the first two blocks are similar to that of the second example. After
the third block has been generated, 9 tie-nodes will be generated including “45-36”, “46-37”, “47-38”, “48
“49-40”, “54-41”, “59-42”, “64-43”, and “69-44”.

Lagrange 9-nodes Element for Heat Conduction

The element formulation “HeatQ4” implemented the bilinear 4-node element for heat conduction. We
duce a Lagrangian 9-node element “HeatQ9” as follows

1 class HeatQ9 : public Element_Formulation {
2 public:
3 HeatQ9(Element_Type_Register a) : Element_Formulation(a) {}
4 Element_Formulation *make(int, Global_Discretization&);
5 HeatQ9(int, Global_Discretization&);
6 };
7 Element_Formulation* HeatQ9::make(int en, Global_Discretization& gd) {
8 return new HeatQ9(en,gd);
9 }
10 HeatQ9::HeatQ9(int en, Global_Discretization& gd) : Element_Formulation(en, gd) {
11 Quadrature qp(2, 9); // 2-d 3 3 Gaussain quadratur
12 H1 Z(2, (double*)0, qp),
13 N = INTEGRABLE_VECTOR_OF_TANGENT_BUNDLE(

Figure 4•35 Three block function calls to approximate a quarter of a circle. The right-hand-
side shows the element numbering scheme and the left-hand-side shows the node numbering
scheme.

0 1 2 3 4 5 6 7 8

9 10 11 12 13
14 1516 17

18
19 20 21 22

23 2425 26

27
28 29 30 31

32
33

3435

36 37
38

39
4041

42
43

44
45 46

47 48
49

50 51
52

53

54

55 56
57

58

59

60 61 62
63

64

65 66
67

68

69

0 5 6 7

8 9 10 11 12131415

16
18 19 20212223

24 25 26
2728

2930
31

32
33

34
35

36 37
38

39

40 41
42

43

44

1 2 3 4

17

45
46

47

element numbering

node numbering

×

Workbook of Applications in VectorSpace C++ Library 361

Finite Element Method PrimerChapter 4

use the

 line 3 to
t regis-
finition
ace
14 "int, int, Quadrature", 9/*nen*/, 2/*nsd*/, qp),
15 Zai, Eta;
16 Zai &= Z[0]; Eta &= Z[1];
17 N[0] = (1-Zai)*(1-Eta)/4; N[1] = (1+Zai)*(1-Eta)/4; // 4-9 node shape functions
18 N[2] = (1+Zai)*(1+Eta)/4; N[3] = (1-Zai)*(1+Eta)/4;
19 N[8] = (1-Zai.pow(2))*(1-Eta.pow(2));
20 N[0] -= N[8]/4; N[1] -= N[8]/4; N[2] -= N[8]/4; N[3] -= N[8]/4;
21 N[4] = ((1-Zai.pow(2))*(1-Eta)-N[8])/2; N[5] = ((1-Eta.pow(2))*(1+Zai)-N[8])/2;
22 N[6] = ((1-Zai.pow(2))*(1+Eta)-N[8])/2; N[7] = ((1-Eta.pow(2))*(1-Zai)-N[8])/2;
23 N[0] -= (N[4]+N[7])/2; N[1] -= (N[4]+N[5])/2;
24 N[2] -= (N[5]+N[6])/2; N[3] -= (N[6]+N[7])/2;
25 H1 X = N*xl;
26 H0 Nx = d(N) * d(X).inverse();
27 J dv(d(X).det());
28 double k_ = 1.0;
29 stiff &= (Nx * k_ * (~Nx)) | dv; // {9 2}*{2 9}={9 9}
30 }
31 Element_Formulation* Element_Formulation::type_list = 0;
32 Element_Type_Register element_type_register_instance;
33 static HeatQ9 heatq9_instance(element_type_register_instance); // element type # 1
34 static HeatQ4 heatq4_instance(element_type_register_instance); // element type # 0

Lines 17-24 are shape function definition for Lagragian 4-to-9-node element that we have already used in Chap-
ter 3. Lines 33, and 34 register the element formulations. The last element formulation register has the element
type number “0”. This number increases backwards to element(s) registered earlier. We can also
“block()” function call to define Lagrangian 9-node element as (see Figure 4•36)

1 EP::element_pattern EP::ep = EP::LAGRANGIAN_9_NODES;
2 Omega_h::Omega_h() {

...
3 block(this, 5, 5, 7, flag, coord1[0], 0, 0, 28, 14, 1);
4 block(this, 5, 5, 7, flag, coord2[0], 4, 2, 28, 14, 1);
5 block(this, 5, 5, 7, flag, coord3[0], 8, 4, 28, 14, 1);
6 block(this, 5, 5, 7, flag, coord4[0], 12, 6, 28, 14, 1);
7 block(this, 5, 5, 7, flag, coord5[0], 16, 8, 28, 14, 1);
8 block(this, 5, 5, 7, flag, coord6[0], 20, 10, 28, 14, 1);
9 block(this, 5, 5, 7, flag, coord7[0], 24, 12, 28, 14, 1);
10 block(this, 5, 5, 7, flag, coord8[0], 28, 14, 28, 14, 1);
11 }

Line 1 specified the elements generated are Lagragian 9-nodes elements. The last integer argument in
line 10 indicate the element type number is 1, which corresponding to the “HeatQ9” element that we jus
tered. The computation of the Lagragian 9-node elements can be activated by setting macro de
“__TEST_QUADRATIC_CYLINDER” for the same project “2d_heat_conduction” in the project worksp
file “fe.dsw”.

× × ×
362 Workbook of Applications in VectorSpace C++ Library

Two Dimensional Problems

n,
he

late the
Post-Processing—Heat Flux on Gauss Points

After the solutions on temperature distribution is obtained, heat flux can be computed from Fourier law of
heat conduction of Eq. 4•98; i.e.,

This step is often referred to as post-processing in finite element method. The derivatives of shape functio
, on Gaussian integration points are available at the constructor of class “Element_Formulation”. T

gradients of temperature distribution are approximated by

Eq. 4•115

Therefore,

 Eq. 4•116

Therefore, after the solutions of nodal values, , are obtained, we can loop over each element to calcu
heat flux on its Gaussian integration points, such as,

Figure 4•36 9-node Lagrangian quadrilateral elements generated by eight “block()” function
calls.

q κ∇u–=

∇Na ξ η,()

∇ue
h ξ η,() ∇Na ξ η,()ûe

a≡

qe
h κ ∇Na ξ η,()ûe

a()–=

ûe
a

Workbook of Applications in VectorSpace C++ Library 363

Finite Element Method PrimerChapter 4

” to
 for-
 =
imple-
atting.
rted ele-
1 HeatQ4::HeatQ4(int en, Global_Discretization& gd) : Element_Formulation(en, gd) {
2 ...
3 if(Matrix_Representation::Assembly_Switch == Matrix_Representation::FLUX) {
4 H0 flux = INTEGRABLE_VECTOR("int, Quadrature", 2, qp);
5 flux = 0.0;
6 for(int i = 0; i < nen; i++) {
7 flux[0] += - k * Nx[i][0]*(ul[i]+gl[i]); //
8 flux[1] += - k * Nx[i][1]*(ul[i]+gl[i]);
9 }
10 int nqp = qp.no_of_quadrature_point(); cout.flush();
11 for(int i = 0; i < nqp; i++) {
12 cout << setw(9) << en
13 << setw(14) << ((H0)X[0]).quadrature_point_value(i)
14 << setw(14) << ((H0)X[1]).quadrature_point_value(i)
15 << setw(14) << (flux[0].quadrature_point_value(i))
16 << setw(14) << (flux[1].quadrature_point_value(i)) << endl;
17 }
18 } else stiff &= ...
19 }
20 int main() {
21 ...
22 Matrix_Representation::Assembly_Switch = Matrix_Representation::FLUX;
23 cout << "Heat flux on gauss integration points: " << endl;
24 cout.setf(ios::left,ios::adjustfield);
25 cout << setw(9) << " elem #, " << setw(14) << "x-coor.," << setw(14) << "y-coor.,"
26 << setw(14) << " q_x, " << setw(14) << " q_y, " << setw(14) << endl;
27 mr.assembly(FALSE);
28 }

Line 27 in the main() program is to call “Matrix_Representation::assembly()” with an argument “FALSE
indicate that the nodal loading on the right-hand-side is not to be performed. This function invokes element
mulation with a flag in class “Matrix_Representation” set to “Matrix_Representation::Assembly_Switch
Matrix_Representation::FLUX”. The real computation is done at lines 7-8, where these two lines simply
mented the Fourier law of heat conduction. The rest of lines is just the run-of-the-mill C++ output form
The information on the coordinates of the Gauss points and their corresponding heat flux values are repo
ment-by-element.

Post-Processing—Heat Flux Nodal Projection Method

Since the solutions of finite element computation are the temperatures on nodes, we may also interested in
having the heat flux to be reported on nodes. However, nodal heat flux, , requires much more elaborated post-
processing. The heat flux on an element can be interpolated from the nodal heat flux as

Eq. 4•117

q κ∇u–=

q̂e
a

qe
h Na ξ η,()q̂e

a≡
364 Workbook of Applications in VectorSpace C++ Library

Two Dimensional Problems

rror is
ter 3 on

is to

e can

ms”,

ntice-

ear
Since the shape function is an integrable object, its value is actually evaluated and stored only at the Gauss inte-
gration points. Now we can define error as the difference of of Eq. 4•117 with of Eq. 4•116. This e
then distributed over the element domain by making a weighted-residual statement (as Eq. 3•105 of Chap
page 352) with Galerkin weighting that w = Na

Eq. 4•118

Substituting Eq. 4•117 and Eq. 4•116 into Eq. 4•118, we have

Eq. 4•119

We identify, in Eq. 4•119, the consistent mass matrix (with unit density), M, as

Eq. 4•120

The nodal heat flux, , can be solved from Eq. 4•119. This nodal solution procedure is described as smoothing
or projection in finite element.1 An approximation on Eq. 4•120 which alleviates the need for matrix solver
define lumped mass matrix as

Eq. 4•121

This is the row-sum method among many other ways of defining a lumped mass matrix.2

An alternative thinking on Eq. 4•118 of Galerkin weighting of the weighted-residual statement is that w
write least-squares approximation of error as

Eq. 4•122

1. p. 346 in Zienkiewicz, O.C., and R.L. Taylor, 1989, “The finite element method: basic formulation and linear proble
4the ed., vol. 1, McGraw-Hill, London, UK,

see also p. 226 in Hughes, T. J.R., “The finite element method: linear static and dynamic finite element analysis”, Pre
Hall, Inc., Englewood Cliffs, New Jersey.

2. see appendix 8 in Zienkiewicz, O.C., and R.L. Taylor, 1989, “The finite element method: basic formulation and lin
problems”, 4the ed., vol. 1, McGraw-Hill, London, UK.

qe
h qe

h

Na qe
h qe

h–() Ωd
Ω
∫ 0=

NaNb Ωd
Ω
∫

q̂e
b Na κ– ∇Nbûe

b()() Ωd
Ω
∫=

M NaNb Ωd
Ω
∫≡

q̂e
a

ML
NaNb Ωd

Ω
∫

b
∑ a b=,

0 a b≠,

≡

qe
h qe

h–()2 Ωd
Ω
∫ 0=
Workbook of Applications in VectorSpace C++ Library 365

Finite Element Method PrimerChapter 4

t squares

rocess-
nt-by-
9, such
Minimization by taking derivative with respect to the nodal heat flux, , and using its interpolation relation of
Eq. 4•117, gives back to Eq. 4•118. Therefore, the nodal flux can be considered as obtained through leas
approximation too.

Eq. 4•119 can be solved with a full-scale finite element method, direct or iterative. However, as post-p
ing procedure, it will be more desirable to have a simplified approximation that can be performed eleme
element without even to assemble the global mass matrix, or to invoke matrix solver to solve for Eq. 4•11
as,

1 HeatQ4::HeatQ4(int en, Global_Discretization& gd) : Element_Formulation(en, gd) {
2 ...
3 if(Matrix_Representation::Assembly_Switch == Matrix_Representation::NODAL_FLUX) {
4 int flux_no = 2;
5 the_element_nodal_value &= C0(nen*flux_no, (double*)0);
6 C0 projected_nodal_flux = SUBVECTOR("int, C0&", flux_no, the_element_nodal_value);
7 H0 flux = INTEGRABLE_VECTOR("int, Quadrature", flux_no, qp);
8 flux = 0.0;
9 for(int i = 0; i < nen; i++) {
10 flux[0] += - k * Nx[i][0]*(ul[i]+gl[i]);
11 flux[1] += - k * Nx[i][1]*(ul[i]+gl[i]);
12 }
13 for(int i = 0; i < nen; i++) {
14 C0 lumped_mass(0.0);
15 for(int k = 0; k < nen; k++)
16 lumped_mass += (((H0)N[i])*((H0)N[k])) | dv;
17 projected_nodal_flux(i) = (((H0)N[i])*flux | dv) / lumped_mass;
18 }
19 } else stiff &= (Nx * k * (~Nx)) | dv;
20 }

21 int main() {
22 ...
23 Matrix_Representation::Assembly_Switch = Matrix_Representation::NODAL_FLUX;
24 mr.assembly(FALSE);
25 cout << "nodal heat flux:" << endl;
26 for(int i = 0; i < oh.total_node_no(); i++) {
27 int node_no = oh.node_array()[i].node_no();
28 cout << "{ " << node_no << "| "
29 << (mr.global_nodal_value()[i][0]) << ", "
30 << (mr.global_nodal_value()[i][1]) << "}" << endl;
31 }
32 ...
33 }

q̂e
a

366 Workbook of Applications in VectorSpace C++ Library

Two Dimensional Problems

 of
okes
r of ele-
articular
 is done

own
olutions
ate than
es (open
open cir-
Lines 14-16 are the row-sum lumped mass matrix (in Eq. 4•121). Line 17 is the element-by-element solution
approximated Eq. 4•119. In the main() program “NODAL_FLUX” switch is set (line 23) and assembly() inv
the nodal projection procedure through Element_Formulation. Nodal values are shared by various numbe
ments. The assembly() function keeps and internal count on how many evaluations are performed on a p
node, and it will compute an average nodal value from these nodal values for the node. The computation
with macro definitions “__TEST_CYLINDER” and “__TEST_FLUX”. The results of nodal heat flux are sh
in Figure 4•37 The projected nodal heat flux values are obviously less accurate than the temperature s
shown in Figure 4•37a. The projected nodal heat fluxes on the boundaries are significantly less accur
those in the interior. The reason can be easily deduce by studying Figure 4•37b, since the nodal heat flux
squares) are just least squares fit of a set of piece-wise line segments of the Gauss point heat fluxes (
cles).

0.5 0.6 0.7 0.8 0.9

160

180

200

220

240

260

280

Figure 4•37 (a) Nodal heat flux shown in vectors, (b) projected radial heat flux on nodes are
shown in open squares. Heat flux on Gauss points are shown in open circles. The solid curve is the
analytical solution qr = du/dr = 100/(r ln 2), which is obtained from differentiation with respect to
r on Eq. 4•114.

r

q

(a) (b)
Workbook of Applications in VectorSpace C++ Library 367

Finite Element Method PrimerChapter 4

-
wn in

 by def-
4.3.2 Potential Flow

Basic Physics and Element Formulation

We consider incompressible, inviscid fluid which gives the potential flow. The conditions of incompressible
(a solenoidal field) and irrotational (a toroial- free field) give

 , Eq. 4•123

respectively. In 2-D, Eq. 4•123 reduces to the continuity equation

 , Eq. 4•124

and an equation with zero vorticity component perpendicular to the x-y plane

Eq. 4•125

From the continuity equation Eq. 4•124, it follows that u dy - v dx is an total derivative, defined as

 dψ = u dy - v dx Eq. 4•126

where ψ is a scalar function, and

Eq. 4•127

Substituting Eq. 4•127 back to Eq. 4•124 gives the identity of cross derivatives of ψ to be equal. This is the con
dition that ψ to be a potential function in calculus. Integration of Eq. 4•126 along an arbitrary path, as sho
Figure 4•38a, gives the volume flux across the path. Along a stream line the volume flux across it is zero
inition. That is along a streamline ψ is constant. Therefore, the scalar function ψ is known as the stream func-
tion.

Substituting Eq. 4•127 into the condition of irrotationality, Eq. 4•125, gives

Eq. 4•128

We identify that is the Laplace equation.

Similarly starting from Eq. 4•125 of condition of irrotationality, curl v = 0 at all point of the fluid. According
to Stokes’s theorem circulation along any closed loop is zero, as

div u u∇•≡ 0= and curl u u∇×≡, 0=

∂u
∂x
------ ∂v

∂y
------+ 0=

∂u
∂y
------ ∂v

∂x
------– 0=

u
∂ψ
∂y
------- and v, ∂ψ

∂x
-------–= =

div grad ψ() ψ∇() ψ∇2≡∇•≡ ∂2u
∂x2
-------- ∂2v

∂y2
--------+ 0==

ψ∇2 0=
368 Workbook of Applications in VectorSpace C++ Library

Two Dimensional Problems

-

-points.

s of
n

Eq. 4•129

From Figure 4•38b, we have two different integration paths, C1 and C2, along any two points form a closed cir
cle.

Eq. 4•130

Therefore, any two paths of integration give the same result; i.e., the integration depends only on end
Therefore, we can define a potential function φ, i.e.,

Eq. 4•131

φ is known as the velocity potential, and the components of velocity as

Eq. 4•132

Again, substituting Eq. 4•132 back to Eq. 4•125 of condition of irrotationality, we have the cross derivativeφ
which is identical to assert the exact differential nature of φ. Substituting Eq. 4•132 into the continuity equatio
of Eq. 4•124, we have another Laplace equation that

Eq. 4•133

Furthermore, from Eq. 4•127 and Eq. 4•132, we have

Figure 4•38 (a) The volume flux across an arbitrary integration path is equal to u dy - v dx.
If the integration path coincides with the streamline, the volume flux across the integration
path should become zero by definition. (b) The circulation of a loop is zero for irrotational
flow. Therefore, a potential function φ can be defined which only depends on position.

x

y

u

v

dy

dx

volume flux across path
= u dy - v dx

(a)

C1

C2

(b)

A

B

u xd•
C
∫° 0=

u xd•
C1

∫ u xd•
C2

∫+ 0 or u xd•
C1

∫, u xd•
C2

∫–= =

dφ x() u– dx• or φ x()∇, u x()–= =

u
∂φ
∂x
------– and v, ∂φ

∂y
------–= =

φ∇2– 0=
Workbook of Applications in VectorSpace C++ Library 369

Finite Element Method PrimerChapter 4

h other,

th

-

d
i-

differ-

;

Eq. 4•134

This relation ensures that the gradients of stream function and velocity potential are orthogonal to eac
since

Eq. 4•135

The gradients are the normals to the equipotential lines of φ and the streamlines of ψ. Therefore, the “contours”
of φ and ψ are orthogonal to each others.

An example of finite element problem1 (a confined flow around a cylinder is shown in Figure 4•39) in bo
stream function—ψ formulation and velocity potential—φ formulation are solved using VectorSpace C++
Library and “fe.lib” in the followings.

Stream Function—ψ Formulation

Recall Eq. 4•127,

At the right-boundary ΓAE (Figure 4•39b), since u = ∂ψ/d∂, we can integrate ψ as

ψ(y) - ψ0 = U0 y. Eq. 4•136

At the bottom-boundary ΓAB we choose the arbitrary reference value of ψ0 = 0. Therefore, along the left-bound
ary ΓAE, Eq. 4•136 simplified to ψ(y) = U0 y. The streamline at boundary ΓBC follows from the boundary ΓAB
which has ψ =ψ0 (= 0). On the top-boundary ΓED, y = 2, we have ψ(2) = 2U0. Notice that the corner E is share
by the boundaries ΓAE and ΓED. At the right-boundary ΓDC the horizontal velocity, u, is unknown, but the vert
cal velocity v = 0; i.e., v = −∂ψ/∂x = 0.

The Program Listing 4•14 implements the Eq. 4•128 with the above boundary conditions. The only
ence to the 2-D heat conduction problem is the post-processing of the derivative information.

1 if(Matrix_Representation::Assembly_Switch == Matrix_Representation::NODAL_FLUX) {
2 int velocity_no = 2;
3 the_element_nodal_value &= C0(nen*velocity_no, (double*)0);
4 C0 projected_nodal_velocity = SUBVECTOR("int, C0&", velocity_no, the_element_nodal_value)
5 H0 Velocity = INTEGRABLE_VECTOR("int, Quadrature", velocity_no, qp);
6 Velocity = 0.0;
7 for(int i = 0; i < nen; i++) {

1. p. 360-365 in Reddy, J.N., “An introduction to the finite element method”, 2nd ed., McGraw-Hill, Inc., New York.

∂φ
∂x
------–

∂ψ
∂y
-------= and

∂φ
∂y
------–, ∂ψ

∂x
-------–=

φ∇ ψ∇• ∂φ
∂x
------∂ψ

∂x
------- ∂φ

∂y
------∂ψ

∂y
-------+ 0= =

u
∂ψ
∂y
------- and v, ∂ψ

∂x
-------–= =
370 Workbook of Applications in VectorSpace C++ Library

Two Dimensional Problems
8 Velocity[0] += Nx[i][1]*(ul[i]+gl[i]);
9 Velocity[1] += - Nx[i][0]*(ul[i]+gl[i]);
10 }
11 for(int i = 0; i < nen; i++) {
12 C0 lumped_mass(0.0);
13 for(int k = 0; k < nen; k++)
14 lumped_mass += (((H0)N[i])*((H0)N[k])) | dv;
15 projected_nodal_velocity(i) = (((H0)N[i])*Velocity | dv) / lumped_mass;
16 }
17 } else stiff &= (Nx * (~Nx)) | dv;

From Eq. 4•127, the velocity is interpolated at the element formulation level as

Figure 4•39(a) A confined flow around a circular cylinder. Only the upper left quadrant is
model due to symmetries of geometry, boundary conditions, and PDE. (b) stream
function B.C., and (c) velocity potential B.C.

U0

8

4

(a)

(b) stream function B.C. (c) velocity potential B.C.

ψ = y U0

ψ = 0

ψ = 0

ψ = 2U0

∂ψ/∂x = 0

-∂φ/∂x = U0

∂φ/∂y = 0

φ = 0

∂φ/∂n = 0

∂φ/∂y = 0
A B

C

DE

A B

C

DE
Workbook of Applications in VectorSpace C++ Library 371

Finite Element Method PrimerChapter 4
#include "include\fe.h"
EP::element_pattern EP::ep = EP::QUADRILATERALS_4_NODES;
Omega_h::Omega_h() { const double PI = 3.141592653509, c = cos(PI/4.0), s = sin(PI/4.0),

c1 = cos(PI/8.0), s1 = sin(PI/8.0), c2 = cos(3.0*PI/8.0), s2 = sin(3.0*PI/8.0);
double coord0[4][2] = {{0.0, 0.0}, {3.0, 0.0}, {1.0, 2.0}, {0.0, 2.0}},

coord1[5][2] = {{3.0, 0.0}, {4.0-c, s}, {3.0, 2.0}, {1.0, 2.0}, {4.0-c1, s1}},
coord2[5][2] = {{4.0-c, s}, {4.0, 1.0}, {4.0, 2.0}, {3.0, 2.0}, {4.0-c2, s2}};

int control_node_flag[5] = {TRUE, TRUE, TRUE, TRUE, TRUE};
block(this, 5, 5, 4, control_node_flag, coord0[0], 0, 0, 8, 8);
block(this, 5, 5, 5, control_node_flag, coord1[0], 4, 4, 8, 8);
block(this, 5, 5, 5, control_node_flag, coord2[0], 8, 8, 8, 8); }

gh_on_Gamma_h::gh_on_Gamma_h(int df, Omega_h& omega_h) {
__initialization(df, omega_h); const double U0 = 1.0; const double h_y = 0.5;
for(int i = 0; i <= 12; i++) the_gh_array[node_order(i)](0) = gh_on_Gamma_h::Dirichlet;
for(int i = 52; i <= 64; i++) { the_gh_array[node_order(i)](0) = gh_on_Gamma_h::Dirichlet;

the_gh_array[node_order(i)][0] = 2.0*U0; }
for(int i = 1; i <= 4; i++) { the_gh_array[node_order(i*13)](0) = gh_on_Gamma_h::Dirichlet;

the_gh_array[node_order(i*13)][0] = (((double)i)*h_y)*U0; } }
class Irrotational_Flow_Q4 : public Element_Formulation { public:

Irrotational_Flow_Q4(Element_Type_Register a) : Element_Formulation(a) {}
Element_Formulation *make(int, Global_Discretization&);
Irrotational_Flow_Q4(int, Global_Discretization&); };

Element_Formulation* Irrotational_Flow_Q4::make(int en, Global_Discretization& gd) {
return new Irrotational_Flow_Q4(en,gd); }

Irrotational_Flow_Q4::Irrotational_Flow_Q4(int en, Global_Discretization& gd) :
Element_Formulation(en, gd) { Quadrature qp(2, 4);
H1 Z(2, (double*)0, qp), Zai, Eta,

N = INTEGRABLE_VECTOR_OF_TANGENT_BUNDLE("int, int, Quadrature", 4, 2, qp);
Zai &= Z[0]; Eta &= Z[1]; N[0] = (1-Zai)*(1-Eta)/4; N[1] = (1+Zai)*(1-Eta)/4;
N[2] = (1+Zai)*(1+Eta)/4; N[3] = (1-Zai)*(1+Eta)/4;
H1 X = N*xl; H0 Nx = d(N) * d(X).inverse(); J dv(d(X).det());
if(Matrix_Representation::Assembly_Switch == Matrix_Representation::NODAL_FLUX) {

int v_no = 2; the_element_nodal_value &= C0(nen*velocity_no, (double*)0);
C0 projected_nodal_velocity = SUBVECTOR("int, C0&", v_no, the_element_nodal_value);
H0 Velocity = INTEGRABLE_VECTOR("int, Quadrature", v_no, qp); Velocity = 0.0;
for(int i = 0; i < nen; i++) { Velocity[0] += Nx[i][1]*(ul[i]+gl[i]);

Velocity[1] += - Nx[i][0]*(ul[i]+gl[i]); }
for(int i = 0; i < nen; i++) { C0 lumped_mass(0.0);

for(int k = 0; k < nen; k++) lumped_mass += (((H0)N[i])*((H0)N[k])) | dv;
projected_nodal_velocity(i) = (((H0)N[i])*Velocity | dv) / lumped_mass; }

} else stiff &= (Nx * (~Nx)) | dv; }
Element_Formulation* Element_Formulation::type_list = 0;
Element_Type_Register element_type_register_instance;
static Irrotational_Flow_Q4 flowq4_instance(element_type_register_instance);
int main() { int ndf = 1; Omega_h oh; gh_on_Gamma_h gh(ndf, oh); U_h uh(ndf, oh);

Global_Discretization gd(oh, gh, uh); Matrix_Representation mr(gd);
mr.assembly(); C0 u = ((C0)(mr.rhs())) / ((C0)(mr.lhs()));
gd.u_h() = u; gd.u_h() = gd.gh_on_gamma_h(); cout << gd.u_h();
Matrix_Representation::Assembly_Switch = Matrix_Representation::NODAL_FLUX;
mr.assembly(FALSE); cout << "nodal velocity:" << endl;
for(int i = 0; i < uh.total_node_no(); i++)

cout << "{ " << oh.node_array()[i].node_no() << "| " <<
(mr.global_nodal_value()[i]) << "}" << endl;

return 0;
}

define nodes and elements

define B.C.

define element formulation

assembly and matrix solver
update free and fixed dof
post-processing for nodal velocity

Na ξ η,() 1
4
--- 1 ξaξ+() 1 ηaη+()=

ue
h

∂Na

∂y
---------ψ̂a

∂Na

∂x
---------ψ̂a–,

T

=

ûe ML() 1– Nue
h() Ωd

Ω
∫=

ke ∇N ∇N⊗()det
∂x
∂ξ

 dξ

Ωe

∫=

Listing 4•14 Stream function formulation potential flow problem(project “fe.ide”, project “potential_flow”
with macro definition “__TEST_STREAM_FUNCTION” set).
372 Workbook of Applications in VectorSpace C++ Library

Two Dimensional Problems

lines,

32

t

tiza-

roved
Eq. 4•137

The least squares nodal projection can be calculated accordingly as

Eq. 4•138

where ML is the lumped mass matrix. The results of this computation with element discretization, stream
and nodal velocity vectors are shown in Figure 4•40.

Velocity Potential—φ Formulation

The velocity potential formulation has the boundary conditions shown in Figure 4•39(c). Recall Eq. 4•1

Eq. 4•139

At the left-boundary ΓAE of Figure 4•39c, from u = - ∂φ/∂x, we have ∂φ/∂x = - U0. At the top and bottom-bound-
aries ΓAB and ΓED we have ∂φ/∂y = 0. On the cylinder surface ΓBC, ∂φ/∂n = 0, where n is its outward normal. A
the left-boundary ΓCD a reference value of φ is set to zero.

The code is implemented in the same project file without the macro definition
“__TEST_STREAM_FUNCTION” set at compile time. The results of this computation with element discre
tion, velocity equipotential lines, and nodal velocity vectors are shown in Figure 4•41.

Inspecting Figure 4•40 and Figure 4•41, we see that the contours lines of the stream function ψ and velocity
potential φ is orthogonal to each others at every point. This is consistent with the orthogonality condition p

ue
h

∂Na

∂y
---------ψ̂a

∂Na

∂x
---------ψ̂a–,

T

=

ûe ML() 1– Nue
h() Ωd

Ω
∫=

0.25

0.5

0.75
1.0

1.25

1.5

1.75

2.0

0.0

ψ=

Figure 4•40 Finite element discretization (open circles are nodes), streamlines (ψ = 0-2.0 at 0.25
intervals), and nodal velocity vectors shown as arrows.

u
∂φ
∂x
------– and v, ∂φ

∂y
------–= =
Workbook of Applications in VectorSpace C++ Library 373

Finite Element Method PrimerChapter 4

s

 Sons,
in Eq. 4•135. The contours of stream function ψ and velocity potential φ make a smoothed mesh. Actually, thi
is a popular method to generate a finite element mesh automatically.1

1. p.99-106 in George, P.L., 1991, “Automatic mesh generation: application to finite element methods”, John Wiley &
Masson, Paris, France.

0.00.51.0
1.5

2.0

2.53.03.54.04.55.0

0.00.51.01.52.02.53.03.54.04.55.0φ =

Figure 4•41 Finite element discretization (open circles are nodes), velocity equi-potential lines
(φ = 0-5.0 at 0.5 intervals), and nodal velocity vectors shown as arrows.
374 Workbook of Applications in VectorSpace C++ Library

Two Dimensional Problems

 In

4•140
4.3.3 Plane Elasticity

We introduce three commonly used formulations for plane elasticity (1) the coordinate-free tensorial formula-
tion, (2) the indicial notation formulation, and (3) the B-matrix (strain-displacement Matrix) formulation. We begin
from Cauchy’s equation of equilibrium which is the continuum version of Newton’s second law of motion.
static state, the summation of surface force (= divergence of the stress tensor; i.e., div σ) and external
force (f) equals zero. We expressed this balance of forces in both the coordinate free tensorial notation and the
indicial notation as

Eq. 4•140

This is subject to displacement boundary conditions and traction boundary conditions

Eq. 4•141

where t is the traction and n is the outward unit surface normal. The weighted-residual statement of the Eq.
is

Eq. 4•142

Integration by parts and then applying the divergence theorem of Gauss, we have

 : , or

Eq. 4•143

where the gradient operator, “grad”, and its relation to divergence operator, “div”, are

 and , Eq. 4•144

respectively. The trace operator, “tr”, is the summation of all diagonal entries. The operator “:”, in Eq. 4•143, is
the double contraction. Considering the variation of “w” is chosen to be homogeneous at Γg, the second term of
the boundary integral, in Eq. 4•143, can be restricted to Γh as

 : , or

Eq. 4•145

We first develop in tensorial notation for its clarity in physical meaning. The Cauchy stress tensor, σ, in Eq.
4•145 can be decomposed as

Eq. 4•146

σ∇•≡

div σ f+ 0 or σi j j, fi+, 0= =

u g on Γg and t, σ n• ti σijnj h on Γh= = = = =

w div σ f+()
Ω
∫ 0 or wi σi j j, fi+()

Ω
∫, 0= =

grad w()
Ω
∫– σdΩ w σ n•()dΓ wfdΩ 0=

Ω
∫+

Γ
∫+

wi j, σi jdΩ wiσijnjdΓ wifidΩ 0=
Ω
∫+

Γ
∫+

Ω
∫–

grad w ∇w ∇ w⊗ wi j,= = = div w ∇ w• tr grad w() wi i,= = =

grad w()
Ω
∫– σdΩ whdΓh

Γh

∫ wfdΩ 0=
Ω
∫+ +

wi j, σijdΩ wihidΓh wifidΩ 0=
Ω
∫+

Γh

∫+
Ω
∫–

σ p I– τ+=
Workbook of Applications in VectorSpace C++ Library 375

Finite Element Method PrimerChapter 4

 of
where p is the pressure, I is the unit tensor, and τ is the deviatoric stress tensor. For isotropic material, the con-
stitutive equations are

, and Eq. 4•147

where λ and µ are the Lamé constants. µ is often denoted as G for the shear modulus. The operator def u is
defined as the symmetric part of grad u; i.e.,

Eq. 4•148

where the superscript “s” denotes the symmetrical part of grad (), and ε is the (infiniteismal) strain tensor,
and the skew-symmetric part of grad u is defined as

Eq. 4•149

def u and rot u are orthogonal to each other. From Eq. 4•148 and Eq. 4•149, we have the additative decomposi-
tion of grad u as

Eq. 4•150

Recall the first term in Eq. 4•145, and substituting the constitutive equations Eq. 4•146 and Eq. 4•147

 : : Eq. 4•151

Note that,

grad w : I = tr(grad w) = div w Eq. 4•152

The last identity is from the second part of the Eq. 4•144. With the Eq. 4•150 and the orthogonal relationdef
u and rot u, we can verify that

grad w : (2µ def u) = (def u + rot u) : (2µ def u) = 2 µ (def u : def u) Eq. 4•153

where the double contraction of def u can be written as

def u : def u = tr((def u)Tdef u) Eq. 4•154

With Eq. 4•152 and Eq. 4•153, the Eq. 4•151 becomes

 : : Eq. 4•155

With the element shape function defined, e.g., as Eq. 4•104, the element stiffness matrix is

p λ– div u= τ 2µ def u=

def u ∇su
1
2
--- grad u grad u()T+() ε≡ ≡ ≡

∇≡

rot u
1
2
--- grad u grad u()T–()≡

grad u def u rot u+=

grad w()
Ω
∫ σdΩ grad w()

Ω
∫= λIdiv u 2µ def u+()dΩ

grad w()
Ω
∫ σdΩ λ div w • div u() 2µ def w(+[

Ω
∫= def u()]dΩ
376 Workbook of Applications in VectorSpace C++ Library

Two Dimensional Problems

-

)

where indices {a, b} in superscripts and subscripts are the element node numbers.

In the indicial notation, we have the infinitesimal strain tensor εij(u) = def u = u(i,j) (with the parenthesis in
the subscript denotes the symmetric part), and the generalized Hooke’s law as

σij = cijkl εkl Eq. 4•157

cijkl is the elastic coefficients. For isotropic material, it is well-known that

cijkl = λ δij δkl +µ (δik δjl+ δil δjk) Eq. 4•158

where δij is the Kronecker delta (δij = 1 if i = j, otherwise δij =0). The equivalence of Eq. 4•155 is

Eq. 4•159

The last identity is due to the minor symmetry of cijkl. The element stiffness matrix for the indicial notation for-
mulation is

Eq. 4•160

where the indices {i, j} are the degree of freedom numbers (0 i, j < ndf, where ndf is the “number degree of
freedoms” which equals to the nsd the “number of spatial dimension” in the present case; i.e., 0 k < nsd), and
the indices {a, b} are element node numbers (0 a, b < nen, where nen is the “element node number”). The rela
tion of indices {p, q} and {i, a, j, b} are defined as

p = ndf (a-1) + i, and q = ndf (b-1)+j Eq. 4•163

In the engineering convention, the strain tensor, ε, and stress tensor, σ, are flatten out as vectors (e.g., in 2-D

Eq. 4•164

I. Coordinate-Free Tensorial Forumlation:
 : Eq. 4•156ke a φe

a φe
b,() λ div Na • div Nb() 2µ def Na(+[

Ω
∫= = def Nb)]dΩ

wi j, σi jdΩ
Ω
∫ w i j,() cijkl u k l,()dΩ

Ω
∫ wi j, cijkl uk l, dΩ

Ω
∫= =

ke
pq ke

iajb Na k, λ δikδjl() µ δi jδkl δilδkj+()+[] Nb l, dΩ
Ω
∫= =

II. Indicial Notation Forumlation:

 Eq. 4•161ke
ia jb λ Na i, Nb j, dΩ

Ω
∫ µ δi j Na k, Nb k, dΩ

Ω
∫ Na j, Nb i, dΩ

Ω
∫+

+=

≤
≤

≤

ε
εx

εy

γxy

∂u
∂x

∂v
∂y

∂u
∂y

∂v
∂x
------+

∂
∂x
------ 0

0
∂

∂y

∂
∂y

∂
∂x

u

v
and σ,

σx

σy

τxy

= = = =
Workbook of Applications in VectorSpace C++ Library 377

Finite Element Method PrimerChapter 4
The constitutive equation is

σ = D ε Eq. 4•165

In plane strain case, we can show that the fourth-order tensor D becomes a matrix as

Eq. 4•166

in plane stress case, D can be defined by replacing λ by λ, according to

Eq. 4•167

In engineering applications, the Young’s modulus, E, and Poisson’s ratio, ν, are often given instead of the Lamé
constants. They can be related as

Eq. 4•168

rewritten Eq. 4•105 for a = 0, 1, ..., (nen - 1), and i = 0, ..., (ndf - 1)

Eq. 4•169

where ei is the Euclidean basis vector. We can write

ε() = Ba ei Eq. 4•170

Eq. 4•171

The element stiffness matrix of the B-matrix (strain-displacement matrix) formulation is

Eq. 4•172

D
λ 2µ+ λ 0

λ λ 2µ+ 0

0 0 µ
=

λ 2λµ
λ 2µ+
----------------=

λ νE
1 ν+() 1 2ν–()

-------------------------------------- and µ, E
2 1 ν+()
--------------------= =

ue
h ξ η,() Na ξ η,()ûe

a i ei no sum on i(),≡

ue
h ûe

a i

Ba

∂Na

∂x
--------- 0

0
∂Na

∂y

∂Na

∂y

∂Na

∂x

= and B B0 B1 B2 … Bn 1–=,

ke ε δu()Tσ u()dΩ
Ω
∫ ε δu()TDε u()dΩ

Ω
∫= =

III. B-matrix Formulation:

 Eq. 4•173ke
pq ke

ia jb ε δu()TDε u()dΩ
Ω
∫ ei

T Ba
TDBbdΩej

Ω
∫= = =
378 Workbook of Applications in VectorSpace C++ Library

Two Dimensional Problems

, because
 for the
e ele-
er, this
 for a
/3, 1/3}
d “10”,

most
 the
In Eq. 4•173, the relation of indices {p, q} and {i, a, j, b} are defined in Eq. 4•163.

Consider an example of a cantilever beam1 with Young’s modulus E = 30 x106 psi, ν = 0.25 subject to a
uniformly distributed shear stress τ = 150 psi at the end (see Figure 4•42). The shear stress at the end is τy = -150
psi. For boundaries of a 4-node quadrilateral element, we use trapezoidal rule to compute the nodal load
the element boundary is linear. In the trapezoidal rule (Eq. 3•1 of Chapter 3 on page 166), the weighting
end-points of a line segment is {0.5, 0.5}. To element “0”, we add -75 psi to nodes “0”, and “5”, and for th
ment “4”, we also add -75 psi to nodes “5”, and “10”. Adding the nodal loading on the two element togeth
yields nodal load specification of -75, -150, and -75 psi to nodes “0”, “5”, and “10”, respectively. Similarly,
9-nodes Lagrangian element, the boundary is quadratic, we use Simpson’s rule with weightings of {1/3, 4
to compute the three nodes on the boundary. This yields -50, -200, and -50 psi on nodes “0”, “5”, an
respectively. The analytical solution on the tip deflection is

Eq. 4•175

With the given parameters, this value is “-0.51875”.

We proceed to implement this problem in C++ with the aid of VectorSpace C++ Library and “fe.lib”. In
finite element text, the B-matrix formulation is the carnonical formula provided. Therefore, we discuss
implementation of the three formulations in reverse order.

1. p. 473 in Reddy, J.N. 1993, “ An introduction to the finite element method”, 2nd ed., McGraw-Hill, Inc., New York.

×

τy = 150 psi

10 in.

2 in.

fy,10 = -75
fy,5 = -150

fy,0 = -75
0 1 2 3 4

5 6 7 8 9

10 11 12 13 14

0 1 2 3

4 5 6 7
ux,14 = 0

ux,9 = 0, and uy,9 = 0

ux,4 = 0

fy,10 = -50

fy,5 = -200
fy,0 = -50

0 1 2 3 4

5 6 7 8 9

10 11 12 13 14

0 1

ux,14 = 0

ux,9 = 0, and uy,9 = 0

ux,4 = 0

Figure 4•42 Discretization of eight 4-nodes quadrilateral elements or two 9-nodes
Lagrangian elements for a cantilever beam.

v
PL3

3EI
--------- 1

3 1 ν+()
L2

--------------------+–=
Workbook of Applications in VectorSpace C++ Library 379

Finite Element Method PrimerChapter 4

n par-
Implementations for B-Matrix Formulation:

The Program Listing 4•15 implements Eq. 4•173. The Element_Formulation of “ElasticQ4” is

1 static const double a_ = E_ / (1-pow(v_,2)); // plane stress D matrix
2 static const double Dv[3][3] = {{a_, a_*v_, 0.0 },
4 {a_*v_, a_, 0.0 },
5 {0.0, 0.0, a_*(1-v_)/2.0} };
6 C0 D = MATRIX("int, int, const double*", 3, 3, Dv[0]);
7 ElasticQ4::ElasticQ4(int en, Global_Discretization& gd) : Element_Formulation(en, gd) {
8 Quadrature qp(2, 4); // 2-dimension, 2x2 integration points
9 H1 Z(2, (double*)0, qp), // Natrual Coordinates
10 N = INTEGRABLE_VECTOR_OF_TANGENT_BUNDLE(
11 "int, int, Quadrature", 4/*nen*/, 2/*nsd*/, qp),
12 Zai, Eta;
13 Zai &= Z[0]; Eta &= Z[1];
14 N[0] = (1-Zai)*(1-Eta)/4; N[1] = (1+Zai)*(1-Eta)/4;
15 N[2] = (1+Zai)*(1+Eta)/4; N[3] = (1-Zai)*(1+Eta)/4;
16 H1 X = N*xl;
17 H0 Nx = d(N) * d(X).inverse();
18 J dv(d(X).det());
19 H0 w_x = INTEGRABLE_SUBMATRIX("int, int, H0&", 1, nsd, Nx),
20 wx, wy, B;
21 wx &= w_x[0][0]; wy &= w_x[0][1]; // aliase submatrices; 1x2
22 B &= (~wx || C0(0.0)) & // dim B = {3x8}, where dim wx[i] = {1x4}
23 (C0(0.0) || ~wy) &
24 (~wy || ~wx);
25 stiff &= ((~B) * (D * B)) | dv; // {8x3}*{3x3}*{3x8}={8x8}
26 }

Line 17 is the computation of the derivatives of the shape function “Nx” (see Figure 4•43). The “Nx” is the
titioned into submatrix “w_x”. The regular increment submatrices wx &= w_x[0][0] and wy &= w_x[0][1] are

Figure 4•43 Construction of B-matrix using one-by-one concatenation operation.

N0,x

N1,x N1,y

N0,y

N2,x N2,y

N3,yN3,x

w_x

N0,x

N1,x

N2,x

N3,x

N0,y

N1,y

N2,y

N3,y

wx &= wy &=

N0,x N1,x N2,x N3,x

N0,y N1,y N2,y N3,y

N0,x
N0,y N1,y N2,xN2,y N3,xN3,y

0

0 0

0

0

0

0

0

N1,x

node
number

spatial dim.

B &= (~wx || C0(0.0)) &
(C0(0.0) || ~wy) &
(~wy || ~wx);

w_x[0][0] w_x[0][1]

aliase submatrices B-matrix lay-out
380 Workbook of Applications in VectorSpace C++ Library

Two Dimensional Problems
#include "include\fe.h"
static const double L_ = 10.0; static const double c_ = 1.0; static const double h_e_ = L_/2.0;
static const double E_ = 30.0e6; static const double v_ = 0.25;
static const double lambda_ = v_*E_/((1+v_)*(1-2*v_));
static const double mu_ = E_/(2*(1+v_));
static const double lambda_bar = 2*lambda_*mu_/(lambda_+2*mu_);
EP::element_pattern EP::ep = EP::QUADRILATERALS_4_NODES;
Omega_h::Omega_h() {

double x[4][2] = {{0.0, 0.0}, {10.0, 0.0}, {10.0, 2.0}, {0.0, 2.0}}; int flag[4] = {1, 1, 1, 1};
block(this, 3, 5, 4, flag, x[0]);

}
gh_on_Gamma_h::gh_on_Gamma_h(int df, Omega_h& omega_h) { __initialization(df, omega_h);

the_gh_array[node_order(4)](0) = the_gh_array[node_order(9)](0) =
the_gh_array[node_order(9)](0)=the_gh_array[node_order(14)](0)=gh_on_Gamma_h::Dirichlet;
the_gh_array[node_order(0)](1) = the_gh_array[node_order(5)](1) =
the_gh_array[node_order(10)](1) = gh_on_Gamma_h::Neumann;
the_gh_array[node_order(0)][1] = the_gh_array[node_order(10)][1] = -75.0;
the_gh_array[node_order(5)][1] = -150.0;

}
class ElasticQ4 : public Element_Formulation { public:
 ElasticQ4(Element_Type_Register a) : Element_Formulation(a) {}
 Element_Formulation *make(int, Global_Discretization&);
 ElasticQ4(int, Global_Discretization&);
};
Element_Formulation* ElasticQ4::make(int en, Global_Discretization& gd) {

return new ElasticQ4(en,gd);
}
static const double a_ = E_ / (1-pow(v_,2));
static const double Dv[3][3] = {{a_, a_*v_, 0.0}, {a_*v_, a_, 0.0 }, {0.0, 0.0, a_*(1-v_)/2.0} };
C0 D = MATRIX("int, int, const double*", 3, 3, Dv[0]);
ElasticQ4::ElasticQ4(int en, Global_Discretization& gd) : Element_Formulation(en, gd) {

Quadrature qp(2, 4);
H1 Z(2, (double*)0, qp), Zai, Eta,

N = INTEGRABLE_VECTOR_OF_TANGENT_BUNDLE("int, int, Quadrature", 4, 2, qp);
Zai &= Z[0]; Eta &= Z[1];
N[0] = (1-Zai)*(1-Eta)/4; N[1] = (1+Zai)*(1-Eta)/4;
N[2] = (1+Zai)*(1+Eta)/4; N[3] = (1-Zai)*(1+Eta)/4;
H1 X = N*xl;
H0 w_x = INTEGRABLE_SUBMATRIX("int, int, H0&", 1, nsd, Nx), wx, wy, B;
wx &= w_x[0][0]; wy &= w_x[0][1];
B &= (~wx || C0(0.0)) &

(C0(0.0) || ~wy) &
(~wy || ~wx);

stiff &= ((~B) * (D * B)) | dv;
}
Element_Formulation* Element_Formulation::type_list = 0;
Element_Type_Register element_type_register_instance;
static ElasticQ4 elasticq4_instance(element_type_register_instance);
int main() { int ndf = 2; Omega_h oh; gh_on_Gamma_h gh(ndf, oh); U_h uh(ndf, oh);

Global_Discretization gd(oh, gh, uh); Matrix_Representation mr(gd); mr.assembly();
C0 u = ((C0)(mr.rhs())) / ((C0)(mr.lhs()));
gd.u_h() = u; gd.u_h() = gd.gh_on_gamma_h();
cout << gd.u_h();
return 0;

}

Young’s modulus and Poisson ratio
plane stress λ modification

generate nodes and elements
B.C.
u4 = u9 = v9 = u14 = 0

τy0 = τy10 = -75, τy5 = -150

Na ξ η,() 1
4
--- 1 ξaξ+() 1 ηaη+()=

∇N
∂N
∂ξ

 ∂x
∂ξ

 1–
=

Ba

∂Na

∂x
--------- 0

0
∂Na

∂y

∂Na

∂y

∂Na

∂x

=

ke ei
T Ba

TDBbdΩej
Ω
∫=

Listing 4•15 Plane elastiticity (project workspace file “fe.dsw”, project “2d_beam” with Macro definition
“__TEST_B_MATRIX_CONCATENATE_EXPRESSION_SUBMATRIX” set at compile time).
Workbook of Applications in VectorSpace C++ Library 381

Finite Element Method PrimerChapter 4

oper-

ion of

n C++

ary pos-

ut
ns of

-
f the

nts of

e
r this
 macro
also shown. The B-matrix, according to Eq. 4•171, is defined with one-by-one column-wise concatenation
ation “H0::operator || (const H0&)”. When the argument of the concatenation operation is of type C0, it will be
promote to H0 type object before concatenation occurred. Line 25 is the element stiffness matrix definit
the Eq. 4•173.

A complete parallel algorithm, without the use of the one-by-one concatenation operation, results i
statements closer to linear algebraic expression with basis

1 H0 w_x = INTEGRABLE_SUBMATRIX("int, int, H0&", 1, nsd, Nx),
2 wx, wy;
3 wx &= w_x[0][0]; wy &= w_x[0][1];
4 H0 zero = ~wx; zero = 0.0;
5 C0 e3(3), e(ndf), E(nen),
6 U = (e3%e)*(~E);
7 H0 B =+((~wx) * U[0][0] + zero * U[0][1] +
8 zero * U[1][0] + (~wy) * U[1][1] +
9 (~wy) * U[2][0] + (~wx) * U[2][1]) ;
10 stiff &= ((~B) * (D * B)) | dv;

Line 4 takes the size and type of the transpose of “wx”, then re-assigns its values to zero. Line 7 uses un
itive operator “+” to convert a Integrable_Nominal_Submatrix (of object type H0) into a plain Integrable_Matrix
(also of object type H0). We note that the expression “U[2][1]” can be written as “(e3[2] % e[1]) * (~E)” witho
having to define the additional symbol “U = (e3%e)*(~E)”. One needs to set both macro definitio
“__TEST_B_MATRIX_CONCATENATE_EXPRESSION_SUBMATRIX” and “__TEST_BASIS” for this
implementation at compile time

The semantics in the construction of B-matrix in the above is a bottom-up process. We first define the com
ponents of the B-matrix than built the B-matrix with these pre-constructed components. The semantics o
program code can be constructed in a reversed order; i.e., top-down process. We may want to construct the B-
matrix first, giving its size and initialized with default values (“0.0”). Then, we can assign each compone
the B-matrix with its intended values.

1 H0 w_x = INTEGRABLE_SUBMATRIX("int, int, H0&", 1, nsd, Nx),
2 B = INTEGRABLE_MATRIX("int, int, Quadrature", 3, nsd*nen, qp),
3 epsilon = INTEGRABLE_SUBMATRIX("int, int, H0&", 3, nsd, B),
4 wx, wy; // aliases of w_x components
5 wx &= w_x[0][0]; wy &= w_x[0][1];
6 epsilon[0][0] = ~wx; epsilon[0][1] = 0.0; // εx = ∂u/∂x
7 epsilon[1][0] = 0.0; epsilon[1][1] = ~wy; // εy = ∂v/∂y
8 epsilon[2][0] = ~wy; epsilon[2][1] = ~wx; // γxy = ∂u/∂y + ∂v/∂x
9 stiff &= ((~B) * (D * B)) | dv;

The B-matrix is constructed first, then, its components {εx, εy, γxy}
T are assign according to the definition in th

first part of Eq. 4•164 and Eq. 4•170, where the strain “epsilon” is a submatrix referring to “B” matrix. Fo
implementation the same project “2d_beam” in project workspace file “fe.dsw” can be used with only the
definition “__TEST_B_MATRIX_CONCATENATE_EXPRESSION_TOP_DOWN” set.
382 Workbook of Applications in VectorSpace C++ Library

Two Dimensional Problems

the

 above

t algo-
ent of

-typing
verhead

rentice-
The above two methods of programming depend heavily on the submatrix facility in the VectorSpace C++
Library. This dependency can be removed, if we flatten the submatrix into plain matrix with concatenation oper-
ations as (by setting only macro definition “__TEST_B_MATRIX_CONCATENATE_EXPRESSION” in
same project)

1 H0 Nx0, Nx1, Nx2, Nx3; // aliases
2 Nx0 &= Nx[0]; Nx1 &= Nx[1]; Nx2 &= Nx[2]; Nx3 &= Nx[3];
3 H0 B = (Nx0[0] | C0(0.0) | Nx1[0] | C0(0.0) | Nx2[0] | C0(0.0) | Nx3[0] | C0(0.0)) &
4 (C0(0.0) | Nx0[1] | C0(0.0) | Nx1[1] | C0(0.0) | Nx2[1] | C0(0.0) | Nx3[1]) &
5 (Nx0[1] | Nx0[0] | Nx1[1] | Nx1[0] | Nx2[1] | Nx2[0] | Nx3[1] | Nx3[0]);
6 stiff &= ((~B) * (D * B)) | dv;

We see that this implementation takes direct image of the right-hand-side block in the Figure 4•43. In the
code, no submatrix facility is used only the concatenate operator “|” is used to built the B-matrix from ground-up.
Comparing the bottom-up with the top-down algorithms, the only difference is the semantics. In the las
rithm, we have flatten out the submatrix into simple matrix. In doing so, we can avoid using the requirem
submatrix features supported by the VectorSpace C++ Library. We may want to optimize the rapid-proto
code by eliminating the features supported in VectorSpace C++ Library step-by-step, such that the o
caused by the use of VectorSpace C++ Library can be alleviated.

A even more Fortran-like equivalent implementation is as the followings1 (set the macro definition to noth-
ing)

1 H0 k(8, 8, (double*)0, qp), DB(3, nsd, (double*)0, qp), B1, B2;
2 for(int b = 0; b < nen; b++) {
3 B1 &= Nx[b][0]; B2 &= Nx[b][1];
4 DB[0][0] = Dv[0][0]*B1; DB[0][1] = Dv[0][1]*B2; // D*B takes care of zeros
5 DB[1][0] = Dv[0][1]*B1; DB[1][1] = Dv[1][1]*B2;
6 DB[2][0] = Dv[2][2]*B2; DB[2][1] = Dv[2][2]*B1;
7 for(int a = 0; a <= b; a++) {
8 B1 &= Nx[a][0];
9 B2 &= Nx[a][1];
9 k[2*a][2*b] = B1*DB[0][0] + B2*DB[2][0]; // BT* DB takes care of zeros
10 k[2*a][2*b+1] = B1*DB[0][1] + B2*DB[2][1];
11 k[2*a+1][2*b] = B2*DB[1][0] + B1*DB[2][0];
12 k[2*a+1][2*b+1] = B2*DB[1][1] + B1*DB[2][1];
13 }
14 }
15 for(int b = 0; b < nen; b++) // determined by minor symmetry
16 for(int a = b+1; a < nen; a++) {
17 k[2*a][2*b] = k[2*b][2*a];
18 k[2*a][2*b+1] = k[2*b+1][2*a];

1. p. 153 in Thomas J.R. Hughes, 1987, “ The finite element method: Linear and dynamic finite element analysis.”, P
Hall, Englewood Cliffs, New Jersey.
Workbook of Applications in VectorSpace C++ Library 383

Finite Element Method PrimerChapter 4

t
of

er-
mers.

ut using
p where
weights.

 is its

ion of
19 k[2*a+1][2*b] = k[2*b][2*a+1];
20 k[2*a+1][2*b+1] = k[2*b+1][2*a+1];
21 }
22 stiff &= k | dv;

In lines 2-14, provision is taken to eliminate the multiplication with “0” components in BTDB. Only the “nodal
submatrices”—ke

ab in the diagonal and upper triangular matrix of ke is computed. The lower triangular par
matrix is then determined by symmetry with ke

ab = (ke
ba)T (lines 15-21). We recognize that this is the idiom

using the low-level language expression with indices in accessing the submatrices of the matrix ke as “k[ndf a +
i][ndf b + j]”. By this way, we may avoid using the submatrix facility in VectorSpace C++ Library entirely. C
tainly the optimized low-level code is much longer, less readable, and harder to maintain for program
Nonetheless, this last version can be easily optimized even more aggressively in plain C language witho
the VectorSpace C++ Library at all. The last step is to have an numerical integration at the most outer loo
we evaluate all values at Gaussian quadrature points and multiply these values with their corresponding

Implementations for Indicial Notation Formulation:

Recall Eq. 4•161

The integrand of the nodal submatrices kab (ndf ndf submatrices) has the first term(the volumetric part) as

Eq. 4•176

Note that λ may replace λ for the plane stress case in Eq. 4•167. The rest of the integrands of Eq. 4•161
deviatoric part

=

= Eq. 4•177

Eq. 4•176 and Eq. 4•177 are implemented as (by setting, at compile time, the macro definit
“__TEST_INDICIAL_NOTATION_FORMULATION”)

ke
ia jb λ Na i, Nb j, dΩ

Ω
∫ µ δi j Na k, Nb k, dΩ

Ω
∫ Na j, Nb i, dΩ

Ω
∫+

+=

×

λ Na i, Nb j,() λ

∂Na

∂x

∂Nb

∂x

 ∂Na

∂y

∂Nb

∂x

∂Na

∂x

∂Nb

∂y

 ∂Na

∂y

∂Nb

∂y

=

µ δi j Na k, Nb k,() Na j, Nb i,()+()

µ

∂Na

∂x

∂Nb

∂x

 ∂Na

∂y

∂Nb

∂y

 + 0

0
∂Na

∂x

∂Nb

∂x

 ∂Na

∂y

∂Nb

∂y

 +

µ

∂Na

∂x

∂Nb

∂x

 ∂Na

∂y

∂Nb

∂x

∂Na

∂x

∂Nb

∂y

 ∂Na

∂y

∂Nb

∂y

+

µ
2

∂Na

∂x

∂Nb

∂x

 ∂Na

∂y

∂Nb

∂y

 +
∂Na

∂y

∂Nb

∂x

∂Na

∂x

∂Nb

∂y

 ∂Na

∂x

∂Nb

∂x

 2
∂Na

∂y

∂Nb

∂y

 +
384 Workbook of Applications in VectorSpace C++ Library

Two Dimensional Problems

ments
front of
ct type
1 C0 e(ndf), E(nen), U = (e%e)*(E%E);
2 H0 w_x = INTEGRABLE_SUBMATRIX("int, int, H0&", 1, nsd, nx), wx, wy;
3 wx &= w_x[0][0]; wy &= w_x[0][1]; //
4 C0 stiff_vol = lambda_bar* //
5 (//
6 +(wx*~wx*U[0][0]+wx*~wy*U[0][1]+ //
7 wy*~wx*U[1][0]+wy*~wy*U[1][1]) //
8 | d_v);
11 C0 stiff_dev = mu_*
12 (//
13 +((2*wx*~wx+wy*~wy)*((e[0]%e[0])*(E%E))+//
14 (wy*~wx) *((e[0]%e[1])*(E%E))+ //
15 (wx*~wy) *((e[1]%e[0])*(E%E))+ //
16 (wx*~wx+2*wy*~wy)*((e[1]%e[1])*(E%E))//
17)
18 | dv);
19 stiff &= stiff_vol + stiff_dev;

Line 4-8 implements the integrand of the volumetric element stiffness by Eq. 4•176 and line 11-18 imple
the integrand of the deviatoric element stiffness by Eq. 4•177. Note that the unary positive operator in
both line 6 and line 13 are conversion operation to convert an Integrable_Nominal_Submatrix (of obje
H0) into an Integrable_Matrix (of type H0). An Integrable_Submatrix version of this implementation will be

1 H0 vol = INTEGRABLE_MATRIX("int, int, Quadrature", nsd*nen, nsd*nen, qp),
2 vol_sub = INTEGRABLE_SUBMATRIX("int, int, H0&", nsd, nsd, vol);
3 vol_sub[0][0] = wx*~wx; vol_sub[0][1] = wx*~wy;
4 vol_sub[1][0] = wy*~wx; vol_sub[1][1] = wy*~wy;
5 C0 stiff_vol = lambda_bar * (vol | dv);
6 H0 dev = INTEGRABLE_MATRIX("int, int, Quadrature", nsd*nen, nsd*nen, qp),
7 dev_sub = INTEGRABLE_SUBMATRIX("int, int, H0&", nsd, nsd, dev);
8 dev_sub[0][0] = 2*wx*~wx+wy*~wy; dev_sub[0][1] = wy*~wx;
9 dev_sub[1][0] = wx*~wy; dev_sub[1][1] = 2*wy*~wy+wx*~wx;
10 C0 stiff_dev = mu_ * (dev | dv);
11 stiff &= stiff_vol + stiff_dev;

The same implementation with one-by-one concatenation operations “||” and “&&” will be

1 C0 stiff_dev = mu_ *((((2*Wx*~Wx+Wy*~Wy) || (Wy*~Wx)) &&
2 ((Wx*~Wy) || (2*Wy*~Wy+Wx*~Wx))
3) | dv);
4 C0 stiff_vol = lambda_bar *((((Wx*~Wx) || (Wx*~Wy)) &&
5 ((Wy*~Wx) || (Wy*~Wy))
6) | dv);
7 stiff &= stiff_vol + stiff_dev;

λ

∂Na

∂x

∂Nb

∂x

 ∂Na

∂y

∂Nb

∂x

∂Na

∂x

∂Nb

∂y

 ∂Na

∂y

∂Nb

∂y

µ
2

∂Na

∂x

∂Nb

∂x

 ∂Na

∂y

∂Nb

∂y

 +
∂Na

∂y

∂Nb

∂x

∂Na

∂x

∂Nb

∂y

 ∂Na

∂x

∂Nb

∂x

 2
∂Na

∂y

∂Nb

∂y

 +
Workbook of Applications in VectorSpace C++ Library 385

Finite Element Method PrimerChapter 4

 stiff-
terpart

at-

rentice-
The flatten-out coding using concatenation operations “|” and “&” is not recommended, since the 8 8
ness matrix is just too much for either write it all out, or be read easily. An aggressively optimized coun
using less VectorSpace C++ library features is shown in the followings1

1 double c1 = lambda_bar + mu_, c2 = mu_, c3 = lambda_bar; // λ replaces λ for plane stress
2 H0 k(nen*ndf, nen*ndf, (double*)0, qp);
3 for(int b = 0; b < nen; b++) // upper triangular nodal submatrices +
4 for(int j = 0; j < ndf; j++) // diagonal nodal submatrices only
5 for(int a = 0; a <= b; a++) //
6 for(int i = 0; i < ndf; i++) //
7 if((a != b) || (a == b && i <= j)) // ke(temp) =
8 k[i+a*ndf][j+b*ndf] = Nx[a][i]*Nx[b][j]; //
9 for(int i = 1; i < nen*ndf; i++) //
10 for(int j = 0; j < i; j++) //
11 k[i][j] = k[j][i]; // get lower triangualr part by symmetry
12 C0 K = k | dv; // ke
13 for(int b = 0; b < nen; b++) //only the upper triangular of nodal submatrices—ke

ab

14 for(int a = 0; a <= b; a++) {
15 C0 temp = 0.0;
16 for(int k = 0; k < ndf; k++)
17 temp += K[k+a*ndf][k+b*ndf];
18 for(int j = 0; j < ndf; j++)
19 for(int i = 0; i <= j; i++) {
20 if(i == j) // diagonal components of nodal submatrices—ke

iaib

21 K[i+a*ndf][i+b*ndf] = c1*K[i+a*ndf][i+b*ndf]+ c2*temp;
22 else if(a == b) // off-diagonal components of diagonal nodal subm
23 K[i+a*ndf][j+a*ndf] *= c1; // rices—ke

iaja(those in upper triangular of ke; i<j)
24 else { // off-diagonals components
25 double Kij = K[i+a*ndf][j+b*ndf], // of off-diagonal nodal submatrices—ke

iajb (a b)
26 Kji = K[j+a*ndf][i+b*ndf]; //
27 K[i+a*ndf][j+b*ndf] = c3*Kij + c2*Kji;//
28 K[j+a*ndf][i+b*ndf] = c3*Kji + c2*Kij;//
29 } //
30 }
31 }
32 for(int i = 1; i < nen*ndf; i++) // get lower triangular part of ke by symmetry
33 for(int j = 0; j < i; j++) //
34 K[i][j] = K[j][i];
35 stiff &= K;

1. p. 155 in Thomas J.R. Hughes, 1987, “ The finite element method: Linear and dynamic finite element analysis.”, P
Hall, Englewood Cliffs, New Jersey.

×

∂Na

∂x

∂Nb

∂x

 ∂Na

∂y

∂Nb

∂x

∂Na

∂x

∂Nb

∂y

 ∂Na

∂y

∂Nb

∂y

dΩ

Ω
∫

≠

λ
∂Na

∂x

∂Nb

∂y

 µ
∂Na

∂y

∂Nb

∂x

 +
 dΩ

Ω
∫

λ
∂Na

∂y

∂Nb

∂x

 µ
∂Na

∂x

∂Nb

∂y

 +
 dΩ

Ω
∫

386 Workbook of Applications in VectorSpace C++ Library

Two Dimensional Problems

oth of
bmatrix

e

 22-24,

 case the
ls

lified to
 compo-
All integration operations are done with between lines 3-12. Data of the derivatives of shape function are stored
in matrix ke temporarily as

ke
ab (temporary) = Eq. 4•178

Then, ke is overwritten by the rest of the codes. Lines 13-34 will have no integrable objects involved. In b
these two parts, the symmetry consideration is taken, and only the components of the diagonal nodal su
and upper-triangular nodal submatrices belonging to the upper triangular part of ke are calculated, to reduce th
number of calculation. Firstly, line 17 calculates the following quantity and store in the variable “temp”

Eq. 4•179

Lines 20-21 gets diagonal components of the nodal submatrices according to

Eq. 4•180

where the null symbol “ ” denotes the corresponding components in the matrix are not calculated. Lines
and 25-30 get the off-diagonal components of nodal submatrices

Eq. 4•181

Special care is taken in lines 22-23, when the nodal submatrices are diagonal nodal submatrices. In the
node number index is “a”, we have Na,x Na,y = Na,y Na,x. That is the off-diagonal components in the diagona
nodal submatrices in Eq. 4•181 is reduced to

Eq. 4•182

For these diagonal nodal submatrices the off-diagonal components calculation is therefore further simp
lines 22-23. Notice that components in lower-left corner of Eq. 4•182 are not calculated, because these

∂Na

∂x

∂Nb

∂x

 ∂Na

∂y

∂Nb

∂x

∂Na

∂x

∂Nb

∂y

 ∂Na

∂y

∂Nb

∂y

dΩ

Ω
∫

∂Na

∂x

∂Nb

∂x

 ∂Na

∂y

∂Nb

∂y

 + dΩ
Ω
∫

λ 2µ+()
∂Na

∂x

∂Nb

∂x

 µ
∂Na

∂y

∂Nb

∂y

 + ∅

∅ λ 2µ+()
∂Na

∂y

∂Nb

∂y

 µ
∂Na

∂x

∂Nb

∂x

 +

dΩ
Ω
∫

∅

∅ λ
∂Na

∂x

∂Nb

∂y

 µ
∂Na

∂y

∂Nb

∂x

 +

λ
∂Na

∂y

∂Nb

∂x

 µ
∂Na

∂x

∂Nb

∂y

 + ∅

dΩ
Ω
∫

λ µ+() ∅
∂Na

∂x

∂Na

∂y

∅ ∅
dΩ

Ω
∫

Workbook of Applications in VectorSpace C++ Library 387

Finite Element Method PrimerChapter 4

s, they
he
s are all

most
t is most
asticity
ibrary

 com-
r either
 used to

 form

sed

les,
nents belong to the lower triangular part of ke, and they can be obtained by symmetry as in lines 32-34. Lines 24-
29 take care of the rest by Eq. 4•181; i.e., the off-diagonal components in off-diagonal nodal submatrice
all lie in the upper triangular part of ke. This implementation is probably the most efficient of all. However, t
code is quite abstruse without study its comments and explanations carefully. Lots of programming merit
compromised in the name of efficiency.

Implementation for Coordinate-Free Tensorial Formulation:

Now we turn away from the goal of optimization for efficiency completely to the goal of obtaining a
physically and mathematically comprehensive implementation. For research scientists and engineers, i
likely to have a formula available that is derived from physical principles such as the development of el
in the beginning of this section. The finite element formula may not be available. VectorSpace C++ L
together with object-oriented features in C++ language may serve as the rapid proto-typing tools. A high-level
code can be quickly implemented with VectorSpace C++ Library because it provides capability of making
puter code very close to its mathematical counterparts. If it turns out further optimization is necessary fo
saving computation time or memory space, the numerical results of the high-level prototype code can be
debug the optimized code which is often quite un-readable and error-prone.

First we recall Eq. 4•155 for , we have the inner product defined by a symmetrical bilinear

 : Eq. 4•183

The inner product gives a scalar. The implementation for the coordinate free tensorial formulation will be ba
on Eq. 4•156 which is

 : Eq. 4•184

where , and superscripts and subscripts {a, b} are the element node numbers. The element variab
e.g., in 2-D elasticity for bilinear 4-nodes element, are arranged in the order of u = {u0, v0, u1, v1, u2, v2, u3, v3}

T.
The variable vector u has the size of (ndf nen) = 2 4 =8. Therefore, we identify that the finite element space—
Vh(Ωe) has its inner product operation producing an element stiffness matrix, ke , of size (ndf nen) (ndf nen)
= 8 8. We also observed that the differential operators “div”, “def”, and the double contraction “:” on the finite
element space, Vh(Ωe), all need to be defined. The closest thing to the finite element space, Vh(Ωe), in Vector-
Space C++ Library is the type H1 which is an integrable type differentiable up to the first order. However, H1 is
certainly not a finite element space. The inner product of objects defined by H1 will not generate a
(ndf nen) (ndf nen) element stiffness matrix, neither does it has the knowledge of “div”, “def” or “ :” opera-
tors. We may implement a customized, not intended for code reuse, class “H1_h” in ad hoc manner for the finite
element space—Vh(Ωe) as

1 class H0_h; // forward declaration
2 class H1_h { // finite element space—Vh(Ωe), where

V v H1∈{ }≡

a v v,() λdiv v • div v 2µ def v()+[
Ω
∫= def v)]dΩ

ke a Na Nb,() λ div Na div• Nb() 2µ def Na(+[
Ω
∫= = def Nb)]dΩ

Na Vh∈

× ×
× × ×

×

× × ×

V v H1∈{ }≡
388 Workbook of Applications in VectorSpace C++ Library

Two Dimensional Problems

another

ctor of
rgu-
se two

 of the
3 H1 n, x;
4 public:
5 H1_h(H1&, H1&);
6 H0_h div_();
7 H0_h grad_();
8 H0_h grad_t_();
9 H0_h def_();
10 };
11 class H0_h : public H0 { // return type for the differential operators div, grad, def
12 public:
13 H0_h(const H0& a) : H0(a) {}
14 H0 operator ^(const H0_h&); // double contraction “:”
15 };
16 H0_h div(H1_h& n) { return n.div_(); }
17 H0_h grad(H1_h& n) { return n.grad_(); }
18 H0_h grad_t(H1_h& n) { return n.grad_t_(); }
19 H0_h def(H1_h& n) { return n.def_(); }
20 H1_h::H1_h(H1& N, H1& X) { n = N; x = X; }

The differential operators “div” and “def” are applied to the finite element space—Vh(Ωe) which can be imple-
mented as an abstract data type “H1_h”. The return values of these differential operators are of yet
abstract data type “H0_h”. In the terminology of object-oriented analysis, H0_h “IS-A” H0 type. The “IS-A”
relationship between H0_h and H0 is manifested by the definition of class H0_h as publicly derived from class H0
(line 11). We can view class “H0_h” as an extension of class H0 to define the double contraction operation “:”.
The double contraction operator is defined as a public member binary operator “H0_h::operator ^ (const
H0_h&)” (line 14). We emphasize that with the public derived relationship, class H0_h inherits all the public
interfaces and implementations of class H0. Moreover, we design to have H1_h used in the element formulation
as close to the mathematical expression as possible. Lines 16-20 are auxiliary free functions defined to provide
better expressiveness, such that, we may write in element formulation as simple as

1 H1_h N_(N, X);
2 C0 K_vol = lambda_bar*(((~div(N_))*div(N_)) | dv), //
3 K_dev = (2*mu_) * ((def(N_) ^ def(N_)) | dv); // :
4 stiff &= K_vol + K_dev;

which is almost an exact translation of high-flown mathematical expression of Eq. 4•184. The constru
class H1_h take two arguments of type H1. The first argument is the shape functions—“N”, and the second a
ment is the physical coordinates— “X”. The derivatives of the shape function can be computed from the
objects as

H0 Nx = d(N) * d(X).inverse();

These two objects have been defined earlier in the element formulation. Now we get to the definition
divergence operator “div” according to Eq. 4•144

λ div Na div• Nb()dΩ
Ω
∫
2µ def Na(

Ω
∫ def Nb)dΩ
Workbook of Applications in VectorSpace C++ Library 389

Finite Element Method PrimerChapter 4

duct,
(an

 ele-
ordinary
div u = ui,i = Eq. 4•185

Or in the form of the nodal subvector (row-wise) for the finite element space—Vh(Ωe) as

Eq. 4•186

of size 1 8. Eq. 4•186 can be implemented as

1 H0_h H1_h::div_() {
2 H0 Nx = n.d() * x.d().inverse();
3 H0 w_x = INTEGRABLE_SUBMATRIX("int, int, H0&", 1, 2, Nx);
4 H0 wx = (+w_x[0][0]), wy = (+w_x[0][1]);
5 C0 u = BASIS("int", 2), E = BASIS("int", 4);
6 H0 ret_val = wx(0)*(u[0]*E) + wy(0)*(u[1]*E); // Eq. 4•186
7 return ~(+ret_val);
8 }

This divergence operation will return an Integrable_Matrix of size 1 8. Therefore, the inner pro
“ ”, not with respect to node number, will return an element stiffness matrix object
Integrable_Matrix of type H0) of size 8 8. The gradient operator “grad” is defined (also in Eq. 4•144)

Eq. 4•187

Notice that we arrange “u”, “v” in row-wise order to be compatible with the order of the variable vector in
ment formulation. This special ordering makes the gradient tensor in Eq. 4•187 as the transpose of the
mathematical definition on grad u. The nodal submatrices of the return value of “grad” operator are

Eq. 4•188

Eq. 4•188, for “grad” operator on Vh, should return a 2 8 Integrable_Matrix, and it is implemented as

1 H0_h H1_h::grad_() {
2 H0 Nx = n.d() * x.d().inverse();
3 H0 w_x = INTEGRABLE_SUBMATRIX("int, int, H0&", 1, 2, Nx), wx, wy;

∂u
∂x
------ ∂v

∂y
------+

∂Na

∂x

∂Na

∂y

×

×
div div•

×

grad u ∇ u⊗ ui j,

∂u
∂x

∂v
∂x

∂u
∂y
------ ∂v

∂y

= = =

∂Na

∂x

∂Na

∂x

∂Na

∂y

∂Na

∂y

×

390 Workbook of Applications in VectorSpace C++ Library

Two Dimensional Problems

 on

om
4 wx &= ~(+w_x[0][0]); wy &= ~(+w_x[0][1]);
5 C0 eu = BASIS("int", 4),
6 e = BASIS("int", 2),
7 E1 = BASIS("int", 1),
8 E2 = BASIS("int", 4),
9 a = (e%eu)*(E1%E2);
10 H0 ret_val = wx*a[0][0] + wx*a[0][3] + // Eq. 4•188
11 wy*a[1][0] + wy*a[1][3];
12 return ret_val;
13 }

The operator “gradT” is defined independently from “grad” for the finite element space—Vh(Ωe), which can not
be obtained by the transpose of the resulting matrix of “grad”. This is because that the transpose operation
grad is with respect to its spatial derivatives only not with respect to element node number index—a. Both differ-
ential operators “grad” and “gradT” have return value, with the size of 2 8, of type H0_h which is derive fr
Integrable_Matrix of type H0. The operator gradT has its nodal submatrices

Eq. 4•189

which is implemented as

1 H0_h H1_h::grad_t_() {
2 H0 Nx = n.d() * x.d().inverse();
3 H0 w_x = INTEGRABLE_SUBMATRIX("int, int, H0&", 1, 2, Nx), wx, wy;
4 wx &= ~(+w_x[0][0]); wy &= ~(+w_x[0][1]);
5 C0 eu = BASIS("int", 4),
6 e = BASIS("int", 2),
7 E1 = BASIS("int", 1),
8 E2 = BASIS("int", 4),
9 a = (e%eu)*(E1%E2);
10 H0 ret_val = wx*a[0][0] + wy*a[0][2] + //Eq. 4•189
11 wx*a[1][1] + wy*a[1][3];
12 return ret_val;
13 }

The operator “def”, for the finite element space—Vh(Ωe), is defined according to Eq. 4•148

Eq. 4•190

With both “grad” and “gradT” already defined, “def” can be implemented simply as

×

∂Na

∂x

∂Na

∂y

∂Na

∂x

∂Na

∂y

def u
1
2
--- grad u grad u()T+()≡
Workbook of Applications in VectorSpace C++ Library 391

Finite Element Method PrimerChapter 4

•154

values of
1.

over all
inition
ect
1 H0_h H1_h::def_() {
2 H0 ret_val = (+(grad_t(*this) + grad(*this))/2); // Eq. 4•190
3 return ret_val;
4 }

The differential operator def also return a 2 8 H0_h type object. The double contraction is defined in Eq. 4

def u : def u = tr((def u)Tdef u) Eq. 4•191

The implementation of the binary operator “^” as double contraction operator is completely ad hoc. Under the
discretion of the programmer, it has assumed that the two operands of the binary operator are the return
the def operator. The return value has the size of 8 8. This is evident from the left-hand-side of Eq. 4•19

1 H0 H0_h::operator^(const H0_h& a) {
2 H0 ret_val(8, 8, (double*)0, a.quadrature_point());
3 H0 ret_sub = INTEGRABLE_SUBMATRIX("int, int, H0&", 2, 2, ret_val);
4 H0 def_w = INTEGRABLE_SUBMATRIX("int, int, H0&", 2, 4, a);
5 for(int a = 0; a < 4; a++)
6 for(int b = 0; b < 4; b++) {
7 H0 def_wa = +def_w(0,a), def_wb = +def_w(0,b);
8 H0 def_def = (~def_wa)*def_wb; // (def u)T

a (def u)b
9 H0 dds = INTEGRABLE_SUBMATRIX("int, int, H0&", 2, 2, def_def);
10 ret_sub(a,b) = +(dds(0,0)+dds(1,1)); // trace of “(def u)T

a (def u)b”
11 }
12 return ret_val;
13 }

Line 3 is the nodal submatrices that we calculated according to Eq. 4•191, and upon which we loop
nodes. This implementation can be activated by setting, at compile time, the macro def
“__TEST_COORDINATE_FREE_TENSORIAL_FORMULATION” for the same project “2d_beam” in proj
workspace file “fe.dsw”.

The extension of H1 class in VectorSpace C++ Library to finite element space—Vh(Ωe) as H1_h class in the
above is an example of the so-call programming by specification in the object-oriented method.

×

×

392 Workbook of Applications in VectorSpace C++ Library

Two Dimensional Problems

follow-

aps
is not
n, will

s on each
Post-Processing—Nodal Reactions

The reaction on each node can be computed after the displacement is known, according to “Kijuj”. The actual
computation is done at the constructor of class “ElasticQ4”, and is invoked in the main() program as the
ings.

1 ElasticQ4::ElasticQ4(int en, Global_Discretization& gd) : Element_Formulation(en, gd) {
2 ...
3 if(Matrix_Representation::Assembly_Switch == Matrix_Representation::REACTION) {
4 stiff &= K | dv;
5 the_element_nodal_value &= stiff * (ul+gl);
6 } else stiff &=K | dv;
7 }
8 int main() {
9 ...
10 Matrix_Representation::Assembly_Switch = Matrix_Representation::REACTION;
11 mr.assembly(FALSE);
12 cout << "Reaction:" << endl << (mr.global_nodal_value()) << endl;
13 }

The class “Matrix_Representation” has the member function “assembly()” which m
“the_element_nodal_value” to the “mr.global_nodal_value()” used in the “main()” function. The reaction
computed in the present example of project “beam_2d”. The next project “patch_test”, in the next sectio
compute this quantity.

Post-Processing—Stresses on Gauss Points

After the displacement solution is obtained, stresses can be computed from stress-strain relation, e.g., in B-
matrix form of Eq. 4•173, the stress is

Eq. 4•192

After the nodal displacements, , are obtained, we can loop over each element to calculate the stresse
Gaussian integration point as,

1 HeatQ4::HeatQ4(int en, Global_Discretization& gd) : Element_Formulation(en, gd) {
2 ...
3 if(Matrix_Representation::Assembly_Switch == Matrix_Representation::STRESS) {
4 H0 Sigma = INTEGRABLE_VECTOR("int, Quadrature", 3, qp);
5 Sigma = 0.0;
6 for(int i = 0; i < nen; i++) {
7 B1 &= Nx[i][0]; B2 &= Nx[i][1];
8 DB[0][0] = Dv[0][0]*B1; DB[0][1] = Dv[0][1]*B2;
9 DB[1][0] = Dv[0][1]*B1; DB[1][1] = Dv[1][1]*B2;
10 DB[2][0] = Dv[2][2]*B2; DB[2][1] = Dv[2][2]*B1;

σe
h DBûe

a=

ûe
a

Workbook of Applications in VectorSpace C++ Library 393

Finite Element Method PrimerChapter 4

 projec-
ction by
11 Sigma += DB(0)*(ul[i*ndf]+gl[i*ndf]) + DB(1)*(ul[i*ndf+1]+gl[i*ndf+1]); //
12 }
13 int nqp = qp.no_of_quadrature_point();
14 for(int i = 0; i < nqp; i++) {
15 cout << setw(9) << en
16 << setw(14) << ((H0)X[0]).quadrature_point_value(i)
18 << setw(14) << ((H0)X[1]).quadrature_point_value(i)
19 << setw(14) << (Sigma[0].quadrature_point_value(i))
20 << setw(14) << (Sigma[1].quadrature_point_value(i))
21 << setw(14) << (Sigma[2].quadrature_point_value(i)) << endl;
22 }
23 } else stiff &= ...
24 }
25 int main() {
26 ...
27 Matrix_Representation::Assembly_Switch = Matrix_Representation::STRESS;
28 cout << << "gauss point stresses: " << endl;
29 cout.setf(ios::left,ios::adjustfield);
30 cout << setw(9) << " elem #, " << setw(14) << "x-coor.," << setw(14) << "y-coor.,"
31 << setw(14) << "sigma-11," << setw(14) << "sigma-22," << setw(14) << "sigma-12" << endl;
32 mr.assembly(FALSE);
33 }

Post-Processing—Stress Nodal Projection Method

Stress projection for nodal stress, , is similar to the heat flux projection on node , the element stresses
are interpolated from the nodal stresses as

Eq. 4•193

The weighted-residual statement with Galerkin weighting that w = Na

Eq. 4•194

Substituting Eq. 4•192 and Eq. 4•117 into Eq. 4•118, we have

Eq. 4•195

The nodal stresses can be solved for from Eq. 4•195. Following the same procedure for the heat flux
tion on node, in the previous section, Eq. 4•195 can be approximated similarly for the stress nodal proje
implementing the following codes.

σe
h DBûe

a=

σ̂e
a

q̂e
a

σe
h

Na ξ η,()σ̂e
a

≡

Na σe
h σe

h–() Ωd
Ω
∫ 0=

NaNb Ωd
Ω
∫

 σ̂e

b
Na DBûe

a()() Ωd
Ω
∫=

σ̂e
a

394 Workbook of Applications in VectorSpace C++ Library

Two Dimensional Problems

 flag
and
y. The
teral ele-

ng and
1 ElasticQ4::ElasticQ4(int en, Global_Discretization& gd) : Element_Formulation(en, gd) {
2 ...
3 if(Matrix_Representation::Assembly_Switch == Matrix_Representation::NODAL_STRESS) {
4 int stress_no = (ndf+1)*ndf/2;
5 the_element_nodal_value &= C0(nen*stress_no, (double*)0);
6 C0 projected_nodal_stress = SUBVECTOR("int, C0&", stress_no, the_element_nodal_value);
7 H0 Sigma = INTEGRABLE_VECTOR("int, Quadrature", 3, qp);
8 Sigma = 0.0;
9 for(int i = 0; i < nen; i++) {
10 B1 &= Nx[i][0]; B2 &= Nx[i][1];
11 DB[0][0] = Dv[0][0]*B1; DB[0][1] = Dv[0][1]*B2;
12 DB[1][0] = Dv[0][1]*B1; DB[1][1] = Dv[1][1]*B2;
13 DB[2][0] = Dv[2][2]*B2; DB[2][1] = Dv[2][2]*B1;
14 Sigma += DB(0)*(ul[i*ndf]+gl[i*ndf]) + DB(1)*(ul[i*ndf+1]+gl[i*ndf+1]);
15 }
16 for(int i = 0; i < nen; i++) {
17 C0 lumped_mass = ((H0)N[i]) | dv;
18 projected_nodal_stress(i) = (((H0)N[i])*Sigma | dv) / lumped_mass;
19 }
20 } else stiff &= K | dv;
21 }
22 int main() {
23 ...
24 Matrix_Representation::Assembly_Switch = Matrix_Representation::NODAL_STRESS;
25 mr.assembly(FALSE);
26 cout << "nodal stresses: " << endl;
27 for(int i = 0; i < oh.total_node_no(); i++) {
28 int node_no = oh.node_array()[i].node_no();
29 cout << "{ " << node_no << "| "
30 << (mr.global_nodal_value()[i][0]) << ", "
31 << (mr.global_nodal_value()[i][1]) << ", "
32 << (mr.global_nodal_value()[i][2]) << "}" << endl;
33 }
34 ...
35 }

The computation of strains on Gaussian integration points and nodes is similar to the computation of stresses. In
place of Eq. 4•192 for stresses, we have strains computed according to . The
“Matrix_Representation::Assembly_Switch” is now set to “Matrix_Representation::STRAIN”
“Matrix_Representation::NODAL_STRAIN” for Gauss point stresses and nodal stresses, respectivel
results of relative magnitudes of displacements, nodal stresses and nodal strains of the 4-node quadrila
ment are shown in Figure 4•44.

We introduce the notorious pathology of the finite element method by demonstrating (1) shear locki
(2) dilatational locking for the bilinear four-node element in plane elasticity.

εe
h Bûe

a=
Workbook of Applications in VectorSpace C++ Library 395

Finite Element Method PrimerChapter 4
Figure 4•44Displacement (arrows), nodal stresses (crossed-hairs, solid line for compression, dashed
line for tension), and nodal strain (ellipsoidals) of the beam bending problem. The magnitudes of these
three quantities have all been re-scaled.
396 Workbook of Applications in VectorSpace C++ Library

Two Dimensional Problems

s shown

- axes,

-
d. The
ese

ms”,
Shear Locking of Bilinear 4-Node Element

The bilinear 4-node element has shape functions as

Eq. 4•196

We considered a special case of a rectangle (Eq. 4•45a), for simplicity, under applied bending moment a
in Figure 4•45. Therefore, the finite element space is spanned by the bases of P = {1, ξ, η, ξη}. Since referential
coordinates ξ- and η- axes of the rectangle is assumed to coincide with the physical coordinates x- and y
the finite element space is also spanned by {1, x, y, xy}. The solution to the displacement field u = [u, v]T for the
bending problem, in plane stress, is1

Eq. 4•197

This analytical solution is shown in Figure 4•45b with υ = 0 for simplicity. The horizontal displacement compo
nent, u = xy, will be represented correctly by the bilinear four-node element, since the basis “xy” is include
quadratic terms, x2 and y2, in the solution of vertical displacement “v” will not be captured by the element. Th
quadratic forms of solution will be “substituting” or “aliasing” to the linear combination of bases in P. For the
bilinear four-node element the shape functions Eq. 4•196 can be expressed in its generic form as “ Na = PC-1 ”.2

Therefore, from Eq. 4•196, we have

Eq. 4•198

1. p.218 in MacNeal, R.H., 1994, “Finite elements: their design and performance”, Marcel Dekker, Inc., New York.

2. p. 116 in Zienkiewicz, O.C. and R.L. Taylor, 1989, “The finite element method: basic formulation and linear proble
vol. 1, McGraw-Hill book company, UK.

Na ξ η,() 1
4
--- 1 ξaξ+() 1 ηaη+()=

u u

v

xy

1
2
---x2–

υ
2
---y2–

= =

Figure 4•45 Rectangular element shear locking analysis.

η

ξ
1

Λ
(a) (b) (c)

key-stoning; u = xy, v = const.in-plane bending

ue
h ξ η,() Na ξ η,()ûe

a≡ P ξ η,()C 1– ûe
a= where C 1–, 1

4

1 1 1 1

1– 1 1 1–

1– 1– 1 1

1 1– 1 1–

=

Workbook of Applications in VectorSpace C++ Library 397

Finite Element Method PrimerChapter 4

ng

. The
 aspect

a “key-
to the

ondition
Let’s exam the “aliasing” of a quadratic solution u = ξ2 into a bilinear four-node element. The correspondi
nodal values and discretized variable are

, Eq. 4•199

and,

Eq. 4•200

That is we have the alias of . By symmetry of the element we can also obtain the alias of
vertical displacement solution in the bending problem in Eq. 4•197 will then be aliased, considering the
ratio “Λ” in the transformation of natural to physical coordinates in a rectangular element, into

Eq. 4•201

With vertical displacement “v” as constant through out the element domain, the deformation becomes
stoning” or “x-hourglass” mode (see Figure 4•45c, where the constant “v” is set to zero for comparing
original configuration). That is the lower-order element, such as the bilinear 4-node element, exhibits locking
phenomenon, when a boundary value problem corresponding to a higher-order solution is imposed.

The analytical strain, derived from Eq. 4•197, corresponding to the bending problem is

Eq. 4•202

where u and v are solutions in Eq. 4•197. The bilinear 4-node element under the same bending c
responds with the solution in Eq. 4•201, and we have the corresponding strains as

ûe
a ue

h

ûe
a ξa()2

ξ0
2

ξ1
2

ξ2
2

ξ3
2

1

1

1

1

= = =

ue
h PC 1–

ûe
a

1 ξ η ξη
1
4

1 1 1 1

1– 1 1 1–

1– 1– 1 1

1 1– 1 1–

 1

1

1

1

1= = =

ξ2 1⇒ η2 1⇒

u xy= and v
Λ2

2
------–

ν
2
---– cons ttan= =,

εx

εy

γxy

∂u
∂x

∂v
∂y

∂v
∂x
------ ∂u

∂y
------+

y

νy–

0

= =
398 Workbook of Applications in VectorSpace C++ Library

Two Dimensional Problems

t
this
rain

on-
 on

 and v’

the sec-
ter

on.)

rglass)
d at the
Eq. 4•203

Comparing Eq. 4•202 and Eq. 4•203, both εy and γxy are in error. With Poisson’s ratio in the range of ν = [0, 0.5],
γxy will be more serious than εy. The source of error is the interpolating failure of the bilinear four node elemen
which leads to the aliasing of x2 and y2 terms in Eq. 4•197 into constants in Eq. 4•201. A partial solution to
locking problem is to evaluate γxy at ξ = 0, and η = 0. That is one Gauss point integration of in-plane shear st
at the center of the element, and 2 2 integration for the remaining direct strain components εx and εy. A more
satisfactory treatment is to add back both x2 and y2 to the set of shape functions which is the subject of “non-c
forming element” in page 502 of Chapter 5. We introduce the treatment by selective reduced integrationin-
plane shear strain γxy(at ξ = 0, η = 0) in the followings.

Eq. 4•176 and Eq. 4•177 are re-written as

Eq. 4•204

and

= Eq. 4•205

Notice that the positions in the stiffness matrix corresponding to variables u and v and their variations u’
as

Eq. 4•206

The components in Eq. 4•204 and the first term in Eq. 4•205 only involve the direct strains εx(=u,x) and εy(=v,y).
These terms are evaluated with 2 2 points Gauss integration (the full-integration). The components in
ond term of Eq. 4•205 involve the in-plane shear strain γxy(=u,y+v,x), and these are to be evaluated at the cen
of the element where ξ = 0, η = 0. This term is applied with 1-point Gauss integration (the reduced integrati

In retrospect, had we apply 1-point integration to all terms, spurious modes (x-hourglass and y-hou
will arise. That is the two hourglass modes become eigenvectors for the stiffness matrix that is evaluate
center of the element. This is evident from Figure 4•45c. The cross-hairs which parallel to the ξ, η axes are dis-

εx

εy

γxy

y

0

x

=

×

λ Na i, Nb j,() λ

∂Na

∂x

∂Nb

∂x

 ∂Na

∂x

∂Nb

∂y

∂Na

∂y

∂Nb

∂x

 ∂Na

∂y

∂Nb

∂y

=

µ δij Na k, Nb k,() Na j, Nb i,()+()

µ
2

∂Na

∂x

∂Nb

∂x

 0

0 2
∂Na

∂y

∂Nb

∂y

µ

∂Na

∂x

∂Nb

∂x

 ∂Na

∂y

∂Nb

∂x

∂Na

∂x

∂Nb

∂y

 ∂Na

∂y

∂Nb

∂y

+

u’u() u’v()
v’u() v’v()

×

Workbook of Applications in VectorSpace C++ Library 399

Finite Element Method PrimerChapter 4

r an iso-
invariant

 inte-

m.
al terms
d of the
 to make

es that
ssume
thod.

finition

ement
trapezoid

inimize
ersarily
ent in-

lement

w York.
torted at 2 2 Gauss integration points, while it is totally undisturbed at the center of the hourglass deformation
mode. That is the hourglass modes give zero energy if 1-point Gauss integration is used. An alternative view is
reveal by the rank of the element stiffness matrix. The bilinear four-node element has 4(nen) 2(ndf) = 8 d.o.f. If
the three rigid body modes have been properly constrained for the problem, we are left with 8-3 = 5 d.o.f. The
rank of the stiffness matrix is provided by number of integration points (1) times the number of stress-strain rela-
tions (3); i.e., 1 3 = 3. Therefore, the rank deficiency for the 1-point integration element stiffness matrix is 5-3
= 2, which corresponding to the x-hourglass and y-hourglass modes. Therefore, in the selective reduced integra-
tion, the 2 2 integration on the terms involving the direct strains εx and εy provides a finite stiffness for the x-
hourglass and y-hourglass modes to prevent them from becoming spurious. The selective reduced integration on
the offending in-plane shear term is implemented in Program Listing 4•16 (project: “invariance_formulation” in
project workspace file “fe.dsw”).

However, the selective reduced integration for curing the in-plane shear locking has a side effect. Fo
parametric element such as the bilinear 4-node element, we expect spatial isotropy; i.e., the element is
with respect to rotation since a complete order of polynomial has been used; i.e., the so-called completeness
requirement. This is true only if the element stiffness matrix is fully integrated. When the selective reduced
gration is applied to the second term in Eq. 4•205 that involves in-plane shear strain γxy , the spatial isotropy
will be lost. Therefore the orientation of an element does matter.

A first-order approximation can be proposed to correct the frame dependent problem for the shear ter1 The
idea is the shear term presented in Eq. 4•205 is not symmetrical. We can symmetrize the two off-diagon
by choosing a local preferred coordinate system x’ as shown in Figure 4•46. The origin is at the centroi
element (computed as the intersections of two opposing mid-side line segments). The x’ and y’ axes are
angles with ξ and η axes in natural coordinates such that

Eq. 4•207

This approximation is possible to make the shear term nearly invariant if we deal only with element shap
are very close to a square element. At the limit of infinitesimal coordinate transformation, Eq. 4•207 is to a
the “spin” at the centroid vanishes, which is adopted in the “co-rotational” formulation in finite element me
The invariance formulation, discussed in the above, can be activated by setting macro de
“__TEST_HUGHES” at compile time.

Unfortunately, for an arbitrary element shape, the mapping from the reference element (in ξ, η) to physical
element (in x, y) is unlikely to be infinitesimal as can be approximated in Eq. 4•207. For an arbitrary el
shape, we can decomposed the shape distortion into eigenvectors as rectangular, parallelogram, and
shapes (see Figure 4•48b). There is no practical invariance formulation that can remove the shape sensitivity if
the trapezoid component for a particular element shape is strong.2 In a finite element program, which often
implemented with sparse matrix technique, the node-ordering can be changed, for example, in order to m
the bandwidth of the global stiffness matrix. Sudden change of the node-ordering can therefore inadv
change the value of the global stiffness matrix dramatically. A practical fixed to remedy the frame depend

1. see project in p. 261-262 from Hughes, T.J.R., 1987, “ The finite element method: linear static and dynamic finite e
analysis”, Prentice-Hall, Inc., Englewood Cliffs, New Jersey.

2. see p.241-248 in MacNeal, R.H., 1994, “Finite elements: their design and performance”, Marcel Dekker, Inc., Ne

×

×

×

×

∂ξ
∂y
------ yd

∂η
∂x
------ xd=
400 Workbook of Applications in VectorSpace C++ Library

Two Dimensional Problems
#include "include\fe.h"
static const double L_ = 10.0; static const double c_ = 1.0; static const double h_e_ = L_/4.0;
static const double E_ = 30.0e6; static const double v_ = 0.25;
static const double lambda_ = v_*E_/((1+v_)*(1-2*v_));
static const double mu_ = E_/(2*(1+v_));
static const double lambda_bar = 2*lambda_*mu_/(lambda_+2*mu_);
static const double K_ = lambda_bar+2.0/3.0*mu_;
static const double e_ = 0.0;
Omega_h::Omega_h() {

Node *node; double v[2]; int ena[4]; Omega_eh *elem;
v[0] = 0.0; v[1] = 0.0; node = new Node(0, 2, v); node_array().add(node);
v[0] = h_e_-e_; node = new Node(1, 2, v); node_array().add(node);
v[0] = 2.0*h_e_-2.0*e_; node = new Node(2, 2, v); node_array().add(node);
v[0] = 3.0*h_e_-e_; node = new Node(3, 2, v); node_array().add(node);
v[0] = 4.0*h_e_; node = new Node(4, 2, v); node_array().add(node);
v[0] = 0.0; v[1] = 1.0*c_; node = new Node(5, 2, v); node_array().add(node);
v[0] = 1.0*h_e_; node = new Node(6, 2, v); node_array().add(node);
v[0] = 2.0*h_e_; node = new Node(7, 2, v); node_array().add(node);
v[0] = 3.0*h_e_; node = new Node(8, 2, v); node_array().add(node);
v[0] = 4.0*h_e_; node = new Node(9, 2, v); node_array().add(node);
v[0] = 0.0; v[1] = 2.0*c_; node = new Node(10, 2, v); node_array().add(node);
v[0] = h_e_+e_; node = new Node(11, 2, v); node_array().add(node);
v[0] = 2.0*h_e_+2.0*e_; node = new Node(12, 2, v); node_array().add(node);
v[0] = 3.0*h_e_+e_; node = new Node(13, 2, v); node_array().add(node);
v[0] = 4.0*h_e_; node = new Node(14, 2, v); node_array().add(node);
ena[0] = 0; ena[1] = 1; ena[2] = 6; ena[3] = 5;
elem = new Omega_eh(0, 0, 0, 4, ena); omega_eh_array().add(elem);
ena[0] = 1; ena[1] = 2; ena[2] = 7; ena[3] = 6;
elem = new Omega_eh(1, 0, 0, 4, ena); omega_eh_array().add(elem);
ena[0] = 2; ena[1] = 3; ena[2] = 8; ena[3] = 7;
elem = new Omega_eh(2, 0, 0, 4, ena); omega_eh_array().add(elem);
ena[0] = 3; ena[1] = 4; ena[2] = 9; ena[3] = 8;
elem = new Omega_eh(3, 0, 0, 4, ena); omega_eh_array().add(elem);
ena[0] = 5; ena[1] = 6; ena[2] = 11; ena[3] = 10;
elem = new Omega_eh(4, 0, 0, 4, ena); omega_eh_array().add(elem);
ena[0] = 6; ena[1] = 7; ena[2] = 12; ena[3] = 11;
elem = new Omega_eh(5, 0, 0, 4, ena); omega_eh_array().add(elem);
ena[0] = 7; ena[1] = 8; ena[2] = 13; ena[3] = 12;
elem = new Omega_eh(6, 0, 0, 4, ena); omega_eh_array().add(elem);
ena[0] = 8; ena[1] = 9; ena[2] = 14; ena[3] = 13;
elem = new Omega_eh(7, 0, 0, 4, ena); omega_eh_array().add(elem);

}
gh_on_Gamma_h::gh_on_Gamma_h(int df, Omega_h& omega_h) {

__initialization(df, omega_h); int row_node_no = 5, col_node_no = 3;
the_gh_array[node_order(4)](0) = the_gh_array[node_order(14)](0) =
the_gh_array[node_order(4)](1) = the_gh_array[node_order(9)](1) =

gh_on_Gamma_h::Dirichlet;
for(int i = 0; i < col_node_no; i++) {

the_gh_array[node_order(i*row_node_no)](1) = gh_on_Gamma_h::Neumann;
if(i == 0 || i == (col_node_no-1)) the_gh_array[node_order(i*row_node_no)][1] = -75.0;
else the_gh_array[node_order(i*row_node_no)][1] = -150.0;

}
}
class Elastic_Invariant_Formulation_Q4 : public Element_Formulation { public:

Elastic_Invariant_Formulation_Q4(Element_Type_Register a) : Element_Formulation(a) {}
Element_Formulation *make(int, Global_Discretization&);
Elastic_Invariant_Formulation_Q4(int, Global_Discretization&);

};

Young’s modulus and Poisson ratio

plane stress λ modification

define nodes

define elements

B.C.
u4 = u9 = v9 = u14 = 0

τy0 = τy10 = -75, τy5 = -150
Workbook of Applications in VectorSpace C++ Library 401

Finite Element Method PrimerChapter 4
Element_Formulation* Elastic_Invariant_Formulation_Q4::make(int en,
Global_Discretization& gd) { return new Elastic_Invariant_Formulation_Q4(en,gd); }

Elastic_Invariant_Formulation_Q4::Elastic_Invariant_Formulation_Q4(
int en, Global_Discretization& gd) : Element_Formulation(en, gd) {
Quadrature qp(2, 4);
H1 Z(2, (double*)0, qp), Zai, Eta,

N = INTEGRABLE_VECTOR_OF_TANGENT_BUNDLE("int, int, Quadrature", 4, 2, qp);
Zai &= Z[0]; Eta &= Z[1];
N[0] = (1-Zai)*(1-Eta)/4; N[1] = (1+Zai)*(1-Eta)/4;
N[2] = (1+Zai)*(1+Eta)/4; N[3] = (1-Zai)*(1+Eta)/4;
H1 X = N*xl; H0 Nx = d(N) * d(X).inverse(); J dV(d(X).det());
H0 W_x = INTEGRABLE_SUBMATRIX("int, int, H0&", 1, nsd, Nx), Wx, Wy;
Wx &= W_x[0][0]; Wy &= W_x[0][1];
C0 e = BASIS("int", ndf), E = BASIS("int", nen),

u = e*E, U = (e%e)*(E%E);
C0 stiff_vol = (lambda_bar*(+((Wx*~Wx)*U[0][0]+(Wx*~Wy)*U[0][1]+

 (Wy*~Wx)*U[1][0]+(Wy*~Wy)*U[1][1]))) | dV;

Quadrature qp1(2, 1);
H1 z(2, (double*)0, qp1), zai, eta,

n = INTEGRABLE_VECTOR_OF_TANGENT_BUNDLE("int, int, Quadrature", 4, 2, qp1);
zai &= z[0]; eta &= z[1];
n[0] = (1.0-zai)*(1.0-eta)/4.0; n[1] = (1.0+zai)*(1.0-eta)/4.0;
n[2] = (1.0+zai)*(1.0+eta)/4.0; n[3] = (1.0-zai)*(1.0+eta)/4.0;
H1 x = n*xl; H0 nx = d(n) * d(x).inverse(); J dv(d(x).det());
H0 w_x = INTEGRABLE_SUBMATRIX("int, int, H0&", 1, nsd, nx), wx, wy;
wx &= w_x[0][0]; wy &= w_x[0][1];
C0 stiff_dev_shear = mu_* (+((wy*~wy)*U[0][0] +(wy*~wx)*U[0][1]+

(wx*~wy)*U[1][0] +(wx*~wx)*U[1][1]))| dv;

H1 x1 = N*xl; H0 nx1 = d(n) * d(x1).inverse(); J dv1(d(x1).det());
H0 w_x1 = INTEGRABLE_SUBMATRIX("int, int, H0&", 1, nsd, nx1), wx1, wy1;
wx1 &= w_x1[0][0]; wy1 &= w_x1[0][1];
C0 stiff_dev_direct_strain = (2.0*mu_)*

 (+((wx1*~wx1)*U[0][0]+(wy1*~wy1)*U[1][1]))| dv1;
C0 stiff_dev = stiff_dev_shear + stiff_dev_direct_strain;
stiff &= stiff_vol + stiff_dev;

}
Element_Formulation* Element_Formulation::type_list = 0;
Element_Type_Register element_type_register_instance;
static Elastic_Invariant_Formulation_Q4

elastic_invariant_formulation_q4_instance(element_type_register_instance);
int main() {

int ndf = 2;
Omega_h oh;
gh_on_Gamma_h gh(ndf, oh);
U_h uh(ndf, oh);
Global_Discretization gd(oh, gh, uh);
Matrix_Representation mr(gd);
mr.assembly();
C0 u = ((C0)(mr.rhs())) / ((C0)(mr.lhs()));
gd.u_h() = u;
gd.u_h() = gd.gh_on_gamma_h();
cout << gd.u_h() << endl;
return 0;

}

2 2 integration

volumetric terms

1 point integration(deviatoric stiffness
which only involve shear strain γxy)

2 2 integration (deviatoric stiffness
which only involve direct strains εx &
εy; notice that if the coordinates has
been rotated the local preferred coordi-
nates is the same as the pure shear term
in the above not the volumetric term.)

×

λ

∂Na

∂x

∂Nb

∂x

 ∂Na

∂x

∂Nb

∂y

∂Na

∂y

∂Nb

∂x

 ∂Na

∂y

∂Nb

∂y

µ

∂Na

∂x

∂Nb

∂x

 ∂Na

∂y

∂Nb

∂x

∂Na

∂x

∂Nb

∂y

 ∂Na

∂y

∂Nb

∂y

×

µ
2

∂Na

∂x

∂Nb

∂x

 0

0 2
∂Na

∂y

∂Nb

∂y

Listing 4•16 Seletive reduce integration on the offending shear term (project workspace file “fe.dsw”,
project “invariance_formulation”.)
402 Workbook of Applications in VectorSpace C++ Library

Two Dimensional Problems

 be acti-
 the
e algo-
rotate to
plane shear (after reduced integration) is to implement an algorithm to select, for example, the longest edge of
the elements to begin element node numbering.1 Then transform the global coordinate system, for computing the
stiffness matrix, under a preferred local coordinate system. After the stiffness is computed at the element level, it
is transformed back to the global coordinate system then assembled to the global stiffness matrix. The origin of
the local coordinate system is chosen as center at the intersection of the two diagonals of the quadrilateral. The x-
axis is chosen to be the bisector of the diagonal angle as shown in Figure 4•47. This implementation can
vated by setting macro definition “__TEST_MACNEAL”. Note that for simplicity we do not implements
part of algorithm that choose the longest edge. We only implemented the more mathematical part of th
rithm that demonstrates how to translate to the center of the intersection of the two diagonals and then
the local coordinate x’-axis, which is the bisector of the diagonals.

1. p.292 in MacNeal, R.H., 1994, same as the above.

Figure 4•46 Hughes’s local preferred coordinate system for the invariance formulation of the
shear term under selective reduced integration. θ1 ||dy|| = θ2 ||dx||, or simply θ1 = θ2 , if ||dy|| ~ ||dx||
which is consistent with the infinitesimal mapping assumption.

x

y

x’

y’

ξ

η

θ1 = ξ,y

θ2 = η,x

Figure 4•47 MacNeal’s local preferred coordinate system for selective reduced
integration on shear term.

θ1

θ1

θ2θ2

x

y

x’

y’
Workbook of Applications in VectorSpace C++ Library 403

Finite Element Method PrimerChapter 4

. The
The solutions of the selective reduced integration with invariance formulation is listed in TABLE 4•2
invariance formulation are performed on a distorted meshes as shown in Figure 4•48.

Full Integration Selective Reduced Hughes’ local coord. MacNeal’s local coord. Analytical

-0.00311871 -0.0061448 -0.00535423 -0.00565686 -0.00518750

TABLE 4•2. Tip-deflections for selective reduced integration to prevent shear locking and
choices of local preferred coordinate system for invariance of the formulation.

Figure 4•48 (a) Distorted element mesh for testing invariance formulation in the
selective reduced integration for shear terms. (b) 5 eigenvectors for an arbitary shape
distortion (x-, y- translation and rotation are not included).

0.1250.0625 0.0625

(a)

(b)

x-stretching & y-stretching

rectangulars parallelogram

x- tapering &y-tapering

trapezoids

1

Λ

δ δ
404 Workbook of Applications in VectorSpace C++ Library

Two Dimensional Problems

class
e 190 in

 in the
ement.
ction
r four-
Quadratic Element: The Lagrangian 9-Node Element

The Lagrangian 9-node element is implemented as class “ElasticQ9” derived from
Element_Formulation. The shape function is implemented based on a 4-to-9 nodes algorithm (see pag
Chapter 3)

1 Quadrature qp(2, 9); // 2-dimension, 3 3 integration points;
2 H1 Z(2, (double*)0, qp), // Natrual Coordinates
3 N = INTEGRABLE_VECTOR_OF_TANGENT_BUNDLE("int, int, Quadrature", 9, 2, qp), Zai, Eta;
4 Zai &= Z[0]; Eta &= Z[1];

// initial four corner nodes
5 N[0] = (1-Zai)*(1-Eta)/4; N[1] = (1+Zai)*(1-Eta)/4;
6 N[2] = (1+Zai)*(1+Eta)/4; N[3] = (1-Zai)*(1+Eta)/4;

// add ceter node
7 N[8] = (1-Zai.pow(2))*(1-Eta.pow(2));

// modification to four corner nodes due to the presence of the center node
8 N[0] -= N[8]/4; N[1] -= N[8]/4; N[2] -= N[8]/4; N[3] -= N[8]/4;

// add four edge nodes
9 N[4] = ((1-Zai.pow(2))*(1-Eta)-N[8])/2; N[5] = ((1-Eta.pow(2))*(1+Zai)-N[8])/2;
10 N[6] = ((1-Zai.pow(2))*(1+Eta)-N[8])/2; N[7] = ((1-Eta.pow(2))*(1-Zai)-N[8])/2;

// modification to four corner nodes due to the presence of the four edge nodes
11 N[0] -= (N[4]+N[7])/2; N[1] -= (N[4]+N[5])/2;
12 N[2] -= (N[5]+N[6])/2; N[3] -= (N[6]+N[7])/2;

The element is registered with element type number “1” in project “2d_beam”. When define element
constructor of the discretized domain “Omega_h” this is the number to be referred to the “ElasticQ9” el
For using this example, we set macro definition to “__LAGRANGIAN_9_NODES”. The results of tip defle
of the problem in this section are listed in TABLE 4•3.We observe that the shear locking problem in bilinea
node element is easily removed by using higher-order interpolation functions.

Element Type Tip Deflection

ElasticQ9 -0.00503098

Analytical -0.00518750

TABLE 4•3. Tip deflection of Lagrangian 9-node element
comparing to the analytical solution of Eq. 4•175.

×

Workbook of Applications in VectorSpace C++ Library 405

Finite Element Method PrimerChapter 4

ct of
gineer-
ry

ment in

re “p”
o

rk.
Dilatation Locking of Nearly Incompressible Elasticity in Plane Strain

Considerable attention has been paid to the condition of incompressibility (with Poisson ratio ν = 0.5) or
nearly incompressibility (). We will show examples that standard element formulation, in plain strain
case, with will have its solution “locked” severely. A more systematic study is the main subje
Chapter 5 on the “Mixed and hybrid finite element methods”. In this section, we introduce the popular en
ing approach, the selective reduced integration for dilatational locking, which has been shown to be both ve
simple and very successful. Let’s first resume the analysis for bending problem in the bilinear 4-node ele
plane strain. For ν = 0.5 in elasticity the condition is equivalent to imposing a kinematic constraint that the
material is incompressible. The analytical solution is1

Eq. 4•208

The corresponding analytical strains are

Eq. 4•209

The volumetric strain is

Eq. 4•210

where the bulk modulus K and Young’s modulus E, Poisson’s ratio ν are related as

Eq. 4•211

Notice that even when , we have (Eq. 4•211), and (Eq. 4•210), while the pressu
(Eq. 4•210) remains finite. For a 4-node rectangular element, the aliasing of solution in Eq. 4•208 leads t

Eq. 4•212

The corresponding strains manifested in the bilinear 4-node element are

Eq. 4•213

1. p.216-217 in MacNeal, R.H., 1994 “Finite elements: their design and performance”, Marcel Dekker, Inc., New Yo

ν 0.5→
ν 0.5→

u xy= and v, 1
2
---x2–

ν
2 1 ν–()
--------------------y2–=

εx

εy

γxy

y

ν
1 ν–()

----------------y–

0

=

εv εx εy+
1 2ν–
1 ν–

 y= = and p, Kεv

Ey
3 1 ν–()
--------------------= =

K
E

3 1 2ν–()
-----------------------=

ν 0.5→ K ∞→ εv 0→

u xy= and v, 1
2
---Λ2–

ν
2 1 ν–()
--------------------–=

εx

εy

γxy

y

0

x

=

406 Workbook of Applications in VectorSpace C++ Library

Two Dimensional Problems

is

g
ng ele-
e
nt.

et-
educed

part.

rob-
Now the volumetric strain εv = y, which is a finite value. When , and from Eq. 4•210. Th
is the dilatation locking at the incompressible limit of . Comparing Eq. 4•209 and Eq. 4•213, both εy and
γxy are in error. The error is caused by the interpolating failure of the bilinear four-node element in representin
x2 and y2. The situation is exactly the same as in the shear locking problem. Therefore, the non-conformi
ment (page 502 in Chapter 5), which adds back x2 and y2 to the set of the interpolation functions, will have th
capability to remedy both the shear locking and dilation locking problems for the bilinear four-node eleme

A quick fix to solve this “dilatation locking” problem is that we can divide the stiffness matrix into volum
ric and deviatoric part. Then, the volumetric part is applied the reduced integration. With this selective r
integration scheme, the condition of constant volume constraint can be relaxed.

It is not immediately clear that how we can perform selective reduced integration on the B-matrix formula-
tion, that is

Eq. 4•214

A volumetric-deviatoric split1 is applied to the stiffness of Eq. 4•214 into the volumetric part and deviatoric
Define the volumetric strain εv as

Eq. 4•215

In vector form of plane elasticity, m = [1, 1, 0]T and ε = [εx, εy, γxy]
T. The mean stress or pressure is

Eq. 4•216

K is the bulk modulus of the material. We define the devioatric strain εd as

Eq. 4•217

The deviatoric stress σd is (in vector form σ = [σx, σy, τxy]T)

Eq. 4•218

where

Eq. 4•219

1. p.334-352 in Zienkiewicz, O.C., and R.L. Taylor, 1989, “The finite element method: basic formulation and linear p
lems”, 4th ed., vol. 1, McGraw-Hill, London, UK.

ν 0.5→ K ∞→ p ∞→
ν 0.5→

ke
pq ke

ia jb ε δu()TDε u()dΩ
Ω
∫ ei

T Ba
TDBbdΩej

Ω
∫= = =

εv εx εy+ m ε•= =

p
1
3
--- σx σy σz+ +()≡ Kεv K m ε•= =

εd ε
mεv

3
----------–≡ I m m⊗

3
-----------------–

 ε=

σd µD0εd µ D0
2
3
---m m⊗–

 ε= =

D0

2 0 0
0 2 0

0 0 1

=

Workbook of Applications in VectorSpace C++ Library 407

Finite Element Method PrimerChapter 4

e follow-
From Eq. 4•216 and Eq. 4•218 the volumetric-deviatoric split version of the B-matrix formulation (Eq. 4•214)
becomes

Eq. 4•220

We may define the volumetric stiffness and deviatoric stiffness separately as

Eq. 4•221

Therefore, the selective reduced integration can be applied to these two separate terms accordingly. Th
ing codes implemented Eq. 4•221 as

1 Quadrature qp(2, 4); // 2 2 points standard integration
2 H1 Z(2, (double*)0, qp),
3 N = INTEGRABLE_VECTOR_OF_TANGENT_BUNDLE("int, int, Quadrature", 4, 2, qp),
4 Zai, Eta;
5 Zai &= Z[0]; Eta &= Z[1];
6 N[0] = (1-Zai)*(1-Eta)/4; N[1] = (1+Zai)*(1-Eta)/4;
7 N[2] = (1+Zai)*(1+Eta)/4; N[3] = (1-Zai)*(1+Eta)/4;
8 H1 X = N*xl; // Physical Coordinates
9 H0 Nx = d(N) * d(X).inverse();
10 J dv(d(X).det());
11 Quadrature qp1(2, 1); // 1-point reduced integration
12 H1 z(2, (double*)0, qp1),
13 n = INTEGRABLE_VECTOR_OF_TANGENT_BUNDLE("int, int, Quadrature", 4, 2, qp1),
14 zai, eta;
15 zai &= z[0]; eta &= z[1];
16 n[0] = (1-zai)*(1-eta)/4; n[1] = (1+zai)*(1-eta)/4;
17 n[2] = (1+zai)*(1+eta)/4; n[3] = (1-zai)*(1+eta)/4;
18 H1 x = n*xl;
19 H0 nx = d(n) * d(x).inverse();
20 J d_v(d(x).det());
21 double d_0[3][3] = { {2.0, 0.0, 0.0}, //
22 {0.0, 2.0, 0.0},
23 {0.0, 0.0, 1.0}};
24 C0 D_0 = MATRIX("int, int, const double*", 3, 3, d_0[0]);

ke
pq ke

ia jb ε δu()Tσ u()dΩ
Ω
∫ ε w()T σd u() mp u()+[]dΩ

Ω
∫= = =

ei
T Ba

T µ D0
2
3
---m m⊗–

 BbdΩ Ba
TK m m⊗()BbdΩ

Ω
∫+

Ω
∫

ej=

kvol ei
T Ba

TK m m⊗()BbdΩej
Ω
∫=

kdev ei
T Ba

T µ D0
2
3
---m m⊗–

 BbdΩ
Ω
∫ ej=

×

D0

2 0 0

0 2 0

0 0 1

=

408 Workbook of Applications in VectorSpace C++ Library

Two Dimensional Problems

e.
red to
he
25 double m_0[3] = {1.0, 1.0, 0.0};
26 C0 m = VECTOR("int, const double*", 3, m_0); // m = [1, 1, 0]T

27 H0 W_x = INTEGRABLE_SUBMATRIX("int, int, H0&", 1, nsd, Nx),
28 Wx, Wy, B;
29 Wx &= W_x[0][0]; Wy &= W_x[0][1];
30 B &= (~Wx || C0(0.0)) &
31 (C0(0.0) || ~Wy) &
32 (~Wy || ~Wx);
33 C0 stiff_dev = ((~B) * (mu_*(D_0-2.0/3.0*(m%m)) * B)) | dv; //
34 H0 w_x = INTEGRABLE_SUBMATRIX("int, int, H0&", 1, nsd, nx),
35 wx, wy, b;
36 wx &= w_x[0][0]; wy &= w_x[0][1];
37 b &= (~wx || C0(0.0)) &
38 (C0(0.0) || ~wy) &
39 (~wy || ~wx);
40 C0 stiff_vol = ((~b) * ((K_*(m%m)) * b)) | d_v; //
41 stiff &= stiff_dev + stiff_vol;

Lines 1-10 define 2 2 points integration, and lines 11-20 define 1-point integration. The deviatoric stiffness is
implemented in line 33, and the volumetric stiffness in line 40. This computation can be done with macros
“__TEST_PLAIN_STRAIN”,“__NEARLY_INCOMPRESSIBLE”,“__TEST_B_MATRIX_VOLUMETRIC_D
EVIATORIC_SPLIT”, and “__TEST_SELECTIVE_REDUCED_INTEGRATION” defined at compile tim
The result of tip deflection with standard integration scheme is “-0.000149628” (i.e., sever locking compa
tip deflection of ElasticQ4 element with ν = 0.25 in TABLE 4•2.). With the selective reduced integration on t
volumetric term, under B-matrix formulation, the tip-deflection is “-0.00305825”.

For the coordinate-free tensorial formulation of Eq. 4•156,

 : Eq. 4•222

and the indicial notation formulation of Eq. 4•161,

Eq. 4•223

We notice that in Eq. 4•221, the bulk modulus1 is

Eq. 4•224

1. see p.129-130 in Fung, C.Y., 1965, “ Foundations of solid mechanics”, Prentice-Hall, Inc., Englewood Cliffs, N.J.

kdev ei
T Ba

T µ D0
2
3
---m m⊗–

 BbdΩ
Ω
∫ ej=

kvol ei
T Ba

TK m m⊗()BbdΩej
Ω
∫=

×

ke a φe
a φe

b,() λ div Na • div Nb() 2µ def Na()+[
Ω
∫= = def Nb)]dΩ

ke
ia jb λ Na i, Nb j, dΩ

Ω
∫ µ δi j Na k, Nb k, dΩ

Ω
∫ Na j, Nb i, dΩ

Ω
∫+

+=

K λ 2
3
---µ+=
Workbook of Applications in VectorSpace C++ Library 409

Finite Element Method PrimerChapter 4

q.
ced
roject

ini-
nd
s,
995”,
At the nearly incompressible limit (), λ >> µ. We have . The two first terms of Eq. 4•222 and E
4•223 are approximately equivalent to the kvol in Eq. 4•221. We can simply choose these two terms for redu
integration and the implementation is straight forward. The implementation can be activated, in p
“2d_beam”, by setting the macro definitions “__TEST_PLAIN_STRAIN”, “__NEARLY_INCOMPRES
SIBLE”, and“__TEST_SELECTIVE_REDUCED_INTEGRATION” together with corresponding macro def
tions for the above two formulations, “__TEST_COORDINATE_FREE_TENSORIAL_FORMULATION” a
“__TEST_INDICIAL_NOTATION_FORMULATION”, respectively. These two alternative formulation
involve µ and λ, give the same results. With standard integration scheme, the tip-deflection is “-0.000149
and with the reduced integration scheme, the tip-deflection is “-0.00311641”.

ν 0.5→ K λ≈
410 Workbook of Applications in VectorSpace C++ Library

Two Dimensional Problems

ogram-
g is of
ow to

odulus
in is

t (u, v) as

le exact

. con-
 abbre-
4.3.4 Patch Tests—Finite Element Test Suites for Software Quality Assurance (SQA)

Finite element is such a complicated method that the software quality assurance (SQA) can be quite a chal-
lenging task. As a framework based library, not a caned-program, fe.lib requires user’s participation in pr
ming to complete the application programs. Therefore, a well-thought-out plan for debugging and testin
primary importance for hands-on finite element practitioners. This section gives many examples of h
develop proper test suites for finite element method. These test suites are based on a well known test plans1.

Patch Tests—Consistency and Stability

Consider an element patch shows in Figure 4•49 in plane stress with material properties of Young’s m
E = 1x103, and Poisson’s ratio ν = 0.3. A simple constant stress (strain) solution over entire problem doma
assumed. In this case, the only non-zero stress is a constant stress in x-direction σx = 2, and σy = τxy = 0. The
strain-stress relation for the plane stress assumption gives solutions of constant strain, and displacemen

Eq. 4•225

We observe that the imposing displacement field for the patch test is therefore linear. This gives a simp
solution the nodal displacements, nodal stresses, and nodal reactions shown in TABLE 4•4.

1. Taylor, R.L., O.C. Zienkiewicz, J.C. Simo, and A.H.C. Chan, 1986, “The patch test--a condition for assessing f.e.m
vergence”, International Journal of Numerical Methods in Engineering, vol., 22, pp. 39-62, or, for more availability, an
viated representation as Chapter 11 in Zienkiewicz, O.C., and R.L. Taylor, 1989, “The finite element method: basic
formulation and linear problems”, McGraw-Hill, London., UK.

Node # u v σx σy τxy rx ry
0 0.0000 0.0000 2 0 0 2 0

1 0.0040 0.0000 2 0 0 -3 0

2 0.0040 -0.00180 2 0 0 -2 0

3 0.0000 -0.00120 2 0 0 3 0

4 0.0008 -0.00024 2 0 0 0 0

5 0.0028 -0.00036 2 0 0 0 0

6 0.0030 -0.00120 2 0 0 0 0

7 0.0006 -0.00096 2 0 0 0 0

TABLE 4•4. Nodal displacement, nodal stresses and nodal reactions of the element patch.

εx

σx

E

νσy

E
---------–

σx

E
------ 0.002 u⇒ 0.002x= = = =

εy

νσx

E
---------–

σy

E
------+

νσx

E
---------– 0.0006 v⇒– 0.0006– y= = = =

γxy

2 1 ν+()τxy

E
---------------------------- 0= =
Workbook of Applications in VectorSpace C++ Library 411

Finite Element Method PrimerChapter 4

the

 5,
-

st

rogram
he
racy, as

o

x, or
Consistency Requirement demands the governing partial differential equation to be satisfied exactly. The
matrix form of the weak statement derived from the governing partial differential equation is

Kijuj = fi Eq. 4•226

where Kij is the global stiffness matrix and fi is the global nodal force vector. We first specify all nodes with
linear displacement calculated from u = 0.002x, and v = -0.0006y, where uj = [uj, vj]

T is the solution vector, and
x = [x, y]T is the nodal coordinates. Since no loading, fi in Eq. 4•226, is specified for the internal nodes (# 4,
6, 7), the “reaction” calculated according to “-Kijuj” should be identically zero, if the governing partial differen
tial equation is to be satisfied. This is the “Test A” in Figure 4•49. The Test A is useful in checking the correct-
ness of program statements in implementing the stiffness matrix. The Program Listing 4•17 implements the te
suite for the Test A described in the above. The standard (full-) integration (2 2) for Test A is the default setting
of this program. The uniform reduced integration (1-point Gauss integration) can be performed on this p
by setting macro definition “__TEST_UNIFORM_REDUCED_INTEGRATION” at compile time. Both t
standard integration and uniform reduced integration produce the exact reaction, up to machine accu
listed in TABLE 4•4.

In the “Test B” in Figure 4•49, a second step for checking the consistency requirement, we specified only
nodes on the boundaries. Then, the unknown uj on internal nodes (# 4, 5, 6, 7) can be calculated according t

uj = (Kij)
-1fi Eq. 4•227

This step requires the matrix solver to “invert” the stiffness matrix Kij. The matrix solver is a fixture in “fe.lib”.
Assuming the matrix solver chosen is appropriate to solve the problem at hand, the “Test B” checks the accu-
racy of the stiffness matrix maintained in the process of matrix solution step. A problematic stiffness matri
improper matrix solver, will lose accuracy significantly and may give out erroneous solution. The Test B can be

Figure 4•49 Patch of elements for consistency and stablility test.

0 1

2

3

4 5

6

7

u = 0.002x v = -0.0006y(0, 0) (2, 0)

(2, 3)
(0, 2)

(0.4,0.4)
(1.4, 0.6)

(1.5, 2.0)
(0.3, 1.6)

free d.o.f.s fixed d.o.f.s

fx =2

fx =3

Consistency
Stability

(Test A) (Test B)
E = 1x103, ν = 0.3

σx = 2, σy = τxy =0 (Test C)

×

412 Workbook of Applications in VectorSpace C++ Library

Two Dimensional Problems
#include "include\fe.h"
static const double E_ = 1.0e3; static const double v_ = 0.3;
static const double lambda_=v_*E_/((1+v_)*(1-2*v_)); static const double mu_=E_/(2*(1+v_));
static const double lambda_bar = 2*lambda_*mu_/(lambda_+2*mu_);
Omega_h::Omega_h() { double v[2]; Node* node; int ena[4]; Omega_eh* elem;

v[0] = 0.0; v[1] = 0.0; node = new Node(0, 2, v); the_node_array.add(node);
v[0] = 2.0; v[1] = 0.0; node = new Node(1, 2, v); the_node_array.add(node);
v[0] = 2.0; v[1] = 3.0; node = new Node(2, 2, v); the_node_array.add(node);
v[0] = 0.0; v[1] = 2.0; node = new Node(3, 2, v); the_node_array.add(node);
v[0] = 0.4; v[1] = 0.4; node = new Node(4, 2, v); the_node_array.add(node);
v[0] = 1.4; v[1] = 0.6; node = new Node(5, 2, v); the_node_array.add(node);
v[0] = 1.5; v[1] = 2.0; node = new Node(6, 2, v); the_node_array.add(node);
v[0] = 0.3; v[1] = 1.6; node = new Node(7, 2, v); the_node_array.add(node);
ena[0] = 0; ena[1] = 1; ena[2] = 5; ena[3] = 4;
elem = new Omega_eh(0, 0, 0, 4, ena); the_omega_eh_array.add(elem);
ena[0] = 5; ena[1] = 1; ena[2] = 2; ena[3] = 6;
elem = new Omega_eh(1, 0, 0, 4, ena); the_omega_eh_array.add(elem);
ena[0] = 7; ena[1] = 6; ena[2] = 2; ena[3] = 3;
elem = new Omega_eh(2, 0, 0, 4, ena); the_omega_eh_array.add(elem);
ena[0] = 0; ena[1] = 4; ena[2] = 7; ena[3] = 3;
elem = new Omega_eh(3, 0, 0, 4, ena); the_omega_eh_array.add(elem);
ena[0] = 4; ena[1] = 5; ena[2] = 6; ena[3] = 7;
elem = new Omega_eh(4, 0, 0, 4, ena); the_omega_eh_array.add(elem); }

gh_on_Gamma_h::gh_on_Gamma_h(int df, Omega_h& omega_h) { __initialization(df, omega_h);
for(int i = 0; i < 8; i++)
for(int j = 0; j < 2; j++) the_gh_array[node_order(i)](j) = gh_on_Gamma_h::Dirichlet;
the_gh_array[node_order(1)][0] = 0.004; the_gh_array[node_order(2)][0] = 0.004;
the_gh_array[node_order(2)][1] = -0.0018; the_gh_array[node_order(3)][1] = -0.0012;
the_gh_array[node_order(4)][0] = 0.0008; the_gh_array[node_order(4)][1] = -0.00024;
the_gh_array[node_order(5)][0] = 0.0028; the_gh_array[node_order(5)][1] = -0.00036;
the_gh_array[node_order(6)][0] = 0.003; the_gh_array[node_order(6)][1] = -0.0012;
the_gh_array[node_order(7)][0] = 0.0006; the_gh_array[node_order(7)][1] = -0.00096; }

class ElasticQ4 : public Element_Formulation { public:
ElasticQ4(Element_Type_Register a) : Element_Formulation(a) {}
Element_Formulation *make(int, Global_Discretization&);
ElasticQ4(int, Global_Discretization&); };

Element_Formulation* ElasticQ4::make(int en, Global_Discretization& gd) {
return new ElasticQ4(en,gd); }

static const double a_ = E_ / (1-pow(v_,2));
static const double Dv[3][3] = { {a_, a_*v_, 0.0}, {a_*v_, a_, 0.0}, {0.0, 0.0, a_*(1-v_)/2.0} };
C0 D = MATRIX("int, int, const double*", 3, 3, Dv[0]);
ElasticQ4::ElasticQ4(int en, Global_Discretization& gd) : Element_Formulation(en, gd) {

Quadrature qp(2, 4); H1 Z(2, (double*)0, qp), Zai, Eta,
N = INTEGRABLE_VECTOR_OF_TANGENT_BUNDLE("int, int, Quadrature", 4, 2, qp);

Zai &= Z[0]; Eta &= Z[1]; N[0] = (1-Zai)*(1-Eta)/4; N[1] = (1+Zai)*(1-Eta)/4;
N[2] = (1+Zai)*(1+Eta)/4; N[3] = (1-Zai)*(1+Eta)/4; H1 X = N*xl; J dv(d(X).det());
for(int b = 0; b < nen; b++) { B1 &= Nx[b][0]; B2 &= Nx[b][1];

DB[0][0] = Dv[0][0]*B1; DB[0][1] = Dv[0][1]*B2; DB[1][0] = Dv[0][1]*B1;
DB[1][1] = Dv[1][1]*B2; DB[2][0] = Dv[2][2]*B2; DB[2][1] = Dv[2][2]*B1;

for(int a = 0; a <= b; a++) { B1 &= Nx[a][0]; B2 &= Nx[a][1];
K[2*a][2*b] = B1*DB[0][0] + B2*DB[2][0];
K[2*a][2*b+1] = B1*DB[0][1] + B2*DB[2][1];
K[2*a+1][2*b] = B2*DB[1][0] + B1*DB[2][0];
K[2*a+1][2*b+1] = B2*DB[1][1] + B1*DB[2][1]; } }

for(int b = 0; b < nen; b++) for(int a = b+1; a < nen; a++) {
K[2*a][2*b] = K[2*b][2*a]; K[2*a][2*b+1] = K[2*b+1][2*a];
K[2*a+1][2*b] = K[2*b][2*a+1]; K[2*a+1][2*b+1] = K[2*b+1][2*a+1];

}

define nodes

define elements

define boundary conditions

define element “ElasticQ4”
Workbook of Applications in VectorSpace C++ Library 413

Finite Element Method PrimerChapter 4
if(Matrix_Representation::Assembly_Switch == Matrix_Representation::REACTION) {
stiff &= K | dv; the_element_nodal_value &= stiff * (ul+gl);

} else if(Matrix_Representation::Assembly_Switch == Matrix_Representation::STRESS) {
H0 Sigma = INTEGRABLE_VECTOR("int, Quadrature", 3, qp); Sigma = 0.0;
for(int i = 0; i < nen; i++) { B1 &= Nx[i][0]; B2 &= Nx[i][1];

DB[0][0] = Dv[0][0]*B1; DB[0][1] = Dv[0][1]*B2; DB[1][0] = Dv[0][1]*B1;
DB[1][1] = Dv[1][1]*B2; DB[2][0] = Dv[2][2]*B2; DB[2][1] = Dv[2][2]*B1;
Sigma += DB(0)*(ul[i*ndf]+gl[i*ndf]) + DB(1)*(ul[i*ndf+1]+gl[i*ndf+1]);

}
int nqp = qp.no_of_quadrature_point();
for(int i = 0; i < nqp; i++) { cout << setw(9) << en

<< setw(14) << ((H0)X[0]).quadrature_point_value(i)
<< setw(14) << ((H0)X[1]).quadrature_point_value(i)
<< setw(14) << (Sigma[0].quadrature_point_value(i))
<< setw(14) << (Sigma[1].quadrature_point_value(i))
<< setw(14) << (Sigma[2].quadrature_point_value(i)) << endl;

}
} else if (Matrix_Representation::Assembly_Switch ==

Matrix_Representation::NODAL_STRESS) {
int stress_no = (ndf+1)*ndf/2; the_element_nodal_value &= C0(nen*stress_no, (double*)0);
C0 projected_nodal_stress = SUBVECTOR("int, C0&", stress_no, the_element_nodal_value);
H0 Sigma = INTEGRABLE_VECTOR("int, Quadrature", 3, qp); Sigma = 0.0;
for(int i = 0; i < nen; i++) { B1 &= Nx[i][0]; B2 &= Nx[i][1];

DB[0][0] = Dv[0][0]*B1; DB[0][1] = Dv[0][1]*B2; DB[1][0] = Dv[0][1]*B1;
DB[1][1] = Dv[1][1]*B2; DB[2][0] = Dv[2][2]*B2; DB[2][1] = Dv[2][2]*B1;
Sigma += DB(0)*(ul[i*ndf]+gl[i*ndf]) + DB(1)*(ul[i*ndf+1]+gl[i*ndf+1]);

}
for(int i = 0; i < nen; i++) { C0lumped_mass = ((H0)N[i]) | dv;

projected_nodal_stress(i) = (((H0)N[i])*Sigma | dv) / lumped_mass;
}

} else stiff &= K | dv;
}
Element_Formulation* Element_Formulation::type_list = 0;
Element_Type_Register element_type_register_instance;
static ElasticQ4 elasticq4_instance(element_type_register_instance);
int main() { int ndf = 2; Omega_h oh; gh_on_Gamma_h gh(ndf, oh);

U_h uh(ndf, oh); U_h hh(ndf, oh);
Global_Discretization gd(oh, gh, uh);
Global_Discretization hd(oh, gh, hh);
Matrix_Representation mr(gd);
Matrix_Representation::Assembly_Switch = Matrix_Representation::REACTION;
mr.assembly(FALSE);
cout << "reaction:" << endl << (mr.global_nodal_value()) << endl;
Matrix_Representation::Assembly_Switch = Matrix_Representation::STRESS;
cout << "gauss point stresses: " << endl;
cout.setf(ios::left,ios::adjustfield);
cout << setw(9) << " elem #, " << setw(14) << "x-coor.," << setw(14) << "y-coor.,"

<< setw(14) << "sigma-11," << setw(14) << "sigma-22," << setw(14) << "sigma-12" << endl;
mr.assembly(FALSE);
Matrix_Representation::Assembly_Switch = Matrix_Representation::NODAL_STRESS;
mr.assembly(FALSE);
cout << "nodal stresses: " << endl << (mr.global_nodal_value()) << endl;
return 0;

}

Post-processing
compute reaction
compute stresses on Gauss integration
points

compute nodal stresses projection

declare global discretization and matrix
representation

compute reaction

compute stresses on Gauss points

compute nodal stresses projection

Listing 4•17 Patch test A(project workspace file “fe.dsw”, project “patch_test” with Macro definition
“__PATCH_TEST_A” set at compile time).
414 Workbook of Applications in VectorSpace C++ Library

Two Dimensional Problems

 inte-
E 4•4.

ut no

ection.
otions,

oms to
is given
 two
t

activated by setting macro definition “__PATCH_TEST_B” in the same project. Again, both the standard
gration and uniform reduced integration produce the exact internal nodal displacements as listed in TABL

Stability Requirement examines if the zero-energy modes (eigenvalues) of the stiffness matrix Kij can be
excited from loading fi on the boundaries. If this does occur the eigenvectors, with arbitrary magnitudes b
energy contribution, will pollute the solution and render the solution useless. In the “Test C” in Figure 4•49,
node # 0 is fixed on both directions and node # 3 is fixed on x-direction but allowed to be moved on y-dir
This suppresses three degree of freedoms, which is chosen to prohibit three modes of rigid body m
namely, x-translation, y-translation, and infinitesimal rotation. Note that fixing these three degree of freed
zero is still consistent with the assumed solution of u = 0.002x, and v = -0.0006y. In this case, node #1
loading of fx = 3, and node #2 is given loading of fx = 2, which is also the same as the reactions on these
nodes computed from the reaction of Test A. The displacement solutions from Test C are, then, checked agains
the assumed solutions.

Figure 4•50 Deformation of the element patch magnifies 50 times in (a) solution with
standard 2 2 integration points, (b) solution with uniform reduced (1 1) integration, (c)
solution with uniform reduced integration using pseudo (Moore-Penrose) inverse for matrix
solver; i.e., with singular value decomposition, (d) and (e) are compared to two zero-energy
hourglass modes of a square bilinear element (the eigenvectors designated as the x-
hourglass and y- hourglass modes), associated with the signular values of the uniform
reduced (1 1) integration stiffness matrix.

× ×

×

(b) 1x1 solution (c) Pseudo-inverse 1x1
solution

(d) y-hourglass mode (for a square) (e) x-hourglass mode (for a square)

(a) 2x2 solution
Workbook of Applications in VectorSpace C++ Library 415

Finite Element Method PrimerChapter 4

4. is
inition
olu-
fintion
ced
ration,
d with

d inverse
ese two
some use
ent)

near ele-
ations on
s an ana-
 value
rix; i.e.,

”, Pren-
With the same project “patch_test” in project workspace file “fe.dsw”, the Test C is activated by setting the
macro definition “__PATCH_TEST_C”. For standard integration (2 2), the exact solution in TABLE 4•
reproduced. The solution magnified by 50 times is shown in Figure 4•50a. If we set macro def
“__TEST_UNIFORM_REDUCED_INTEGRATION” (1-point Gaussian integration) at compile time, the s
tion rendered is useless as shown in Figure 4•50 (b). We can then set macro de
“__TEST_SINGULAR_VALUE_DECOMPOSITION” to analyze the problem. Under the uniform redu
integration, the rank of the stiffness matrix has rank deficiency of 2 (the full rank = 13 under 2 2 integ
and the rank = 11 under 1-point integration). With singular value decomposition the matrix can be solve
the so-called Moore-Penrose (pseudo-) inverse as in page 40 of Chapter 1. The effect of this generalize
is to filter out two eigen-modes corresponding to the two singular values which are very close to zero. Th
eigen-modes are plotted and compared to two spurious hourglass modes of a square bilinear element (
the “key-stoning mode” for bilinear element and reserve the term “hourglass mode” for quadratic elem1.
Note that we compare the outlines of these two eigen-modes to the two spurious modes of a square bi-li
ment. The internal nodes of the current element patch can be considered as to add to higher order vari
top of the two spurious modes. However, we emphasize that the singular value decomposition is used a
lytical tool to analyze the rank-deficient nature of the problem. The computation cost of the singular
decomposition is very expensive compared to that of the Cholesky decomposition for a symmetrical mat
the most expensive one among the matrix solver provided in Chapter 1.

1. see p.242 in Hughes, T. J.R., 1987, “The finite element method: linear static and dynamic finite element analysis
tice-Hall Inc., Englewood Cliffs, New Jersey.

×

×

416 Workbook of Applications in VectorSpace C++ Library

Two Dimensional Problems

ld con-
 partial
ion. The
he patch

-

ce-

. con-
Weak Patch Test for an Axisymmetrical Problem

The patch test require only when the mesh size “h” approach zero, the approximated solution shou
verge to the exact solution. For problem in the Cartesian coordinates the “coefficients” of the governing
differential equation are constants. Therefore, an arbitrary mesh size should produce the exact solut
weak patch test, for problem written in other than the Cartesian coordinates, revert the criterion to pass t
test as a series of solutions converging to the exact solution when the mesh size approaches zero.

Consider an axisymmetrical problem as shown in Figure 4•51.1 For an axisymmetrical problem with coordi

nate system denoted as r, z, θ, and the displacement along θ-direction is assumed zero, and u, w are the displa
ment along r-, and z- directions, respectively. We assume solution as

u = 2r, and w = 0 Eq. 4•228

The strain vector is defined as2

Eq. 4•229

Therefore, with , where the B-matrix for the axisymmetrical case becomes

1. Taylor, R.L., O.C. Zienkiewicz, J.C. Simo, and A.H.C. Chan, 1986, “The patch test--a condition for assessing f.e.m
vergence”, International Journal of Numerical Methods in Engineering, vol., 22, pp. 39-62.

2. Chapter 12 in Timoshenko, S.P., and J.N. Goodier, 1970, “ Theory of elasticity”, McGraw-Hill, Inc., London, U.K.

Figure 4•51An axisymmetricl problem for weak patch test.

r

z

θ

r=1

h

hh

0 1 2

3 4 5

ε

εz

εr

εθ

γrz

∂w
∂z

∂u
∂r

u
r

∂u
∂z
------ ∂w

∂r
-------+

= =

εe
h Baûe

a=
Workbook of Applications in VectorSpace C++ Library 417

Finite Element Method PrimerChapter 4
Eq. 4•230

For isotropic material case the D matrix becomes

Eq. 4•231

In the integration of axisymmetrical problem the stiffness matrix is

 Eq. 4•232

The infinitesimal volume is taken over the whole ring of material as dV = 2πr dr dz. For the selective reduced
integration, the volumetric and deviatoric split of the stiffness matrix as in Eq. 4•221 is still valid

Eq. 4•233

with two simple modifications for axisymmetrical consideration that m = [1, 1, 1, 0]T, and

Eq. 4•234

For the current problem, the material constants are given as E = 1, and υ = 0, for simplicity. This gives

εr= εθ = σr = σθ = 2 Eq. 4•235

Ba

0
∂Na

∂z

∂Na

∂r
--------- 0

Na

r
------ 0

∂Na

∂z

∂Na

∂r

= and ûe
a,

ûe
a

v̂e
a

=

D E 1 ν–()
1 ν+() 1 2ν–()

1
ν

1 ν–
------------ ν

1 ν–
------------ 0

ν
1 ν–
------------ 1

ν
1 ν–
------------ 0

ν
1 ν–
------------ ν

1 ν–
------------ 1 0

0 0 0
1 2ν–

2 1 ν–()

=

Ke BTDBdΩ∫=

kvol ei
T Ba

TK m m⊗()BbdΩej
Ω
∫=

kdev ei
T Ba

T µ D0
2
3
---m m⊗–

 BbdΩ
Ω
∫ ej=

D0

2 0 0 0

0 2 0 0
0 0 2 0

0 0 0 1

=

418 Workbook of Applications in VectorSpace C++ Library

Two Dimensional Problems

and 0.8.
ition of
 the 2 2
et at
selective
ial dis-

 to
and all other stresses and strains as zero. The z-displacement of node number 1 is fixed to zero to prevent the z-
translation of the rigid body motion. For the patch test we take the element size “h” as 0.05, 0.1, 0.2, 0.4,
The Program Listing 4•18 implements the axisymmetrical patch test (Eq. 4•230, and Eq. 4•233 with defin
D0 in Eq. 4•234). The results of nodal radial displacement (u) at node number 1 and 4 are all exact under
integration scheme. The macro definition “__TEST_SELECTIVE_REDUCED_INTEGRATION” can be s
compiled time for the selective reduced integration. The radial displacement on nodes 1 and 4 under the
reduced integration are shown in TABLE 4•5. It shows that when the element size “h” goes down, the rad
placement solution converges quickly to the assumed solution

We notice that the implementation of the B-matrix for the axisymmetrical problem is implemented according
Eq. 4•230 as

1 H0 W_x = INTEGRABLE_SUBMATRIX("int, int, H0&", 1, nsd, Nx),
2 Wr, Wz, B, R;
3 Wr &= W_x[0][0]; Wz &= W_x[0][1];
4 R &= (H0)X[0];
5 B &= (C0(0.0) || ~Wz) & //
6 (~Wr || C0(0.0)) &
7 (~((H0)N)/R || C0(0.0)) &
8 (~Wz || ~Wr);

Lines 5-8 use matrix concatenation operation to capture the semantics of B-matrix directly.

Element size “h” Node # 1, and 4

0.05 2.0

0.1 2.0

0.2 2.00003

0.4 2.00049

0.8 2.01114

TABLE 4•5. The radial displacement for axisymmetrical problem.

×

Ba

0
∂Na

∂z

∂Na

∂r
--------- 0

Na

r
------ 0

∂Na

∂z

∂Na

∂r

=

Workbook of Applications in VectorSpace C++ Library 419

Finite Element Method PrimerChapter 4
#include "include\fe.h"
static const double E_ = 1.0;
static const double v_ = 0.0;
static const double lambda_=v_*E_/((1+v_)*(1-2*v_));
static const double mu_ = E_/(2*(1+v_));
static const double K_ = lambda_ + 2.0/3.0 * mu_;
static const double h_=0.8;
static const double r_=1.0;
static const double PI_=3.14159265359;
Omega_h::Omega_h() {

double v[2];
Node* node;
int ena[4];
Omega_eh* elem;
v[0] = r_-h_; v[1] = 0.0;
node = new Node(0, 2, v);
the_node_array.add(node);
v[0] = r_;
node = new Node(1, 2, v);
the_node_array.add(node);
v[0] = r_+h_;
node = new Node(2, 2, v);
the_node_array.add(node);
v[0] = r_-h_; v[1] = h_;
node = new Node(3, 2, v);
the_node_array.add(node);
v[0] = r_;
node = new Node(4, 2, v);
the_node_array.add(node);
v[0] = r_+h_;
node = new Node(5, 2, v); the_node_array.add(node);
ena[0] = 0; ena[1] = 1; ena[2] = 4; ena[3] = 3;
elem = new Omega_eh(0, 0, 0, 4, ena);
the_omega_eh_array.add(elem);
ena[0] = 1; ena[1] = 2; ena[2] = 5; ena[3] = 4;
elem = new Omega_eh(1, 0, 0, 4, ena);
the_omega_eh_array.add(elem); }

gh_on_Gamma_h::gh_on_Gamma_h(int df, Omega_h& omega_h) {
__initialization(df, omega_h);
the_gh_array[node_order(1)](1) = gh_on_Gamma_h::Dirichlet;
double sigma_r, r, f_r;
sigma_r = 2.0; r = 1.0-h_;
f_r = -2.0*PI_*r*h_*sigma_r;
the_gh_array[node_order(0)][0] = f_r / 2.0;
the_gh_array[node_order(3)][0] = f_r / 2.0;
r = 1.0+h_;
f_r = 2.0*PI_*r*h_*sigma_r;
the_gh_array[node_order(2)][0] = f_r / 2.0;
the_gh_array[node_order(5)][0] = f_r / 2.0;

}
class ElasticAxisymmetricQ4 : public Element_Formulation {
public:

ElasticAxisymmetricQ4(Element_Type_Register a) : Element_Formulation(a) {}
Element_Formulation *make(int, Global_Discretization&);
ElasticAxisymmetricQ4(int, Global_Discretization&);

};
Element_Formulation* ElasticAxisymmetricQ4::make(int en, Global_Discretization& gd) {

return new ElasticAxisymmetricQ4(en,gd);
}

420 Workbook of Applications in VectorSpace C++ Library

Two Dimensional Problems
Listing 4•18 Axisymmetrical patch test (project workspace file “fe.dsw”, project
“axisymmetrical_patch_test” with Macro definition

ElasticAxisymmetricQ4::ElasticAxisymmetricQ4(int en, Global_Discretization& gd) :
Element_Formulation(en, gd) {
Quadrature qp(2, 4);
H1 Z(2, (double*)0, qp), Zai, Eta,

N = INTEGRABLE_VECTOR_OF_TANGENT_BUNDLE("int, int, Quadrature", 4, 2, qp);
Zai &= Z[0]; Eta &= Z[1];
N[0] = (1-Zai)*(1-Eta)/4; N[1] = (1+Zai)*(1-Eta)/4;
N[2] = (1+Zai)*(1+Eta)/4; N[3] = (1-Zai)*(1+Eta)/4;
H1 X = N*xl;
H0 Nx = d(N) * d(X).inverse();
J dV(d(X).det());
H0 W_x = INTEGRABLE_SUBMATRIX("int, int, H0&", 1, nsd, Nx), Wr, Wz, B, R;
Wr &= W_x[0][0]; Wz &= W_x[0][1]; R &= (H0)X[0];
B &= (C0(0.0) || ~Wz) &

(~Wr || C0(0.0)) &
(~((H0)N)/R || C0(0.0)) &
 (~Wz || ~Wr);

double d_0[4][4]={ {2.0, 0.0,0.0,0.0},
{0.0, 2.0,0.0,0.0},
{0.0, 0.0,2.0,0.0},
{0.0, 0.0,0.0,1.0} };

C0 D_0 = MATRIX("int, int, const double*", 4, 4, d_0[0]);
double m_0[4] = {1.0, 1.0, 1.0, 0.0};
C0 m = VECTOR("int, const double*", 4, m_0);
C0 stiff_dev = 2.0*PI_*(((~B) * ((mu_*(D_0-2.0/3.0*(m%m))) * B) * R) | dV);
Quadrature qp1(2, 1);
H1 z(2, (double*)0, qp1), zai, eta,

n = INTEGRABLE_VECTOR_OF_TANGENT_BUNDLE("int, int, Quadrature", 4, 2, qp1);
zai &= z[0]; eta &= z[1];
n[0] = (1-zai)*(1-eta)/4; n[1] = (1+zai)*(1-eta)/4;
n[2] = (1+zai)*(1+eta)/4; n[3] = (1-zai)*(1+eta)/4;
H1 x = n*xl;
H0 nx = d(n) * d(x).inverse();
J dv(d(x).det());
H0 w_x= INTEGRABLE_SUBMATRIX("int, int, H0&", 1, nsd, nx), wr, wz, b, r;
wr &= w_x[0][0]; wz &= w_x[0][1]; r &= (H0)x[0];
b &= (C0(0.0) || ~wz) &

(~wr || C0(0.0)) &
(~((H0)n)/r || C0(0.0)) &
(~wz|| ~wr);

C0 stiff_vol = 2.0*PI_*(((~b) * ((K_*(m%m)) * b) * r) | dv);
stiff &= stiff_vol + stiff_dev;

}
Element_Formulation* Element_Formulation::type_list = 0;
Element_Type_Register element_type_register_instance;
static ElasticAxisymmetricQ4 elasticaxisymmetricq4_instance(element_type_register_instance);
int main() {

int ndf = 2; Omega_h oh; gh_on_Gamma_h gh(ndf, oh); U_h uh(ndf, oh);
Global_Discretization gd(oh, gh, uh);
Matrix_Representation mr(gd);
mr.assembly();
C0 u = ((C0)(mr.rhs())) / ((C0)(mr.lhs()));
gd.u_h() = u; gd.u_h() = gd.gh_on_gamma_h();
cout << gd.u_h() << endl;
return 0;

}

m = [1, 1, 1, 0]T

2 2 integration on

1-point integration on

Ba

0
∂Na

∂z

∂Na

∂r
--------- 0

Na

r
------ 0

∂Na

∂z

∂Na

∂r

=

D0

2 0 0 0

0 2 0 0

0 0 2 0

0 0 0 1

=

×

kdev ei
T Ba

T µ D0
2
3
---m m⊗–

 BbdΩ
Ω
∫ ej=

kvol ei
T Ba

TK m m⊗()BbdΩej
Ω
∫=
Workbook of Applications in VectorSpace C++ Library 421

Finite Element Method PrimerChapter 4

rtesian

roject
lements

factor
hieved
dge is
Higher-Order Patch Test

In the patch Test A, B, and C, the assumed solution is linear. We now study when the assumed solution is
quadratic, which may reveal additional problems. In the first set of problem, the element shape sensitivity effect
is considered for eight-nodes serendipity element and nine-nodes Lagrangian element. This is followed by
robustness of an element formulation when the material becomes incompressible. The successfulness of the
selective reduced integration will be evident.

Shape Sensibility: Consider two quadratic elements. Either eight-nodes or nine-nodes elements as shown in Fig-
ure 4•52. The common edge of the two elements is slanted with the distortion, away from axes of Ca
coordinates, denoted as “d”, and shown in Figure 4•52.

There is no new program implementation needed for the higher-order patch test. The p
“higher_order_patch_test” implemented program for the present test. The eight-nodes and nine-nodes e
are activated by setting macro definition “__TEST_Q8” and “__TEST_Q9”, respectively. The distortion
is a static constant “d_” in the very beginning of the program. The uniform reduced integration can be ac
by setting all qaudrature point to 2 2 in the program. The tip deflection on the middle point of the left e
listed in TABLE 4•6.

Distortion Integration Points 8-nodes Quadrilateral 9-nodes Quadrilateral

d=0 3 3 0.750000 0.750000

d=0 2 2 0.750000 0.750000

d=1 3 3 0.744849 0.750000

d=1 2 2 0.750000 0.788531

d=2 3 3 0.666839 0.750000

d=2 2 2 0.750000 0.676616

TABLE 4•6. Tip deflection of 8-nodes and 9-nodes quadrilaterals.

Figure 4•52 Beam subject to bending moement on the left. Three amount of element
distortion away from rectangular shape (d = 0).

d

15

-15

10

2

d = 0

d = 1

d = 2

d

E = 103, ν = 0.3

×

×

×

×

×

×

×

422 Workbook of Applications in VectorSpace C++ Library

Two Dimensional Problems

 with no
t deteri-
odes ele-
8-nodes

epen-
gration
2(dofs)-
nt. The
ent, the
d to 8-
formula-
rgence

 ratio
•52).
he volu-
n in Fig-
r total

and
 For the
ials, the
nd

uccessive
for the 4-
egration
 For

ithout
ainable
to value

rob-

c.,
The exact solution is “0.75”. The standard integration scheme (3 3) for 8-nodes and 9-nodes elements
distortion both match the exact solution. When the distortion occurs, the accuracy of the 8-nodes elemen
orates fast when 9-nodes element is still capable of producing the exact solution. This is because the 9-n
ment is capable of reproducing arbitrary quadratic displacement of straight-edged quadrilateral while the
element is not.1

With uniform reduced integration (2 2), the reverse is true. Each integration point contribute to 3 ind
dent relations from the definitions of 3 strain equations. For the present case 2 2 uniform reduced inte
gives 3 8 = 24 independent relations. The 9-nodes element has “total degree of freedom” = 15(nodes)
4(constraints) = 26 > 24. Therefore, under this integration scheme the 9-nodes element is rank deficie
accuracy of the solution collapses fast with the increasing amount of the distortion. For the 8-nodes elem
total degree of freedoms is 13 2-4 = 22 < 24, which is not only rank sufficient, but also less stiff compare
nodes element with standard integration scheme. Therefore, it produces better result. The displacement
tion usually leads to over-estimated stiffness. The lowest order of numerical integration required for conve
relaxes the stiffness and produces improved results.2

Convergence of bilinear 4-node element: We show the convergence of bilinear 4-node element at (1) Poisson
ν = 0.3 in plane stress and (2) ν = 0.4999 in plane strain (with the same boundary value problem in Figure 4
The options of (a) the selective reduce integration on the shear term of the deviatoric stiffness and (b) t
metric stiffness are also tested. The same problem is divided with successively finer meshes, and is show
ure 4•53. The test suite is implemented in project “higher_order_q4” in project workspace file “fe.dsw”. Fo
element number greater than 8, the macro definitions “__TEST_Q4_32”, “__TEST_Q4_128”,
“__TEST_Q4_512”, with the last numbers indicate the total element number, can be set at compile time.
selective reduced integration on the offending shear terms and dilatational term in incompressible mater
corresponding macro definitions are “__SHEAR_SELECTIVE_REDUCED_INTEGRATION” a
“__INCOMPRESSIBLE_ SELECTIVE_REDUCED_INTEGRATION”.

The results with various combinations of the options are shown in TABLE 4•7. For Poisson ratio ν = 0.3, in
plane stress, the convergence is clear with increasing number of element used in the computation. The s
results agree on more digits after the decimal points. This convergence is guaranteed by the patch test
nodes bi-linear element, since it pass the consistency and stability parts of the patch test. Both the full int
and selective reduced integration on the offending shear treatment converge to exact solution of 0.75.ν =
0.4999, the nearly incompressible condition, in plane strain case, the solution shows significant locking w
signs of convergence, when applied with the full integration. The solution and its convergence are obt
with the selective reduced integration schemes as shown in the last two columns, which both converge
of ~0.56 comparing to “0.5625” in mixed u-p formulation (ν = 0.5 in Chapter 5).

1. p. 167-169 in Zienkiewicz, O.C., and R.L. Taylor, 1989, “The finite element method: basic formulation and linear p
lems”, McGraw-Hill, London., UK.

2. p. 164-165 in Bathe, K.-J. and W.L. Wilson, 1976, “ Numerical method in finite element analysis”, Prentice-Hall, In
Englewood Cliffs, New Jersey.

×

×
×

× ×

×

Workbook of Applications in VectorSpace C++ Library 423

Finite Element Method PrimerChapter 4
 _

Number of
E.lements

ν = 0.3
(standard)

ν = 0.3
(selective reduced

on shear)

ν = 0.4999
(standard)

ν = 0.4999
(selective reduced

on dilatation)

ν = 0.4999
 (selective reduced on

shear & dilatation)

8 0.6920159 1.097860 0.00271635 0.666701 0.964387

32 0.7295910 0.839392 0.00799228 0.595018 0.655087

128 0.7443220 0.772274 0.02823080 0.570704 0.584802

512 0.7485400 0.755571 0.09621180 0.564732 0.568095

TABLE 4•7. Convergence of four node bi-linear element with selective reduced integration on
offending shear terms to prevent shear-locking ν = 0.3 in plane stress case, and selective reduced
integration on volumetric terms when the Possion ratios ν = 0.4999 in plane strain case to prevent
dilatational locking.

Figure 4•53 Mesh refinement of 4-nodes quadrilateral element.

8 elements

32 elements

128 elements

512 elements
424 Workbook of Applications in VectorSpace C++ Library

Two Dimensional Problems

c-

the
 -2
nearly

s

nto
4.3.5 Stokes Flow

For a fluid particle with density ρ and velocity u relative to an inertial frame of reference. The Newton’s se
ond law of motion requires the linear momentum of the fluid particle is equal to the forces applied to it.

Eq. 4•236

where divergence of interal stresses, div σ, equals the external surface force, and f is the body force. The Du/Dt
in the left-hand-side is the fluid particle in Lagragian (material) description, in which u(x, t) can be differentiated
with respect to time “t” (by first applying the Lebniz rule, i.e., d(xy) = x dy + y dx, and then the chain rule, d f(x)
/ dt = (df / dx) (dx / dt), on the second term of the Lebniz rule)

Eq. 4•237

where we have applied the definitions of the velocity, u ∂x/∂t, and the velocity gradient, grad u ∂u/∂x. The
stress in the first term of the right-hand-side of Eq. 4•236 can be expressed as in Eq. 4•146 that

where p is the pressure, I is the unit tensor, and τ is the viscous stress. The constitutive equations is

Eq. 4•238

where µ is the fluid viscosity, and is the second viscosity (this term gives the deviatoric stress caused by
volumetirc deformation which is a process attributed to molecular relaxation). For monatomic gas =µ/3,
and it can be proved as the lower bound for thermodynamically. In most applications, , is
completely negligible compared to the pressure, “p”.

A popular treatment for the incompressible condition is to use penalty method where the pressure variable i
eliminated by taking

Eq. 4•239

Now λ and µ are equivalent to the Lamé constants in elasticity. As discussed earlier (see page 409), near the
incompressible condition >> µ. In the penalty method in the stokes problem, the penalty parameter, λ, is
usually taken as

λ = (107~1010) µ Eq. 4•240

to approximate the nearly incompressible condition.1 Substituting Eq. 4•237 and viscous stress of Eq. 4•238 i
Eq. 4•236, we have the Navier-Stokes equation

1. p.520 in Zienkiewicz and R.L. Taylor, 1991, “The finite element method”, 4th ed., vol. 2. McGraw-Hill, Inc., UK.

ρDu
Dt
-------- div σ f+=

Du x t,()
Dt

-------------------- ∂u
∂t

∂u
∂x
------∂x

∂t
------+

∂u
∂t
------ u grad u•+= =

≡ ≡

σ p I– τ+=

τ 2µ def u λ'Idiv u+=

λ'
λ'

λ' λ' div u

p λ– div u=

K λ≈
Workbook of Applications in VectorSpace C++ Library 425

Finite Element Method PrimerChapter 4

 Eq.

. 4•146

s
a-
 elas-

flows
Eq. 4•241

We have dropped out the second viscosity and use the identity that “div(p I) = grad p”. For steady incom-
pressible viscous fluid, the Navier-Stokes equation simplifies to

Eq. 4•242

From Eq. 4•242, the Reynolds number (denoted as Re) is the dynamic similarity of the inertia force
“ “ to the viscous force “div(2µ def u)” as1

Eq. 4•243

At very low Reynolds number (Re << 1) the inertia force is negligible compared to the viscous force. The
4•242 can be simplified to

Eq. 4•244

Therefore, the resultant equation is completely identical to Eq. 4•140 with the constitutive equation of Eq
and Eq. 4•147 for elasticity. The physical interpretation is different in that instead of regarding u as the displace-
ment, it is the velocity in the stokes flow. µ now plays the role of fluid viscosity instead of the shear moduluG
in elasticity. λ is now the penalty parameter we take λ = 108 µ, and certainly with the selective reduced integr
tion for the volumetric term, in the computation. The finite element formulation in the last section for plane
ticity can be applied to the stokes flow problem without modification. Considering the B-matrix formulation for
plane elasticity

, and Eq. 4•245

Since at the incompressible limit, , and λ = 108 µ for the penalty method, Eq. 4•245 becomes2

, and where Eq. 4•246

1. p. 97 in Tritton, D.J., 1988, “ Physical fluid dynamics”, 2nd ed., Oxford University Press, Oxford, UK.

2. see Hughes, T.J.R., W.K. Liu, and A. Brooks, 1979, “Review of finite element analysis of incompressible viscous
by the penalty function formulation”, Journal, of Computational Physics, vol. 30, no. 1, p. 1-60.

ρ∂u
∂t
------ ρu grad u grad p+•+ div 2µ def u() f+=

λ'

ρu grad u grad p+• div 2µ def u() f+=

ρu grad u•

ρu grad u•
div 2µ def u()
-- ρUL

µ
----------- Re≡≈

grad p div 2µ def u() f+=

kdev ei
T Ba

T µ D0
2
3
---m m⊗–

 BbdΩ
Ω
∫ ej= kvol ei

T Ba
TK m m⊗()BbdΩej

Ω
∫=

λ K≈

kdev ei
T Ba

TDµBbdΩ
Ω
∫ ej≅ kvol ei

T Ba
TDλBbdΩej

Ω
∫≅ Dλ

λ λ 0

λ λ 0

0 0 0

= Dµ,
2µ 0 0

0 2µ 0

0 0 µ
=

426 Workbook of Applications in VectorSpace C++ Library

Two Dimensional Problems

tween

duced
 the Poi-
 Couette
ides an

”, is
separate
y close

OW”
E_
motion
ns are

oid the
e plane
hich is
Plane Couette-Poiseuille Flow

Consider a plane uni-directional flow (v = w = 0) drives by both pressure gradient (the Poiseuille flow) and
relative motion (U) of two bounding plates (the Couette flow) as shown in Figure 4•54 . The distance be
two rigid plates is “d” with the pressure gradient from the entrance of the flow to the exit as -∇p = G. The viscos-
ity of the fluid is µ. The velocity profile can be expressed as a function of y coordinate1

Eq. 4•247

This solution can be derived from Eq. 4•244 from the superposition of two solutions of the viscous flow in
by the pressure gradient and by the bounding plates separately. That is the first term corresponding to
seuille flow caused by the applied horizontal pressure gradient, the second term corresponding to the
flow induced by the relative motion of the two bounding plates. In these test cases, the Couette flow prov
assumed linear solution, and the Poiseuille flow provides an assumed higher-order (quadratic) solution.

Program Listing 4•19, in the project “plane_couette_poiseuille_flow” in project workspace file “fe.dsw
implemented for these tests. To emphasize its relation to plane elasticity, we use “elasticq9.cpp” as a
compilation unit, as a dependent source file for this project. The “elasticq9.cpp” is the implementation ver
to of Lagrangian 9-node element for plane elasticity.

The plane Couette flow can be activated by setting macro definition “__TEST_PLANE_COUETTE_FL
and the plane Poiseuille flow can be activated by setting macro definition “__TEST_PLANE_POISEUILL
FLOW”. The default is a combined flow with both pressure gradient applied on the entrance and relative
of bounding plates. The results of the computation are shown in Figure 4•55. The finite element solutio
shown in dashed curves with arrows to indicate the velocity profiles in the middle of the channel to av
entrance and exit effects. The exact solution are shown in solid curves. We notice that the solution for th
Poiseuille flow, quadratic in nature, is less accurate compared to the solution for the plane Couette flow, w
linear.

1. p. 182 in Batchelor, G.K., 1967, “An introduction to fluid dynamics”, Cambridge University Press, UK.

u y() G
2µ
------y d y–() Uy

d
-------+=

Figure 4•54 Plane Couette-Poiseuille flow problem.

p = GL = 40. p = 0

U = 1

L = 10

µ = 1 d = 1
Workbook of Applications in VectorSpace C++ Library 427

Finite Element Method PrimerChapter 4
Figure 4•55 Plane Couette flow and plane Poiseuille flow. The exact solutions are shown in
solid curves the finie element solutions are shown in dashed curves with arrows. The finite
element solutions are velocity profiles taken from the middle of the channel to avoid
entrance and exit effect.

0.1 0.2 0.3 0.4 0.5

0.2

0.4

0.6

0.8

1

Plane Poiseuille Flow

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

Plane Couette Flow +

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

Plane Couette-Poiseuille Flow
428 Workbook of Applications in VectorSpace C++ Library

Two Dimensional Problems
#include "include\fe.h"
static const double mu_ = 1.0; static const double lambda_ = 1.0e8*mu_;
class ElasticQ9 : public Element_Formulation { public:

ElasticQ9(Element_Type_Register);
Element_Formulation *make(int, Global_Discretization&);
ElasticQ9(int, Global_Discretization&); };

ElasticQ9::ElasticQ9(Element_Type_Register a) : Element_Formulation(a) {}
Element_Formulation* ElasticQ9::make(int en, Global_Discretization& gd) {

return new ElasticQ9(en,gd); }
ElasticQ9::ElasticQ9(int en, Global_Discretization& gd) : Element_Formulation(en, gd) {

Quadrature qp(2, 9);
H1 Z(2, (double*)0, qp), Zai, Eta,

N = INTEGRABLE_VECTOR_OF_TANGENT_BUNDLE("int, int, Quadrature", 9, 2, qp);
Zai &= Z[0]; Eta &= Z[1];
N[0] = (1-Zai)*(1-Eta)/4; N[1] = (1+Zai)*(1-Eta)/4;
N[2] = (1+Zai)*(1+Eta)/4; N[3] = (1-Zai)*(1+Eta)/4;
N[8] = (1-Zai.pow(2))*(1-Eta.pow(2));
N[0] -= N[8]/4; N[1] -= N[8]/4; N[2] -= N[8]/4; N[3] -= N[8]/4;
N[4] = ((1-Zai.pow(2))*(1-Eta)-N[8])/2; N[5] = ((1-Eta.pow(2))*(1+Zai)-N[8])/2;
N[6] = ((1-Zai.pow(2))*(1+Eta)-N[8])/2; N[7] = ((1-Eta.pow(2))*(1-Zai)-N[8])/2;
N[0] -= (N[4]+N[7])/2; N[1] -= (N[4]+N[5])/2; N[2] -= (N[5]+N[6])/2; N[3] -= (N[6]+N[7])/2;
Quadrature qp1(2, 4);
H1 z(2, (double*)0, qp1), zai, eta,

n = INTEGRABLE_VECTOR_OF_TANGENT_BUNDLE("int, int, Quadrature", 9, 2, qp1);
zai &= z[0]; eta &= z[1];
n[0] = (1-zai)*(1-eta)/4; n[1] = (1+zai)*(1-eta)/4;
n[2] = (1+zai)*(1+eta)/4; n[3] = (1-zai)*(1+eta)/4;
n[8] = (1-zai.pow(2))*(1-eta.pow(2)); n[0] -= n[8]/4; n[1] -= n[8]/4; n[2] -= n[8]/4; n[3] -= n[8]/4;
n[4] = ((1-zai.pow(2))*(1-eta)-n[8])/2; n[5] = ((1-eta.pow(2))*(1+zai)-n[8])/2;
n[6] = ((1-zai.pow(2))*(1+eta)-n[8])/2; n[7] = ((1-eta.pow(2))*(1-zai)-n[8])/2;
n[0] -= (n[4]+n[7])/2; n[1] -= (n[4]+n[5])/2; n[2] -= (n[5]+n[6])/2; n[3] -= (n[6]+n[7])/2;
H1 X = N*xl; H0 Nx = d(N) * d(X).inverse(); J dV(d(X).det());
H1 x = n*xl; H0 nx = d(n) * d(x).inverse(); J dv(d(x).det());

#if defined(__TEST_B_MATRIX_FORMULATION)
double d_lambda[3][3] = { {lambda_, lambda_, 0.0}, {lambda_, lambda_, 0.0}, {0.0, 0.0, 0.0} };
C0 D_lambda = MATRIX("int, int, const double*", 3, 3, d_lambda[0]);
H0 w_x = INTEGRABLE_SUBMATRIX("int, int, H0&", 1, nsd, nx), wx, wy, b;
wx &= w_x[0][0]; wy &= w_x[0][1]; b &= (~wx|| C0(0.0)) & (C0(0.0) || ~wy) & (~wy || ~wx);
C0 stiff_vol = ((~b) * (D_lambda * b)) | dv;
double d_mu[3][3] = { {2*mu_, 0.0, 0.0}, {0.0, 2*mu_, 0.0}, {0.0, 0.0, mu_} };
C0 D_mu = MATRIX("int, int, const double*", 3, 3, d_mu[0]);
H0 W_x = INTEGRABLE_SUBMATRIX("int, int, H0&", 1, nsd, Nx), Wx, Wy, B;
Wx &=W_x[0][0]; Wy &=W_x[0][1]; B &= (~Wx|| C0(0.0)) & (C0(0.0) || ~Wy) & (~Wy|| ~Wx);
C0 stiff_dev = ((~B) * (D_mu * B)) | dV;

#else
C0 e = BASIS("int", ndf), E = BASIS("int", nen), U = (e%e)*(E%E);
H0 w_x = INTEGRABLE_SUBMATRIX("int, int, H0&", 1, nsd, nx), wx, wy;
wx &= w_x[0][0]; wy &= w_x[0][1];
C0 stiff_vol = lambda_* (

+(wx*~wx*U[0][0]+wx*~wy*U[0][1] +wy*~wx*U[1][0]+wy*~wy*U[1][1]) | dv);
H0 W_x = INTEGRABLE_SUBMATRIX("int, int, H0&", 1, nsd, Nx), Wx, Wy;
Wx &= W_x[0][0]; Wy &= W_x[0][1];
C0 stiff_dev = mu_* (

+(((2*Wx*~Wx)+(Wy*~Wy))*((e[0]%e[0])*(E%E))+(Wy*~Wx) *((e[0]%e[1])*(E%E))
+(Wx*~Wy) *((e[1]%e[0])*(E%E))+((2*Wy*~Wy)+(Wx*~Wx))*((e[1]%e[1])*(E%E)))
| dV);

#endif
stiff &= stiff_vol + stiff_dev;

}

a separate source file “elasticq9.cpp”
taken from plane elasticity problem
penalty parameter is λ = 108 µ

3x3 integration

9-node Lagrangian shape functions

2x2 reduced integration

9-node Lagrangian shape functions

B-matrix formulation for incompressib-
lility

,

standard λ−µ formulation

Dλ

λ λ 0

λ λ 0

0 0 0

= Dµ,
2µ 0 0

0 2µ 0

0 0 µ
=

kdev ei
T Ba

TDµBbdΩ
Ω
∫ ej≅

kvol ei
T Ba

TDλBbdΩej
Ω
∫≅
Workbook of Applications in VectorSpace C++ Library 429

Finite Element Method PrimerChapter 4
#include "include\fe.h"
static const int row_node_no = 7; static const int col_node_no = 9;
static const int row_element_no = (row_node_no-1)/2;
static const int col_element_no = (col_node_no-1)/2;
static const int row_segment_no = row_node_no-1;
static const double L_ = 10.0; static const double c_ = 0.125;
static const double h_e_ = L_/((double)row_segment_no); static const double mu_ = 1.0;
static const double lambda_ = 1.0e8*mu_; static const double p_ = 40.0;
Omega_h::Omega_h() { double v[2]; int ena[9]; Omega_eh *elem;

for(int i = 0; i < col_node_no; i++) for(int j = 0; j < row_node_no; j++) {
int nn = i*row_node_no+j; v[0] = ((double)j)*h_e_; v[1] = ((double)i)*c_;
Node* node = new Node(nn, 2, v); the_node_array.add(node); }

for(int i = 0; i < col_element_no; i++) for(int j = 0; j < row_element_no; j++) {
int en = i * row_element_no + j, fnn = i * 2 * row_node_no + j * 2;
ena[0] = fnn; ena[1] = fnn + 2; ena[2] = ena[1] + 2*row_node_no;
ena[3] = ena[0] + 2*row_node_no; ena[4] = ena[0] + 1; ena[5] = ena[1] + row_node_no;
ena[6] = ena[3] + 1; ena[7] = ena[0] + row_node_no; ena[8] = ena[4]+row_node_no;
elem = new Omega_eh(en, 0, 0, 9, ena); the_omega_eh_array.add(elem); } }

gh_on_Gamma_h::gh_on_Gamma_h(int df, Omega_h& omega_h) { __initialization(df, omega_h);
#if defined(__TEST_PLANE_POISEUILLE_FLOW)

for(int i = 0; i < row_node_no; i++) {
the_gh_array[node_order(i)](0) = the_gh_array[node_order(i)](1) =
the_gh_array[node_order((col_node_no-1)*row_node_no+i)](0) =
the_gh_array[node_order((col_node_no-1)*row_node_no+i)](1)=gh_on_Gamma_h::Dirichlet;}

double weight[9] = { 0.0, 3.0/2.0, 1.0, 1.0, 1.0, 1.0, 1.0, 3.0/2.0, 0.0 };
for(int i = 1; i < col_node_no -1; i++) {

the_gh_array[node_order(i*row_node_no)](0) = gh_on_Gamma_h::Neumann;
the_gh_array[node_order(i*row_node_no)][0] = p_*weight[i]*c_; }

#elif defined(__TEST_PLANE_COUETTE_FLOW)
for(int i = 0; i < row_node_no; i++) {

the_gh_array[node_order(i)](0) = the_gh_array[node_order(i)](1) =
the_gh_array[node_order((col_node_no-1)*row_node_no+i)](0) =
the_gh_array[node_order((col_node_no-1)*row_node_no+i)](1) = gh_on_Gamma_h::Dirichlet;
the_gh_array[node_order((col_node_no-1)*row_node_no+i)][0] = 1.0; }

#else
for(int i = 0; i < row_node_no; i++) {

the_gh_array[node_order(i)](0) = the_gh_array[node_order(i)](1) =
the_gh_array[node_order((col_node_no-1)*row_node_no+i)](0) = gh_on_Gamma_h::Dirichlet;
the_gh_array[node_order((col_node_no-1)*row_node_no+i)](1) = gh_on_Gamma_h::Dirichlet;
the_gh_array[node_order((col_node_no-1)*row_node_no+i)][0] = 1.0; }

double weight[9] = { 0.0, 3.0/2.0, 1.0, 1.0, 1.0, 1.0, 1.0, 3.0/2.0, 0.0 };
for(int i = 1; i < col_node_no -1; i++) {

the_gh_array[node_order(i*row_node_no)](0) = gh_on_Gamma_h::Neumann;
the_gh_array[node_order(i*row_node_no)][0] = p_*weight[i]*c_; }

#endif
}
class ElasticQ9 : public Element_Formulation {public:

ElasticQ9(Element_Type_Register); Element_Formulation *make(int, Global_Discretization&);
ElasticQ9(int, Global_Discretization&); };
Element_Formulation* Element_Formulation::type_list = 0;
Element_Type_Register element_type_register_instance;
static ElasticQ9 stokesq9_instance(element_type_register_instance);
int main() {

int ndf = 2; Omega_h oh; gh_on_Gamma_h gh(ndf, oh); U_h uh(ndf, oh);
Global_Discretization gd(oh, gh, uh); Matrix_Representation mr(gd);
mr.assembly(); C0 u = ((C0)(mr.rhs())) / ((C0)(mr.lhs()));
gd.u_h() = u; gd.u_h() = gd.gh_on_gamma_h(); cout << gd.u_h() << endl;
return 0; }

define nodes

define elements

B.C.
Poiseuille flow only

open integration rule (see Numerical
Reciepe)

Couette flow only

Poiseuille & Couette flow

declare “ElasticQ9” class

register “ElasticQ9” as element # 0

solution phase

Listing 4•19 Plane Couette-Poiseuille flow in project “plane_couette_poiseuille_flow”
430 Workbook of Applications in VectorSpace C++ Library

Two Dimensional Problems

-walls.
nvect-
s
o cor-

ple-
t. The
lateral

, Inc.,

 dynamic
Driven Cavity Flow1

The stokes flow in a square cavity is shown in Figure 4•56a. The bottom and the two sides are rigid
The top is a boundary with velocity given as u(x) = 4(1-x)x. This velocity boundary condition causes a co
ing current in the cavity, which is known as forced convection. The top horizontal velocity boundary condition
vanish at the two top corners, which are to avoid the difficulty in defining boundary conditions at these tw
ner nodes.2 Program Listing 4•20, the project “square_cavity_flow” in project workspace file “fe.dsw”, is im
mented for this computation. Again, the “elasticq9.cpp” is a separate compilation unit for this projec
penalty method (λ = 108 µ) is used with selective reduced integration and the 9-nodes Lagrangian quadri
element. The velocity vectors are shown in Figure 4•56b.

1. p. 462-465 in J.N. Reddy, 1986, “Applied functional analysis and variational methods in engineering”, McGraw-Hill
New York.

2. such as corner node treatments described in p.231 in Hughes, T.J.R., “The finite element method: linear static and
finite element analysis”, Prentice-Hall, Inc., Englewood Cliffs, New Jersey.

Figure 4•56(a) Flow in square cavity with sixteen 9-nodes Lagrangian elements. (b) velocity
vectors.

u = 4(1-x)x

(a) (b)

y

x
(0, 0) (1,0)

(0, 1) (1, 1)
Workbook of Applications in VectorSpace C++ Library 431

Finite Element Method PrimerChapter 4
#include "include\fe.h"
static const int row_node_no = 9; static const int col_node_no = 9;
static const int row_element_no = (row_node_no-1)/2;
static const int col_element_no = (col_node_no-1)/2;
static const double h_e_ = 1.0/((double)row_element_no*2);
static const double v_e_ = 1.0/((double)col_element_no*2);
static const double mu_ = 1.0; static const double lambda_ = 1.e8 * mu_;
EP::element_pattern EP::ep = EP::LAGRANGIAN_9_NODES;
Omega_h::Omega_h() {

double x[4][2] = {{0.0, 0.0}, {1.0, 0.0}, {1.0, 1.0}, {0.0, 1.0}};
 int control_node_flag[4] = {1, 1, 1, 1};
block(this, row_node_no, col_node_no, 4, control_node_flag, x[0]);

}
gh_on_Gamma_h::gh_on_Gamma_h(int df, Omega_h& omega_h) {

__initialization(df, omega_h);
for(int i = 0; i < col_node_no; i++) {

the_gh_array[node_order((i+1)*row_node_no-1)](0) =
the_gh_array[node_order((i+1)*row_node_no-1)](1) = gh_on_Gamma_h::Dirichlet;

}
for(int i = 0; i < col_node_no; i++) {

the_gh_array[node_order(i*row_node_no)](0) =
the_gh_array[node_order(i*row_node_no)](1) = gh_on_Gamma_h::Dirichlet;

}
for(int i = 1; i < row_node_no-1; i++) {

the_gh_array[node_order(i)](0) =
the_gh_array[node_order(i)](1) = gh_on_Gamma_h::Dirichlet;

}
for(int i = 1; i < row_node_no-1; i++) {

int nn = (col_node_no-1)*row_node_no+i;
double x = ((double)i)*h_e_, u = 4.0 * (1.0-x) * x;
the_gh_array[node_order(nn)](0) = gh_on_Gamma_h::Dirichlet;
the_gh_array[node_order(nn)][0] = u;
the_gh_array[node_order(nn)](1) = gh_on_Gamma_h::Dirichlet;

}
}
class ElasticQ9 : public Element_Formulation {
public:

ElasticQ9(Element_Type_Register);
Element_Formulation *make(int, Global_Discretization&);
ElasticQ9(int, Global_Discretization&);

};
Element_Formulation* Element_Formulation::type_list = 0;
Element_Type_Register element_type_register_instance;
static ElasticQ9 stokesq9_instance(element_type_register_instance);
int main() {

int ndf = 2; Omega_h oh;
gh_on_Gamma_h gh(ndf, oh);
U_h uh(ndf, oh);
Global_Discretization gd(oh, gh, uh);
Matrix_Representation mr(gd);
mr.assembly();
C0 u = ((C0)(mr.rhs())) / ((C0)(mr.lhs()));
gd.u_h() = u; gd.u_h() = gd.gh_on_gamma_h();
cout << gd.u_h() << endl;
return 0;

}

right; u = v = 0

left; u = v = 0

bottom; u = v = 0

top, forced B.C.; u = 4(1-x)x, v = 0

declare “ElasticQ9” class

register “ElasticQ9” as element # 0

solution phase

Listing 4•20 Driven cavity flow (in project: “square_cavity_flow” in project workspace file “fe.dsw”.).
432 Workbook of Applications in VectorSpace C++ Library

Two Dimensional Problems

-

4.3.6 Plate Bending Problems

The plate theory probably is only to interest the structural engineers. However, it has often been argued that
since the plate bending is the subject in the fourth-order differential equation that has been most extensively stud-
ied in finite element. The experiences gained in the plate finite element analysis may serve as an important exam-
ple for solving other fourth-order partial differential equation, such as the biharmonic equation of general
physical interests.

Basic Plate Theory

The basic assumption of the plate is that the plane sections, “fiber”, remain plane under deformation (see Fig
ure 4•57a). Each lamina, which is parallel to the mid-surface, is assumed to be under plane stress; e.g., σz = 0.
We also assumed, inconsistent to the plane stress assumption, that εz is almost negligible, so w(xα, xβ) does not
vary with thickness (z = [-t/2, t/2]). The displacements can be expressed as.

uα = uα0-θαz, uβ = uβ0-θβz, w = w0, or
u = u0-θxz, v = v0-θyz, w = w0 Eq. 4•248

The membrane bending strains can be expressed as1

Eq. 4•249

1. p.8 in Zienkiewicz and R.L. Taylor, 1991, “The finite element method”, 4th ed., vol. 2. McGraw-Hill, Inc., UK.

Figure 4•57 (a) the displacements of plate under deformation, (b) the shear forces (Sx, Sy),
the normal momenets (Mx, My), and the twisting moments (Mxy, Myx) of a plate.

θα

γα: shear strain

w = w0

uα = uα0-θαz

fiber
midsurface

My

Mx

Myx

Mxy
Sy

Sx

(a) (b)

ε
εx

εy

γxy

z

∂
∂x
------ 0

0
∂

∂y

∂
∂y

∂
∂x

θx

θy

– zLθ–= = =
Workbook of Applications in VectorSpace C++ Library 433

Finite Element Method PrimerChapter 4

shear

late
and the transverse shear strains [γx, γy] as

Eq. 4•250

From the Figure 4•57b, the normal moments (Mx, My) and the twisting moment (Mxy) are

Eq. 4•251

where D, assumed plane stress, is defined as

Eq. 4•252

The shear forces [Sx, Sy] are

Eq. 4•253

where α = βGt, and the correction factor is for rectangular homogeneous section with parabolic
stress distribution.

Parallel to the equilibrium equations, Eq. 4•26 and Eq. 4•27 for 1-D beam bending problem, we have in p
bending problem

Eq. 4•254

or we can express their components explicitly in matrix form as

Eq. 4•255

γ γx

γy

θx

θy

–

∂w
∂x

∂w
∂y

+ θ– ∇w+= = =

M

Mx

My

Mxy

σx

σy

τxy

z zd

t
2
---–

t
2

∫– DLθ= = =

D Et3

12 1 ν2–()

1 ν 0

ν 1 0

0 0
1 ν–

2

=

S
Sx

Sy

βGt θ– ∇w+() α θ– ∇w+()≡= =

β 5
6
---=

LTM S+ 0= and ∇TS q+, 0=

∂
∂x
------ 0

∂
∂y

0
∂

∂y
------ ∂

∂x

Mx

My

Mxy

Sx

Sy

+ 0

0
and ∂

∂x
------ ∂

∂y

Sx

Sy

qx

qy

+, 0

0
= =
434 Workbook of Applications in VectorSpace C++ Library

Two Dimensional Problems

.There-

.

simple

 and J.N
Kirchhoff (Thin-) Plate Theory and Finite Element Formulation—C1 Continuity Requirement

In thin plate theory, we assume that the fiber remains normal to the mid-surface during deformation
fore, the transverse shear strains are all zero. That is, , and from Eq. 4•250, we identify

Eq. 4•256

Substituting first part of Eq. 4•254 into the second part of it, we get

Eq. 4•257

Then, use Eq. 4•251 to substitute M in Eq. 4•257, and substitute θ, with thin plate assumption, in Eq
4•256, we get

Eq. 4•258

From the definition of operators L and ∇, we have the combined operator “L∇” as

Eq. 4•259

For constant D, the Eq. 4•258 becomes the well-known classical biharmonic equation1

Eq. 4•260

The homogeneous solution for a simply supported rectangular plate with lengths of “a” and “b” has the
form of

Eq. 4•261

The finite element formulation is obtained by substituting element shape function (Na) into Eq. 4•256 to Eq.
4•259. The B-matrix is defined as

Eq. 4•262

1. e.g., Airy’s stress function satisfies the biharmonic equation as described in p.32, and p.538 in Timoshenko, S.P.,.
Goodier, 1970, “ Theory of elasticity”, 3rd ed., McGraw-Hill Book Company.

γ 0=

θ ∇w=

∇– TLTM q+ 0=

θ ∇w=

L∇()TDL∇w q– 0=

L∇

∂
∂x
------ 0

0
∂

∂y

∂
∂y
------ ∂

∂x

∂
∂x

∂
∂y

∂2

∂x2

∂2

∂y2

2
∂2

∂x∂y

= =

∂4w
∂x4
---------- 2

∂4w
∂x2∂y2
------------------ ∂4w

∂y4
---------- q

12 1 ν2–()
Et3

-------------------------–+ + 0=

w
mπx

a

 nπy
b

 coscos= where m n,, 1 3 5 …, , ,=

Ba L∇()Na=
Workbook of Applications in VectorSpace C++ Library 435

Finite Element Method PrimerChapter 4

.e.,

 rect-
From Eq. 4•251 and Eq. 4•256, we have the moment vector as

Eq. 4•263

where is the nodal deflection vector. The element stiffness matrix has no difference from Eq. 4•173; i

, with p = ndf (a-1) + i, and q = ndf (b-1)+j Eq. 4•264

Nonconforming Rectangular Plate Element (12 degrees of freedom)

The nodal variables for this four-node rectangular element is

Eq. 4•265

where

Eq. 4•266

The nonconforming element defines a 12-terms polynomial for the deflection “w” as

w = α0 + α1 x + α2 y + α3 x
2 + α4 xy + α5 y

2 +

 α6 x
3 + α7 x

2y + α8 xy2 + α9 y
3 + α10 x

3y + α11 xy3
Eq. 4•267

where

Eq. 4•268

Notice that the polynomial is not complete up to the third-order. For each of four nodes on the corner of the
angle (a = 0, 1, 2, 3), we have twelve equations

Eq. 4•269

Me
h DBaŵe

a
=

ŵe
a

ke
pq ke

iajb ei
T Ba

TDBbdΩej
Ω
∫= =

ûe
a

wa

θ̂xa

θ̂ya

≡

θ̂xa
∂w
∂y
-------–

a

= and θ̂ya, ∂w
∂x

a

=

Pα≡

P 1 x y x2 xy y
2

x3 x2y xy2 y3 x3y xy3=

wa

θ̂xa

θ̂ya

α0 α1xa α2ya α3xa
2 α4xaya α5ya

2 α6xa
3 α7xa

2ya α8xaya
2 α9ya

3 α10xa
3ya α11xaya

3+ + + + + + + + + + +

α– 2 α4xa 2α5ya– α7xa
2– 2α8xaya 3α9ya

2– α10xa
3– 3α11xaya

2–––

α1 2α3xa α4ya 3α6xa
2 2α7xaya α8ya

2 3α10xa
2ya α11ya

3+ + + + + + +

=

Caα≡
436 Workbook of Applications in VectorSpace C++ Library

Two Dimensional Problems

g shape
aken to
iform
nd the

s of the
es are
tion is

odel.
 the

ite
where Ca is defined as

Eq. 4•270

for a = 0, 1, 2, 3. Therefore, C is a 12 12 matrix. The vector α can be obtained by inverting Eq. 4•269 as

Eq. 4•271

Therefore, the B-matrix is defined as

Eq. 4•272

where the shape function is

N = PC-1 Eq. 4•273

The Program Listing 4•21 implements the generic procedure in the above to derive the nonconformin
function (Eq. 4•273) for the thin-plate bending rectangular element. Eq. 4•262 and Eq. 4•264 are then t
define the B-matrix and the stiffness matrix, respectively. The plate is clamped at four sides and with un
unit loading. Only a quarter (upper-right) of the plate is modeled due to the symmetry of the geometry a
boundary conditions. 4 4 (= 16) elements are used in the computation. At the right and the top edge
model the boundary conditions are w = w/ x = w/ y = 0 (clamped). At the bottom and the left edg
taken as w/ y =0, and w/ x =0, respectively (see Figure 4•58a). The solution of the vertical deflec
shown in Figure 4•58b.

The maximum deflection is at the center of the plate, or at the lower-left corner of the finite element m
The exact solution is 226800.1 The results are shown in TABLE 4•8., which shows the convergence toward
exact solution when the mesh size is refined.

1. The exact solution is computed from formula provided in p. 31 in Zienkiewicz, O.C. and R.L. Taylor, 1991, “The fin
element method”, 4th ed., vol. 2. McGraw-Hill, Inc., UK, and reference therein.

Mesh Center Deflection

2 2 251691

4 4 234449

8 8 229464

16 16 228186

Exact 226800

TABLE 4•8. Center deflection.

Ca

1 xa ya xa
2 xaya ya

2 xa
3 xa

2ya xaya
2 ya

3 xa
3ya xaya

3

0 0 1– 0 xa– 2ya– 0 xa
2– 2xaya– 3ya

2– xa
3– 3xaya

2–

0 1 0 2xa ya 0 3xa
2 2xaya ya

2 0 3xa
2ya ya

3

≡

×

α C 1– ûe
a=

B L∇()PC 1–=

×
∂ ∂ ∂ ∂

∂ ∂ ∂ ∂

×

×

×

×

Workbook of Applications in VectorSpace C++ Library 437

Finite Element Method PrimerChapter 4
#include "include\fe.h"
static row_node_no = 5;
EP::element_pattern EP::ep = EP::QUADRILATERALS_4_NODES;
Omega_h::Omega_h() {

double coord[4][2] = {{0.0, 0.0}, {1.0, 0.0}, {1.0, 1.0}, {0.0, 1.0}};
int control_node_flag[4] = {TRUE, TRUE, TRUE, TRUE};
block(this, row_node_no, row_node_no, 4, control_node_flag, coord[0]);

}
gh_on_Gamma_h::gh_on_Gamma_h(int df, Omega_h& omega_h) {

__initialization(df, omega_h);
for(int i = 0; i < row_node_no-1; i++)

the_gh_array[node_order(i)](1) = gh_on_Gamma_h::Dirichlet;
for(int i = 0; i < row_node_no-1; i++)

the_gh_array[node_order(i*row_node_no)](2) = gh_on_Gamma_h::Dirichlet;
for(int i = 1; i <= row_node_no; i++) {

the_gh_array[node_order(i*row_node_no-1)](0) = gh_on_Gamma_h::Dirichlet;
the_gh_array[node_order(i*row_node_no-1)](1) = gh_on_Gamma_h::Dirichlet;
the_gh_array[node_order(i*row_node_no-1)](2) = gh_on_Gamma_h::Dirichlet; }

for(int i = 0; i < row_node_no-1; i++) {
the_gh_array[node_order(row_node_no*(row_node_no-1)+i)](0) =

gh_on_Gamma_h::Dirichlet;
 the_gh_array[node_order(row_node_no*(row_node_no-1)+i)](1) =

gh_on_Gamma_h::Dirichlet;
 the_gh_array[node_order(row_node_no*(row_node_no-1)+i)](2) =

gh_on_Gamma_h::Dirichlet;
}

}
class PlateR4 : public Element_Formulation {

public:
PlateR4(Element_Type_Register a) : Element_Formulation(a) {}
Element_Formulation *make(int, Global_Discretization&);
PlateR4(int, Global_Discretization&);

};
Element_Formulation* PlateR4::make(int en, Global_Discretization& gd) {

return new PlateR4(en,gd);
}
static const double E_ = 1.0; static const double v_ = 0.25; static const double t_ = 0.01;
static const double D_ = E_ * pow(t_,3) / (12.0*(1-pow(v_,2)));
static const double Dv[3][3] = { {D_, D_*v_, 0.0 },

{D_*v_, D_, 0.0 },
{0.0, 0.0, D_*(1-v_)/2.0} };

C0 D = MATRIX("int, int, const double*", 3, 3, Dv[0]);
PlateR4::PlateR4(int en, Global_Discretization& gd) : Element_Formulation(en, gd) {

int ndf = 3;
Quadrature qp(2, 16);
H0 dx_inv;
H2 X;
{

H2 z(2, (double*)0, qp),
n = INTEGRABLE_VECTOR_OF_TANGENT_OF_TANGENT_BUNDLE(

"int, int, Quadrature", 4/*nen*/, 2/*nsd*/, qp), zai, eta;
zai &= z[0]; eta &= z[1];
n[0] = (1-zai)*(1-eta)/4; n[1] = (1+zai)*(1-eta)/4;
n[2] = (1+zai)*(1+eta)/4; n[3] = (1-zai)*(1+eta)/4;
X &= n*xl;

}
dx_inv &= d(X).inverse();
J dv(d(X).det());

bottom B.C. w/ y =0

left B.C. w/ x =0

top B.C. w = w/ x = w/ y =0

right B.C. w = w/ x = w/ y =0

coordinate transformation rule

∂ ∂

∂ ∂

∂ ∂ ∂ ∂

∂ ∂ ∂ ∂

D Et3

12 1 ν2–()

1 ν 0

ν 1 0

0 0
1 ν–

2

=

438 Workbook of Applications in VectorSpace C++ Library

Two Dimensional Problems

Listing 4•21 Plate bending using nonconformming rectangular element (project workspace file “fe.dsw”,
project “rectangular_plate_bending” with Macro definition
“__GENERIC_NONCONFORMING_SHAPE_FUNCTION” set at compile time).

{
H2 Z(2, (double*)0, qp),

N = INTEGRABLE_VECTOR_OF_TANGENT_OF_TANGENT_BUNDLE(
"int, int, Quadrature", nen*ndf/*nenxndf*/, 2/*nsd*/, qp),

Zai, Eta;
Zai &= Z[0]; Eta &= Z[1];
C0 C(12, 12, (double*)0),

C_sub = SUBMATRIX("int, int, C0&", 3, 12, C);
for(int i = 0; i < nen; i++) {

C0 x(xl[i][0]), y(xl[i][1]), x2 = x.pow(2), x3 = x.pow(3), y2 = y.pow(2), y3 = y.pow(3),
zero = C0(0.0), one = C0(1.0);

C_sub(i) =
(one | x | y | x2 | (x*y) | y2 | x3 |(x2*y) | (x*y2) | y3 | (x3*y) | (x*y3)) &
(zero|zero|-one|zero |(-x)|(-2.0*y)|zero |(-x2) |(-2*x*y)|(-3*y2)|(-x3) |(-3*x*y2)) &
(zero|one |zero|(2*x)|y |zero |(3*x2)|(2*x*y) |y2 |zero |(3*x2*y)|y3);

}
C0 C_inv = C.inverse();
H2 P = INTEGRABLE_VECTOR_OF_TANGENT_OF_TANGENT_BUNDLE(

"int, int, Quadrature", 12/*nenxndf*/, 2/*nsd*/, qp);
{

H2 x = X[0], y = X[1];
P[0] = 1.0; P[1] = x; P[2] = y; P[3] = x.pow(2);
P[4] = x*y; P[5] = y.pow(2); P[6] = x.pow(3);
P[7] = x.pow(2)*y; P[8] = x*y.pow(2); P[9] = y.pow(3);
P[10] = x.pow(3)*y; P[11] = x*y.pow(3);

}
for(int i = 0; i < 12; i++) N[i] = P * C_inv(i);
H0 Nxx = INTEGRABLE_MATRIX("int, int, Quadrature", 2*nen*ndf, 2, qp);
H0 w_xx = INTEGRABLE_SUBMATRIX("int, int, H0&", 2, 2, Nxx);
for(int i = 0; i < nen*ndf; i++) w_xx(i) = (~dx_inv) * dd(N)(i) * dx_inv;
H0 B = (~w_xx[0][0]) &

 (~w_xx[1][1]) &
 (2.0*(~w_xx[0][1]));

stiff &= ((~B) * (D * B)) | dv;
double f_0 = 1.0;
force &= (((H0)N)*f_0) | dv;

}
}
Element_Formulation* Element_Formulation::type_list = 0;
static Element_Type_Register element_type_register_instance;
static PlateR4 plate_r4_instance(element_type_register_instance);
int main() {

int ndf = 3;
Omega_h oh; gh_on_Gamma_h gh(ndf, oh); U_h uh(ndf, oh);
Global_Discretization gd(oh, gh, uh);
Matrix_Representation mr(gd);
mr.assembly();
C0 u = ((C0)(mr.rhs())) / ((C0)(mr.lhs()));
gd.u_h() = u; gd.u_h() = gd.gh_on_gamma_h();
cout << "[w, -dw/dy, dw/dx]:" << endl;
for(int i = 0; i < row_node_no; i++)
for(int j = 0; j < row_node_no; j++)

cout << "#" << (i*row_node_no+j) << ": " << gd.u_h()[i*row_node_no+j] << endl;
return 0;

}

Shape functions N

Eq. 4•270 for C-matrix

C-1

P =

N = PC-1

, and

1 x y x2 xy y
2

x3 x2y xy2 y3 x3y xy3

Ba L∇()Na= L∇

∂2

∂x2

∂2

∂y2

2
∂2

∂x∂y

=

ke
ia jb ei

T Ba
TDBbdΩej

Ω
∫=
Workbook of Applications in VectorSpace C++ Library 439

Finite Element Method PrimerChapter 4

 [
t for-

c.,
Alternatively, we can substitute the explicit shape functions1 in Eq. 4•262 with

Eq. 4•274

where “2a” and “2b” are the lengths of a rectangular element, and the nodal normalized coordinates areξa, ηa]
= {(-1, -1), (1, -1), (1, 1), (-1, 1)}. Implementation of Eq. 4•274, to be substituting in Eq. 4•262, is straigh
ward as

1 H2 Z(2, (double*)0, qp),
2 N = INTEGRABLE_VECTOR_OF_TANGENT_OF_TANGENT_BUNDLE(
3 "int, int, Quadrature", nen*ndf/*nenxndf*/, 2/*nsd*/, qp),
4 Zai, Eta;
5 Zai &= Z[0]; Eta &= Z[1];
6 double a = fabs(((double)(xl[0][0]-xl[1][0])))/2.0,

1. see p. 17 in Zienkiewicz, O.C. and R.L. Taylor, 1991, “The finite element method”, 4th ed., vol. 2. McGraw-Hill, In
UK, and reference therein.

Figure 4•58 Clamped boundary conditions and nodal deflections for rectangular plate bending
elements (4 4 mesh are shown) using non-conformming shape function.×

w = ∂w/∂x = ∂w/∂y =0

∂w/∂y =0

∂w/∂x = 0

1.0

1.0

(a)
(b)

1

2

3

4

5 1

2

3

4

5

0
50000

100000
150000
200000

1

2

3

4

5 1

2

3

4

5

0
00
00
0
0

Na
1
8

ξξa 1+() ηηa 1+() 2 ξξa ηηa ξ2– η2–+ +()

b– ηa ξξa 1+() ηηa 1+()2 ηηa 1–()

aξa ξξa 1+()2 ξξa 1–() ηηa 1+()

≡

440 Workbook of Applications in VectorSpace C++ Library

Two Dimensional Problems

ike Eq.
kspace
-

nction.
7 b = fabs(((double)(xl[2][1]-xl[1][1])))/2.0,
8 zai[4] = {-1.0, 1.0, 1.0, -1.0}, eta[4] = {-1.0, -1.0, 1.0, 1.0};
9 for(int i = 0; i < nen; i++) {
10 N[i*ndf] = (Zai*zai[i]+1)*(Eta*eta[i]+1)*(2+Zai*zai[i]+Eta*eta[i]-Zai.pow(2)-Eta.pow(2))/8.0;
11 N[i*ndf+2] = a*zai[i]*(Zai*zai[i]+1).pow(2)*(Zai*zai[i]-1)*(Eta*eta[i]+1)/8.0;
12 N[i*ndf+1] = -b*eta[i]*(Zai*zai[i]+1)*(Eta*eta[i]+1).pow(2)*(Eta*eta[i]-1)/8.0;
13 }

On the other hand, the Eq. 4•272 is quite generic especially when no one is deriving an explicit formula l
4•274 for us. The computation is done on the same project (“rectangular_plate_bending” in project wor
file “fe.dsw”) with macro definition “__EXPLICIT_NONCONFORMING_SHAPE_FUNCTION” set at com
pile time. The solutions is certainly identical to the one with generic procedure for computing the shape fu

Conforming Rectangular Plate Element (16 degrees of freedom)

Instead of Eq. 4•265, we can extend the nodal variables to

Eq. 4•275

with four nodes at each corner of the rectangle we have totally 16 degree of freedoms. Therefore, a complete
third-order polynomial can be used to represent the deflection w, with P defined as

Eq. 4•276

and parallel to the derivation of Eq. 4•269, we have

Eq. 4•277

Eq. 4•276 and the inverse of Eq. 4•277 can be substituted in Eq. 4•272 to define the B-matrix. The explicit shape
functions for the conforming rectangular element, , is defined as

ûe
a

wa

∂w
∂y

a

∂w
∂x

a

∂2w
∂x∂y

a

≡

P 1 x y x2 xy y
2

x3 x2y xy2 y3 x3y x2y
2

xy3 x3y
2

x2y3 x3y3=

Ca

1 xa ya xa
2 xaya ya

2 xa
3 xa

2ya xaya
2 ya

3 xa
3ya xa

2ya
2 xaya

3 xa
3y2

a xa
2y3

a xa
3y3

a

0 0 1 0 xa 2ya 0 xa
2 2xaya 3ya

2 xa
3 2xa

2ya 3xaya
2 2xa

3ya 3xa
2y2

a 3xa
3y2

a

0 1 0 2xa ya 0 3xa
2 2xaya ya

2 0 3xa
2ya 2xay

a
2 ya

3 3xa
2y2

a 2xay3
a 3xa

2y3
a

0 0 0 0 1 0 0 2xa 2ya 0 3xa
2 4xaya 3ya

2 6xa
2ya 6xaya

2 9xa
2y2

a

≡

Workbook of Applications in VectorSpace C++ Library 441

Finite Element Method PrimerChapter 4

l
acro
 or
flection

e

it shape

, and

ent
Eq. 4•278

where “2a” and “2b” are the lengths of the rectangular element, and the subscript a = 0, 1, 2, 3 are the noda
numbers (developed by Bogner et al.1,2). The same project “rectangular_plate_bending” can be used with m
definition “__EXPLICIT_CONFORMING_SHAPE_FUNCTION” set at compile time for using Eq. 4•278,
no macro definition set at compile time for its generic counterpart via Eq. 4•277. The results of center de
of the conforming rectangular plate are shown in TABLE 4•9. .

Triangular Plate Element (9 degrees of freedom)

For triangular element we use the area coordinates L0, L1, and L2. The polynomial has 9-terms to match th
9-dof on the three corner nodes. Therefore, P can be defined as3

Eq. 4•279

Three third order terms are chosen in addition to the first six complete second order terms. The explic
function for the first node is (with cyclic permutation of 0, 1, 2 for other two nodes)

1. see p. 49 in Zienkiewicz and R.L. Taylor, 1991, “The finite element method”, 4th ed., vol. 2. McGraw-Hill, Inc., UK
reference therein.

2. see also p. 419, Table 9.1 for the “Hermite cubic element” in Reddy, J.N., 1993, “An introduction to the finite elem
method”, 2nd ed., McGraw-Hill, Inc., New York.

3. see p. 244 in Zienkiewicz, O.C., 1977, “The finite element method”, 3rd ed., McGraw-Hill, Inc., UK.

Mesh Center Deflection

2 2 363735

4 4 275114

8 8 242597

16 16 232124

Exact 226800

TABLE 4•9. Center deflection.

Na
1

16

ξ ξa+()2 ξξa 2–() η ηa+()2 ηηa 2–()

a– ξa ξ ξa+()2 ξξa 1–() η ηa+()2 ηηa 2–()

b– ξ ξa+()2 ξξa 2–()ηa η ηa+()2 ηηa 1–()

abξa ξ ξa+()2 ξξa 1–()ηa η ηa+()2 ηηa 1–()

≡

×

×

×

×

P L0 L1 L2 L0L1 L1L2 L2L0 L0
2L1 L1

2L2 L2
2L0=
442 Workbook of Applications in VectorSpace C++ Library

Two Dimensional Problems

 as

oject
 plate
Eq. 4•280

where b0 = y1- y2, and c0 = x2-x1. The explicit shape function for the triangular element can be implemented

1 H2 L(2, (double*)0, qp), // area coordinates
2 N = INTEGRABLE_VECTOR_OF_TANGENT_OF_TANGENT_BUNDLE(
3 "int, int, Quadrature", 9, 2, qp), // shape functions
4 L0 = L[0], L1 = L[1], L2 = 1.0 - L0 - L1;
5 double b0 = (double)(xl[1][1]-xl[2][1]), c0 = (double)(xl[2][0]-xl[1][0]),
6 b1 = (double)(xl[2][1]-xl[0][1]), c1 = (double)(xl[0][0]-xl[2][0]),
7 b2 = (double)(xl[0][1]-xl[1][1]), c2 = (double)(xl[1][0]-xl[0][0]);
8 N[0] = L0+L0.pow(2)*L1+L0.pow(2)*L2-L0*L1.pow(2)-L0*L2.pow(2); // first node
9 N[1] = b2*(L0.pow(2)*L1+L0*L1*L2/2.0)-b1*(L2*L0.pow(2)+L0*L1*L2/2.0);
10 N[2] = c2*(L0.pow(2)*L1+L0*L1*L2/2.0)-c1*(L2*L0.pow(2)+L0*L1*L2/2.0);
11 N[3] = L1+L1.pow(2)*L2+L1.pow(2)*L0-L1*L2.pow(2)-L1*L0.pow(2); // second node
12 N[4] = b0*(L1.pow(2)*L2+L0*L1*L2/2.0)-b2*(L0*L1.pow(2)+L0*L1*L2/2.0);
13 N[5] = c0*(L1.pow(2)*L2+L0*L1*L2/2.0)-c2*(L0*L1.pow(2)+L0*L1*L2/2.0);
14 N[6] = L2+L2.pow(2)*L0+L2.pow(2)*L1-L2*L0.pow(2)-L2*L1.pow(2); // third node
15 N[7] = b1*(L2.pow(2)*L0+L0*L1*L2/2.0)-b0*(L1*L2.pow(2)+L0*L1*L2/2.0);
16 N[8] = c1*(L2.pow(2)*L0+L0*L1*L2/2.0)-c0*(L1*L2.pow(2)+L0*L1*L2/2.0);

Program Listing 4•22 implements the 9-dof triangular plate bending problem. The pr
“triangle_plate_bending” in project workspace file “fe.dsw” implements the 9-dofs triangular element for
bending problem. The maximum deflection, for a (4 4) 2 triangular mesh, is 205175.

N0

L0 L0
2L1 L0

2L2 L0L1
2 L0L2

2––+ +

b2 L0
2L1

1
2
---L0L1L2+

 b1 L2L0
2 1

2
---L0L1L2+

 –

c2 L0
2L1

1
2
---L0L1L2+

 c1 L2L0
2 1

2
---L0L1L2+

 –

≡

× ×
Workbook of Applications in VectorSpace C++ Library 443

Finite Element Method PrimerChapter 4
#include "include\fe.h"
static row_node_no = 5;
EP::element_pattern EP::ep = EP::SLASH_TRIANGLES;
Omega_h::Omega_h() {

double coord[4][2] = {{0.0, 0.0}, {1.0, 0.0}, {1.0, 1.0}, {0.0, 1.0}};
int control_node_flag[4] = {TRUE, TRUE, TRUE, TRUE};
block(this, row_node_no, row_node_no, 4, control_node_flag, coord[0]);

}
gh_on_Gamma_h::gh_on_Gamma_h(int df, Omega_h& omega_h) {

__initialization(df, omega_h);
for(int i = 0; i < row_node_no-1; i++)

the_gh_array[node_order(i)](1) = gh_on_Gamma_h::Dirichlet;
for(int i = 0; i < row_node_no-1; i++)

the_gh_array[node_order(i*row_node_no)](2) = gh_on_Gamma_h::Dirichlet;
for(int i = 1; i <= row_node_no; i++) {

the_gh_array[node_order(i*row_node_no-1)](0) =
the_gh_array[node_order(i*row_node_no-1)](1) =
the_gh_array[node_order(i*row_node_no-1)](2) = gh_on_Gamma_h::Dirichlet;

}
for(int i = 0; i < row_node_no-1; i++) {

the_gh_array[node_order(row_node_no*(row_node_no-1)+i)](0) =
the_gh_array[node_order(row_node_no*(row_node_no-1)+i)](1) =
the_gh_array[node_order(row_node_no*(row_node_no-1)+i)](2) =

gh_on_Gamma_h::Dirichlet;
}

}
class PlateT3 : public Element_Formulation {
public:

PlateT3(Element_Type_Register a) : Element_Formulation(a) {}
Element_Formulation *make(int, Global_Discretization&);
PlateT3(int, Global_Discretization&);

};
Element_Formulation* PlateT3::make(int en, Global_Discretization& gd) {

return new PlateT3(en,gd);
}
static const double E_ = 1.0; static const double v_ = 0.25; static const double t_ = 0.01;
static const double D_ = E_ * pow(t_,3) / (12.0*(1-pow(v_,2)));
static const double Dv[3][3]={

{D_, D_*v_, 0.0 },
{D_*v_, D_, 0.0 },
{0.0, 0.0, D_*(1-v_)/2.0 }

};
C0 D = MATRIX("int, int, const double*", 3, 3, Dv[0]);
PlateT3::PlateT3(int en, Global_Discretization& gd) : Element_Formulation(en, gd) {

int ndf = 3;
Quadrature qp(2, 16);
H0 dx_inv;
H1 X;
{

H1 l(2, (double*)0, qp),
n = INTEGRABLE_VECTOR_OF_TANGENT_BUNDLE("int, int, Quadrature", 3, 2, qp),

l0 = l[0], l1 = l[1], l2 = 1.0 - l0 - l1;
n[0] = l0; n[1] = l1; n[2] = l2;
X &= n*xl;

}
dx_inv &= d(X).inverse();
J dv(d(X).det());

bottom B.C. - w/ y =0

left B.C. w/ x =0

right B.C. w = w/ x = w/ y =0

top B.C. w = w/ x = w/ y =0

coordinate transformation rule

∂ ∂

∂ ∂

∂ ∂ ∂ ∂

∂ ∂ ∂ ∂

D Et3

12 1 ν2–()

1 ν 0

ν 1 0

0 0
1 ν–

2

=

444 Workbook of Applications in VectorSpace C++ Library

Two Dimensional Problems
Listing 4•22 9 dof triangular plate bending using nonconformming rectangular element (project workspace
file “fe.dsw”, project “triangular_plate_bending”).

{
H2 L(2, (double*)0, qp),

N = INTEGRABLE_VECTOR_OF_TANGENT_OF_TANGENT_BUNDLE(
"int, int, Quadrature", 9, 2, qp),

L0 = L[0],
L1 = L[1],
L2 = 1.0 - L0 - L1;
double b0 = (double)(xl[1][1]-xl[2][1]),

c0 = (double)(xl[2][0]-xl[1][0]),
b1 = (double)(xl[2][1]-xl[0][1]),
c1 = (double)(xl[0][0]-xl[2][0]),
b2 = (double)(xl[0][1]-xl[1][1]),
c2 = (double)(xl[1][0]-xl[0][0]);

N[0] = L0+L0.pow(2)*L1+L0.pow(2)*L2-L0*L1.pow(2)-L0*L2.pow(2);
N[1] = b2*(L0.pow(2)*L1+L0*L1*L2/2.0)-b1*(L2*L0.pow(2)+L0*L1*L2/2.0);
N[2] = c2*(L0.pow(2)*L1+L0*L1*L2/2.0)-c1*(L2*L0.pow(2)+L0*L1*L2/2.0);
N[3] = L1+L1.pow(2)*L2+L1.pow(2)*L0-L1*L2.pow(2)-L1*L0.pow(2);
N[4] = b0*(L1.pow(2)*L2+L0*L1*L2/2.0)-b2*(L0*L1.pow(2)+L0*L1*L2/2.0);
N[5] = c0*(L1.pow(2)*L2+L0*L1*L2/2.0)-c2*(L0*L1.pow(2)+L0*L1*L2/2.0);
N[6] = L2+L2.pow(2)*L0+L2.pow(2)*L1-L2*L0.pow(2)-L2*L1.pow(2);
N[7] = b1*(L2.pow(2)*L0+L0*L1*L2/2.0)-b0*(L1*L2.pow(2)+L0*L1*L2/2.0);
N[8] = c1*(L2.pow(2)*L0+L0*L1*L2/2.0)-c0*(L1*L2.pow(2)+L0*L1*L2/2.0);
H0 Nxx = INTEGRABLE_MATRIX("int, int, Quadrature", 2*nen*ndf, 2, qp);
H0 w_xx = INTEGRABLE_SUBMATRIX("int, int, H0&", 2, 2, Nxx);
for(int i = 0; i < nen*ndf; i++)

w_xx(i) = (~dx_inv) * dd(N)(i) * dx_inv;
H0 B = (~w_xx[0][0]) &

(~w_xx[1][1]) &
(2.0*(~w_xx[0][1]));

stiff &= ((~B) * (D * B)) | dv;
double f_0 = 1.0;
force &= (((H0)N)*f_0) | dv;

}
}
Element_Formulation* Element_Formulation::type_list = 0;
static Element_Type_Register element_type_register_instance;
static PlateT3 plate_t3_instance(element_type_register_instance);
int main() {

int ndf = 3;
Omega_h oh;
gh_on_Gamma_h gh(ndf, oh);
U_h uh(ndf, oh);
Global_Discretization gd(oh, gh, uh);
Matrix_Representation mr(gd);
mr.assembly();
C0 u = ((C0)(mr.rhs())) / ((C0)(mr.lhs()));
gd.u_h() = u;
gd.u_h() = gd.gh_on_gamma_h();
cout << "[w, -dw/dy, dw/dx]:" << endl;
for(int i = 0; i < row_node_no; i++)

for(int j = 0; j < row_node_no; j++)
cout << "#" << (i*row_node_no+j) << ": " << gd.u_h()[i*row_node_no+j] << endl;

return 0;
}

shape functions N

b0 = y1- y2, and c0 = x2-x1.

explicit shape functions

, and Ba L∇()Na= L∇

∂2

∂x2

∂2

∂y2

2
∂2

∂x∂y

=

ke
ia jb ei

T Ba
TDBbdΩej

Ω
∫=
Workbook of Applications in VectorSpace C++ Library 445

Finite Element Method PrimerChapter 4

on the
epicted

K.
Morley’s Triangular Plate Element (6 degrees of freedom)

A complete quadratic polynomial has only six terms as

Eq. 4•281

A triangular element can be conceived with six degree of freedoms, with three deflection variables “w”
corner nodes and three normal derivatives “ w/ n” on the three middle points of the triangle sides as d
in Figure 4•59.

Parallel to the derivation of Eq. 4•269 for a generic shape function, we have

w0 = α0, w1 = α1, w2 = α2 Eq. 4•282

The normal derivatives to the node number “3” can be obtained according to the formula1

Eq. 4•283

where l0 is the length of the edge opposing to node number “0”, ∆ is the area of the triangle, and µi is defined as

, , and Eq. 4•284

Similarly we can define for the other two normal derivatives and . The derivatives of “Pα”
with respect to L0, L1, and L2 are

1. p.27 in Zienkiewicz, O.C. and R.L. Taylor, 1991, “The finite element method”, 4th ed., vol. 2. McGraw-Hill, Inc., U

P L0 L1 L2 L0L1 L1L2 L2L0=

∂ ∂

Figure 4•59 Morley’s six degrees of freedom triangular element.

w0

(∂w/∂n)5

w1

w2

(∂w/∂n)3(∂w/∂n)4

∂
∂n

3

l0

4∆
------- ∂

∂L1
--------- ∂

∂L2
--------- 2

∂
∂L0
---------– µ0

∂
∂L2
--------- ∂

∂L1
---------–

 + +=

µ0

l2
2 l1

2–

l0
2

---------------= µ1

l0
2 l2

2–

l1
2

---------------= µ2

l1
2 l0

2–

l2
2

---------------=

∂ ∂n⁄()4 ∂ ∂n⁄()5
446 Workbook of Applications in VectorSpace C++ Library

Two Dimensional Problems

 as
Eq. 4•285

Therefore, using Eq. 4•283, we have

Eq. 4•286

Therefore, C can be expressed as

Eq. 4•287

The shape function is defined as N = PC-1. We can still use the definition of stiffness matrix from Eq. 4•264,

Eq. 4•288

Recall it has been defined with a particular choice

Eq. 4•289

that improves the symmetry of plate theory equations. The relation of to and can be expressed

Eq. 4•290

∂ Pα()
∂L0

----------------- α0 α3L1 α5L2+ +=

∂ Pα()
∂L1

----------------- α1 α3L0 α4L2+ +=

∂ Pα()
∂L2

----------------- α2 α4L1 α5L0+ +=

∂w
∂n

3

l0

4∆
------- 2α0– 1 µ0–()α1 1 µ0+()α2 α3 α4+– α5–+ +[]=

∂w
∂n

4

l1

4∆
------- 2α1– 1 µ1–()α2 1 µ1+()α0 α4 α5+– α3–+ +[]=

∂w
∂n

5

l2

4∆
------- 2α2– 1 µ2–()α0 1 µ0+()α1 α5 α3+– α4–+ +[]=

C

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

2l– 0

4∆

l0 1 µ0–()
4∆

l0 1 µ0+()

4∆
------------------------ 1– 1 1–

l1 1 µ1+()
4∆

2l– 1

4∆

l1 1 µ1–()
4∆

------------------------ 1– 1– 1

l2 1 µ2–()
4∆

l2 1 µ2+()

4∆

2l– 2

4∆
---------- 1 1– 1–

≡

ke
pq ke

ia jb ei
T Ba

TDBbdΩej
Ω
∫= =

θ̂x
∂w
∂y
-------–= and θ̂y, ∂w

∂x
-------=

θn θ̂x θ̂y

θn
∂w
∂n
------- nx

∂w
∂x
------- ny

∂w
∂y
-------+ n– y()θ̂x nxθ̂y+= ==
Workbook of Applications in VectorSpace C++ Library 447

Finite Element Method PrimerChapter 4

9.
ion are
where n = [nx, ny]T is the outward unit surface normal on the mid-side node. Therefore, the B-matrix corre-
sponding to -dof is multiplied with a factor “ (nx - ny)” to take care of the conventional choice in Eq. 4•28
Program Listing 4•23 implements the Morley’s 6-dof triangular plate element. The result of the computat
shown in TABLE 4•10..

No. of Elements Center Deflection

(4 4) 2 125704

(8 8) 2 165518

(16 16) 2 192789

Exact 226800

TABLE 4•10. Center Deflection of Morley’s
triangular plate element.

θn

× ×

× ×

× ×
448 Workbook of Applications in VectorSpace C++ Library

Two Dimensional Problems
bottom B.C. w/ n =0

left B.C. w/ n =0

right B.C. w = w/ n =0

top B.C. w = w/ n =0

∂ ∂

∂ ∂

∂ ∂

∂ ∂

D Et3

12 1 ν2–()

1 ν 0

ν 1 0

0 0
1 ν–

2

=

#include "include\fe.h"
static row_node_no = 9;
Omega_h::Omega_h() {

int row_segment_no = (row_node_no - 1)/2;
double v[2]; int ena[6];
for(int i = 0; i < row_node_no; i++)
for(int j = 0; j < row_node_no; j++) {

int nn = i*row_node_no+j;
v[0] = (double)j/(double)(row_node_no-1); v[1] = (double)i/(double)(row_node_no-1);
Node* node = new Node(nn, 2, v); the_node_array.add(node);

}
for(int i = 0; i < row_segment_no; i++)
for(int j = 0; j < row_segment_no; j++) {

int nn = i*row_node_no*2+j*2;
ena[0] = nn; ena[1] = ena[0]+row_node_no*2+2; ena[2] = ena[1]-2;
ena[3] = ena[2] + 1; ena[4] = ena[0]+row_node_no; ena[5] = ena[4]+1;
int en = i*row_segment_no*2+j*2;
Omega_eh* elem = new Omega_eh(en, 0, 0, 6, ena); the_omega_eh_array.add(elem);
ena[0] = nn; ena[1] = nn+2; ena[2] = ena[1] + row_node_no*2;
ena[3] = ena[1] + row_node_no; ena[4] = ena[3] -1; ena[5] = ena[0] +1;
elem = new Omega_eh(en+1, 0, 0, 6, ena); the_omega_eh_array.add(elem);

}
}
gh_on_Gamma_h::gh_on_Gamma_h(int df, Omega_h& omega_h) { __initialization(df, omega_h);

for(int i = 1; i < row_node_no-1; i+=2)
the_gh_array[node_order(i)](0) = gh_on_Gamma_h::Dirichlet;

for(int i = 1; i < row_node_no-1; i+=2)
the_gh_array[node_order(i*row_node_no)](0) = gh_on_Gamma_h::Dirichlet;

for(int i = 0; i < row_node_no; i+=2) {
the_gh_array[node_order(i*row_node_no-1)](0) =
the_gh_array[node_order((i+1)*row_node_no-1)](0) = gh_on_Gamma_h::Dirichlet;

}
for(int i = 0; i < row_node_no-1; i+=2) {

the_gh_array[node_order(row_node_no*(row_node_no-1)+i)](0) =
the_gh_array[node_order(row_node_no*(row_node_no-1)+i+1)](0) =

gh_on_Gamma_h::Dirichlet;
}
the_gh_array[node_order(row_node_no*row_node_no-1)](0) = gh_on_Gamma_h::Dirichlet;

}
class PlateMorley6 : public Element_Formulation {
public:

PlateMorley6(Element_Type_Register a) : Element_Formulation(a) {}
Element_Formulation *make(int, Global_Discretization&);
PlateMorley6(int, Global_Discretization&);

};
Element_Formulation* PlateMorley6::make(int en, Global_Discretization& gd) {

return new PlateMorley6(en,gd);
}
static const double E_ = 1.0;
static const double v_ = 0.25;
static const double t_ = 0.01;
static const double D_ = E_ * pow(t_,3) / (12.0*(1-pow(v_,2)));
static const double Dv[3][3] = {

{D_, D_*v_, 0.0 },
{D_*v_, D_, 0.0 },
{0.0, 0.0, D_*(1-v_)/2.0}

};
C0 D = MATRIX("int, int, const double*", 3, 3, Dv[0]);
Workbook of Applications in VectorSpace C++ Library 449

Finite Element Method PrimerChapter 4
Listing 4•23 Morley’s 6-dof triangular plate bending(project workspace file “fe.dsw”, project
“morley_plate_bending”).

PlateMorley6::PlateMorley6(int en, Global_Discretization& gd) : Element_Formulation(en, gd) {
Quadrature qp(2, 16);
H1 l(2, (double*)0, qp),

n = INTEGRABLE_VECTOR_OF_TANGENT_BUNDLE("int, int, Quadrature", 3, 2, qp),
l0 = l[0], l1 = l[1], l2 = 1.0 - l0 - l1; n[0] = l0; n[1] = l1; n[2] = l2;
C0 x = MATRIX("int, int, C0&, int, int", 3, 2, xl, 0, 0);
H1 X = n*x; H0 dx_inv = d(X).inverse(); J dv(d(X).det()/2.0);
{

H2 L(2, (double*)0, qp),
N = INTEGRABLE_VECTOR_OF_TANGENT_OF_TANGENT_BUNDLE(

"int, int, Quadrature", 6, 2, qp),
L0 = L[0], L1 = L[1], L2 = 1.0 - L0 - L1;
H0 unit(qp); unit = 1.0; double area = (double)(unit | dv);
double l_0 = (double)norm(xl[1]-xl[2]), l_1 = (double)norm(xl[2]-xl[0]),

l_2 = (double)norm(xl[0]-xl[1]), mu_0 = (pow(l_2,2)-pow(l_1,2))/pow(l_0,2),
mu_1 = (pow(l_0,2)-pow(l_2,2))/pow(l_1,2), mu_2 = (pow(l_1,2)-pow(l_0,2))/pow(l_2,2),
d3 = l_0/(4.0*area), d4 = l_1/(4.0*area), d5 = l_2/(4.0*area);

C0 C = (C0(1.0) | C0(0.0) | C0(0.0) | C0(0.0) | C0(0.0) | C0(0.0)) &
(C0(0.0) | C0(1.0) | C0(0.0) | C0(0.0) | C0(0.0) | C0(0.0)) &
(C0(0.0) | C0(0.0) | C0(1.0) | C0(0.0) | C0(0.0) | C0(0.0)) &
(d3*(C0(-2.0) | C0(1.0-mu_0) | C0(1.0+mu_0) | C0(-1.0) | C0(1.0) | C0(-1.0))) &
(d4*(C0(1.0+mu_1) | C0(-2.0) | C0(1.0-mu_1) | C0(-1.0) | C0(-1.0) | C0(1.0))) &
(d5*(C0(1.0-mu_2) | C0(1.0+mu_2) | C0(-2.0) | C0(1.0) | C0(-1.0) | C0(-1.0)));

C0 C_inv = C.inverse();
H2 P = INTEGRABLE_VECTOR_OF_TANGENT_OF_TANGENT_BUNDLE(

"int, int, Quadrature", 6/*nenxndf*/, 2/*nsd*/, qp);
P[0] = L0; P[1] = L1; P[2] = L2; P[3] = L0*L1; P[4] = L1*L2; P[5] = L2*L0;
for(int i = 0; i < 6; i++) N[i] = P * C_inv(i);
H0 Nxx = INTEGRABLE_MATRIX("int, int, Quadrature", 2*nen*ndf, 2, qp);
H0 w_xx = INTEGRABLE_SUBMATRIX("int, int, H0&", 2, 2, Nxx);
for(int i = 0; i < nen*ndf; i++) w_xx(i) = (~dx_inv) * dd(N)(i) * dx_inv;
H0 B = (~w_xx[0][0]) & (~w_xx[1][1]) & (2.0*(~w_xx[0][1]));
for(int i = 0; i < 3; i++) {

int next = ((i == 2)? 0 : i+1);
C0 t = xl[next]-xl[i]; t = t/norm(t);
C0 nx = t[1], ny = -t[0];
B(i+3) = B(i+3)*(nx-ny);

}
stiff &= ((~B) * (D * B)) | dv;
double f_0 = 1.0;
force &= (((H0)N)*f_0) | dv;

}
}
Element_Formulation* Element_Formulation::type_list = 0;
static Element_Type_Register element_type_register_instance;
static PlateMorley6 plate_m6_instance(element_type_register_instance);
int main() {

int ndf = 1; Omega_h oh; gh_on_Gamma_h gh(ndf, oh); U_h uh(ndf, oh);
Global_Discretization gd(oh, gh, uh); Matrix_Representation mr(gd);
mr.assembly(); C0 u = ((C0)(mr.rhs())) / ((C0)(mr.lhs()));
gd.u_h() = u; gd.u_h() = gd.gh_on_gamma_h();
for(int i = 0; i < row_node_no; i++)

for(int j = 0; j < row_node_no; j++)
cout << "#" << (i*row_node_no+j) << ": " << gd.u_h()[i*row_node_no+j] << endl;

return 0; }

coordinate transformation rule
shape functions N
natural coordinate L0, L1, L2

C

C-1

N = PC-1
, and

B (nx-ny) for θn , to be compatible with
stiffness matrix that is defined for

Ba L∇()Na= L∇

∂2

∂x2

∂2

∂y2

2
∂2

∂x∂y

=

θn n– y()θ̂x nxθ̂y+=

θ̂x
∂w
∂y
-------–= and θ̂y, ∂w

∂x
-------=

ke
ia jb ei

T Ba
TDBbdΩej

Ω
∫=
450 Workbook of Applications in VectorSpace C++ Library

	4. Finite Element Method Primer
	4.1 Basics of Finite Element Method
	4.1.1 Mathematical Abstraction of Finite Element M...
	Finite Element—A Systematic Treatment for Complex ...
	Finite Element Approximation
	Global Matrix and Solution Phase—Systematic Treatm...

	4.1.2 Object-Oriented Modeling of the Finite Eleme...
	Step 1. Discretization Global Domain—
	Step 2. Free and Fixed Variables
	Step 3. Element Formulation
	Step 4. Matrix Representation and Solution Phase

	4.1.3 Object-Oriented Analysis and Design of Finit...
	Dependency Graph
	Graph Level Structure
	Composite Class from a Dependency Graph

	4.1.4 A Program Template for Using ÿfe.libÿ

	4.2 One Dimensional Problems
	4.2.1 A Second-Order Ordinary Differential Equation (ODE)
	Linear Line Element
	Quadratic Line Element
	Cylindrical Coordinates For Axisymmetrical Problem

	4.2.2 A Fourth-Order ODE ÿthe Beam Bending Problem
	Irreducible Formulation--Piecewise Cubic Hermite Shape Functions
	Mixed Formulation
	Lagrange Multiplier Formulation
	Penalty Function Formulation

	4.2.3 Nonlinear ODE
	Galerkin Formulation
	Least Squares Formulation

	4.2.4 Transient Problems
	Parabolic Equation
	Hyperbolic Equation

	4.2.5 The Mixed Formulation Revisited--Matrix Substructure Method
	Matrix Substructuring
	Object-Oriented Modeling for Matrix Substructuring

	4.3 Two Dimensional Problems
	4.3.1 Heat Conduction
	Basic Physics and Element Formulation
	An Example with Bilinear 4-Node Element
	A 2-D Geometrical Tool --"block()"
	Lagrange 9-nodes Element for Heat Conduction
	Post-Processing--Heat flux on Gauss Points
	Post-Processing--Heat Flux Nodal Projection Method

	4.3.2 Potential Flow
	Basic Physics and Element Formulation
	Stream Function--psi Formulation
	Velocity Potential--phi Formulation

	4.3.3 Plane Elasticity
	Formulations
	I. Coordinate-Free Tensorial Forumlation:
	II. Indicial Notation Forumlation:
	III. B-matrix Formulation:

	Implementations
	B-Matrix Formulation:
	Indicial Notation Formulation:
	Coordinate-Free Tensorial Formulation:

	Post-Processing
	Nodal Reactions
	Stresses on Gauss Points
	Stress Nodal Projection Method

	Shear Locking of Bilinear 4-Node Element
	Quadratic Element: The Lagrangian 9-Node Element
	Dilatation Locking of Nearly Incompressible Elasticity in Plane Strain

	4.3.4 Patch Tests--Finite Element Test Suites for Software Quality Assura
	Patch Tests--Consistency and Stability
	Weak Patch Test for an Axisymmetrical Problem
	Higher-Order Patch Test
	Shape Sensibility
	Convergence of bilinear 4-node element

	4.3.5 Stokes Flow
	Plane Couette-Poiseuille Flow
	Driven Cavity Flow

	4.3.6 Plate Bending Problems
	Basic Plate Theory
	Kirchhoff (Thin-) Plate Theory and Finite Element Formulation
	Nonconforming Rectangular Plate Element (12 degrees of freedom)
	Conforming Rectangular Plate Element (16 degrees of freedom)
	Triangular Plate Element (9 degrees of freedom)
	Morley's Triangular Plate Element (6 degrees of freedom)

