
c Copyright by Akhil Jayant Vidwans, 1999

A FRAMEWORK FOR GRID SOLVERS

BY

AKHIL JAYANT VIDWANS

B.Tech., Indian Institute of Technology, Bombay, 1991
M.S.E., University of Texas, Austin, 1993

THESIS

Submitted in partial ful�llment of the requirements
for the degree of Doctor of Philosophy in Computer Science

in the Graduate College of the
University of Illinois at Urbana-Champaign, 1999

Urbana, Illinois

Abstract

The design and implementation of an object-oriented framework for grid

solvers is presented. Unlike conventional sparse solvers, a grid solver solves

the sparse linear system embedded in a computational grid without creating

the sparse matrix explicitly at any stage of the solution process. This al-

lows it to take advantage of additional information about the problem that

is available within the grid data structure. Such an approach leads to an

optimal parallel algorithm for matrix reordering by cartesian nested dissec-

tion. It also facilitates the e�cient computation of the elimination tree and

factorization of the sparse system by the multi-frontal method in a high-

performance computing environment. In addition, it enables the construc-

tion of a structural preconditioner that is highly e�ective in accelerating the

rates of convergence of iterative methods. The problem of non-universality

of grid data structures is addressed by designing and implementing the grid

solver as an object-oriented framework that can be used by a wide variety

of applications through instantiation and customization. Such a framework

can encompass diverse grid representations in di�erent spatial dimensions

without any loss of functionality.

iii

Acknowledgments

I am grateful to my advisor, Prof. Michael Heath, for his advice and

guidance over the course of this dissertation. I would also like to thank the

other members of my dissertation committee for their helpful criticisms and

suggestions.

This research was supported by the Center for Simulation of Ad-

vanced Rockets at the University of Illinois at Urbana-Champaign,

Urbana, IL.

Akhil Vidwans

Urbana, IL.

June 1999.

iv

Table of Contents

1 Introduction . 1
1.1 Direct Approach . 1
1.2 Iterative Methods . 3
1.3 Limitations of Conventional Sparse Solvers 4
1.4 Grid Solvers . 5
1.5 Object-Oriented Framework 7
1.6 Outline . 8

2 Computational Grids . 9
2.1 Formal De�nition . 11
2.2 Examples of Grids . 12
2.3 Dual Graph of Grid . 18

2.3.1 De�nition . 18

3 Parallel Cartesian Nested Dissection 22
3.1 Previous Work . 23
3.2 Contiguous Cartesian Axial Edge Separators 25
3.3 Properties of Cartesian Separators 27
3.4 Parallel Cartesian Nested Dissection on Grid 31

3.4.1 One-Way Parallel Cartesian Bisection 31
3.4.2 Parallel Nested Dissection Algorithm 33

3.5 Implementation Details . 34
3.5.1 Initial Grid Partitioning 34
3.5.2 Computing Separator 35
3.5.3 Grid Redistribution 36

3.6 Complexity Analysis . 37
3.6.1 Serial Complexity . 37
3.6.2 Parallel Complexity 39

3.7 Applications and Performance 42

4 Computing Elimination Tree 49
4.1 Previous Work . 50
4.2 Fundamentals . 51

4.2.1 De�nition and Derivation 51
4.2.2 Properties . 52
4.2.3 Construction . 53

4.3 Edge-Based Construction of Elimination Tree 55
4.3.1 First Edge-Based Algorithm 56
4.3.2 Second Edge-Based Algorithm 57

4.4 Parallel Algorithm for Computing Elimination Tree 61

v

4.4.1 Proof of Correctness 63
4.4.2 Example . 64
4.4.3 Complexity Analysis 65
4.4.4 Parallel Performance 67

5 Factorization and Triangular Solution 68
5.1 Previous Work . 69
5.2 Parallel Multifrontal Factorization on Grid 70

5.2.1 Overview of Multifrontal Method 70
5.2.2 Parallel Implementation on Grid 71
5.2.3 Performance . 73

5.3 Forward and Backward Triangular Solution 74
5.3.1 Serial Algorithms . 75
5.3.2 Parallel Approaches 75

5.4 Performance . 77

6 Iterative Grid Solvers . 79
6.1 Previous Work . 81

6.1.1 Iterative Methods . 81
6.1.2 Preconditioners . 82
6.1.3 Parallel Implementation Techniques 83

6.2 Iterative Methods on Grids 86
6.2.1 Parallel Implementation of Basic Operations 89

6.3 Structural Preconditioner for Iterative Grid Solvers 90
6.3.1 Construction and Factorization in Parallel 91
6.3.2 Example . 92
6.3.3 Convergence Performance 93

7 Design of Object-Oriented Framework 96
7.1 Background . 98
7.2 Model Description . 100
7.3 Class De�nitions . 102

7.3.1 Grid Class . 103
7.3.2 Dual Node Class . 103
7.3.3 Dual Edge Class . 104
7.3.4 Edge Class . 105
7.3.5 Node Class . 105
7.3.6 Factor Column Class 106
7.3.7 Frontal Matrix Class 107

7.4 Implementation Details . 107

8 Summary . 111

References . 115

Vita . 119

vi

List of Tables

3.1 List of test grids. 47
3.2 Execution times for CND algorithm. 48

4.1 Execution times for parallel elimination tree algorithm. . . . 67

5.1 Execution times for parallel multifrontal method. 78
5.2 Execution times for parallel triangular factorization. 78

6.1 Execution times for one matrix-vector product operation. . . 90

vii

List of Figures

2.1 Entities of various dimensionality in two-dimensional, rectan-
gular, structured grid. 13

2.2 Entities of various dimensionality in two-dimensional, trian-
gular, unstructured grid. 14

2.3 Entities of various dimensionality in cross-section of three-
dimensional, hybrid, unstructured grid. 15

2.4 Entities of various dimensionality in two-dimensional, trian-
gular, unstructured grid. 16

2.5 Entities of various dimensionality in three-dimensional, hex-
ahedral, unstructured grid. 17

2.6 Dual graph of 2-D rectangular, structured grid. 19
2.7 Dual graph of 2-D triangular, unstructured grid. 19
2.8 Dual graph of cross-section of three-dimensional, hybrid, un-

structured grid. 20

3.1 Contiguous set of cartesian axial edge separators for 2-D tri-
angular, unstructured grid. 26

3.2 Duality of edge and vertex separators for 2-D triangular grid
and its dual graph. 28

3.3 Vertex separator increment function property for 2-D trian-
gular grid and its dual graph. 29

3.4 Schematic for one-way CND algorithm. 32
3.5 Initial partitioning of 2-D rocket grid. 43
3.6 First step of CND on 2-D rocket grid. 44
3.7 Second step of CND on 2-D rocket grid. 44
3.8 Final step of CND on 2-D rocket grid. 44
3.9 Initial partitioning of 3-D rocket grid. 45
3.10 First step of CND on 3-D rocket grid. 46
3.11 Second step of CND on 3-D rocket grid. 46
3.12 Final step of CND on 3-D rocket grid. 47

4.1 2-D structured grid and its elimination tree. 54
4.2 First edge-based algorithm. 57
4.3 Second edge-based algorithm. 60
4.4 Parallel edge-based algorithm. 64

5.1 Application of multifrontal method. 73

6.1 Grid structural preconditioner for 2-D rectangular grid. . . . 92
6.2 Convergence performance of GMRES with various precondi-

tioners. 94

viii

6.3 Convergence performance of QMR with various precondition-
ers. 94

6.4 Performance of CG with various preconditioners. 95

7.1 Class diagram for framework model. 101

ix

List of Abbreviations

CG Conjugated Gradients

CND Cartesian Nested Dissection

GMRES Generalized Minimum Residual

OO Object-Oriented

QMR Quasi-Minimum Residual

STL Standard Template Library

UML Uni�ed Modeling Language

x

1 Introduction

Sparse linear systems arise in a wide variety of scienti�c computing applica-

tions. Typically, a matrix is deemed sparse if the number of nonzero entries

in it is an order of magnitude less than the size of the matrix. Equivalently,

the number of nonzero entries in any given row or column of a sparse ma-

trix is bounded above by a constant. This property presents the possibility

of exploiting the large number of zero entries in a sparse matrix to reduce

the work required for the solution process, as well as to reduce the storage

requirements for the matrix and its factors. In fact, for large scale problems

with many thousands of unknowns, the sparse approach is the only viable

method for the solution of the linear system.

1.1 Direct Approach

The direct approach to the solution of sparse linear systems involves factor-

ization of the sparse matrix into upper and lower triangular factors, followed

by forward and backward triangular solution to obtain the �nal result. An

unfortunate side e�ect of this process is the occurrence of \�ll", i.e., the

appearance of nonzero entries in matrix locations that initially held zeros.

This is clearly undesirable as it undermines both objectives of the sparse

approach outlined in the previous paragraph, viz., e�ciency and reduction

of storage requirements. Although there do exist matrices that su�er no �ll

at all during the factorization process, in general �ll is inevitable and the

most that can be expected is its minimization. The way to do so is to \re-

order" the matrix initially, i.e., rearrange its rows and columns, in a manner

that will result in a minimum number of matrix entries su�ering �ll during

1

factorization. Unfortunately, it has been shown that computing a reordering

that will minimize �ll for a given sparse matrix is an NP-Complete problem

[30]. The solution is to employ heuristics for reordering a sparse matrix

that, while not guaranteeing minimum possible �ll, do an acceptable job of

reducing �ll for most practical applications.

The past three decades have seen an enormous amount of research ac-

tivity focused on this direct method of solving sparse linear systems [6]

[1]. Although di�erences between solutions presented in literature abound,

there is nevertheless a strong commonality among them that forms what will

be hereinafter referred to as the \conventional" or \traditional" approach to

sparse direct solution. At the core of this conventional approach is the repre-

sentation of the sparse matrix as a graph [10], in which the rows and columns

are represented by vertices and edges denote the o�-diagonal nonzero entries

in the sparse matrix. This graph representation is captured in memory us-

ing one of a select few storage formats [10] that are primarily designed to

minimize memory usage and to allow easy access to sparsity information by

the operations performed during the various phases of the solution process.

The �rst of these is the reordering phase wherein heuristics are employed in

an e�ort to reduce �ll later on. Several such heuristics have been proposed

in literature, of which two of the most e�ective approaches are Minimum

Degree [11] and Nested Dissection [9]. A variant of nested dissection

is cartesian nested dissection (CND) [16], which utilizes cartesian co-

ordinates associated with the vertices of the matrix graph to improve both

performance and quality of nested dissection. Once the matrix is reordered,

the next step is to compute the so called Elimination Tree [23] for the ma-

trix. This tree serves as a \blueprint" for the factorization phase, wherein

the factors of the matrix are computed. TheMultifrontal Method [24] is

one of the most popular techniques for factorization in current use. Finally,

if a right-hand side is available, the solution to the system is computed using

2

forward and backward triangular solves.

1.2 Iterative Methods

The iterative approach to the solution of sparse linear systems involves suc-

cessively re�ning an approximation to the exact solution by repeatedly car-

rying out a sequence of matrix-vector products and other operations on the

system matrix, the approximation, and the right-hand side. This process

is continued until an estimate of the error in the approximation falls be-

low a pre-speci�ed threshold. The e�ectiveness of such an iterative method

depends critically on the rate of its convergence, i.e., the number of iter-

ations required for the error estimate to fall below the pre-speci�ed limit.

This rate of convergence can be accelerated dramatically for many prob-

lems by utilizing a \preconditioner" in conjunction with the original matrix.

A preconditioner is derived from the system matrix by omitting some of

its nonzeros based either upon the matrix structure or the actual numeri-

cal values. Such a preconditioner is easier to factorize directly, compared

with the original, but still retains enough of the \essence" of its progenitor

to improve the rate of convergence. The key to the design of an e�ective

preconditioner is the choice of nonzeros to retain from the original matrix.

As in the case with the direct approach, a considerable amount of re-

search has been undertaken in the area of designing e�ective iterative meth-

ods for sparse linear systems. Two of the more popular and widely-used iter-

ative methods in existence today are CG (Conjugated Gradients), GM-

RES (Generalized Minimum Residual) andQMR (Quasi-Minimum

Residual). The problem of designing preconditioners for these methods has

also been studied exhaustively. As in the case of the conventional approach

for direct methods, the conventional approach for iterative methods involves

casting the matrix into a graph representation, followed by repeated appli-

cation of the iterative sequence until convergence. If a preconditioner is

3

used, it is derived solely from the conventional data structure of the system

matrix.

1.3 Limitations of Conventional Sparse Solvers

While conventional approaches have been successful as universally applica-

ble, robust, and reasonably e�cient methodologies for sparse linear system

solution, there is a large class of scienti�c computing applications where

conventional approaches su�er from signi�cant limitations. This is the class

of the so called \grid-based" problems, i.e., problems in which the sparse

matrix is derived from an underlying computational grid. An example is the

solution of partial di�erential equations by the �nite element method. In

such cases, the sparse matrix information is implicitly contained in the data

structure for the grid along with other information needed by the numeri-

cal method that is employed by the application. However, the conventional

approaches to sparse solution mandate that the sparse matrix be available

explicitly in one of the aforementioned data formats. This forces the appli-

cation to extract the sparse matrix information from the grid and set up the

appropriate data structure before a conventional sparse solver can be used.

However, this conversion results in several signi�cant disadvantages in per-

formance and storage requirements of the conventional solver. First, explicit

creation of the matrix requires two separate data structures for the sparse

matrix: the explicit representation needed by the conventional solver, and

the original implicit representation needed by the application itself. This

implies an extra memory overhead on the application, especially in the case

of large, three-dimensional problems where unnecessary memory usage can

diminish the ability to solve meaningful practical problems. Second, the con-

version from one data format to another imposes a performance overhead on

the application. This is especially serious in high performance computing,

where it is imperative that all phases of the application be parallelized so

4

that none can cause a bottleneck. This forces the user to implement the for-

mat conversion in a manner that does not impede the parallel performance of

the overall system. Perhaps the most critical disadvantage caused by format

conversion is that a conventional sparse solver is unable to take advantage

of additional information about the grid that is readily available in the grid

data structure. This information can potentially be of great signi�cance to

the sparse solver in e�ciently executing the various phases of the solution

process. As a result, the conventional sparse solver must attempt to recreate

on its own the very information about the problem that was readily available

in the grid data. A revealing illustration of this needless predicament is the

surfeit of algorithms in the literature for heuristically reordering the sparse

matrix, that use esoteric and ine�cient techniques in an attempt to gener-

ate the lost information [27]. Another manifestation of this can be seen in

the problem of designing an e�ective preconditioner for iterative methods.

The single most critical advantage in the construction of a preconditioner

is special knowledge about the system matrix, its origins, and its structure.

By forcing the application to coerce the matrix into a severely restrictive

data format, conventional iterative sparse solvers discard valuable informa-

tion about the problem that can be immensely helpful in the design of a

good preconditioner.

1.4 Grid Solvers

This dissertation introduces the concept of a \Grid Solver", i.e., a sparse

linear system solver that, unlike conventional sparse solvers, works directly

with the computational grid within the application. The sparse matrix itself

is never formed explicitly at any stage of the solution process. This approach

enables a grid solver to take full advantage of all the information about the

application that is available within the grid data structure. It also eliminates

the additional memory and performance overhead caused by the mandatory

5

conversion of matrix formats in the conventional approach.

A Direct Grid Solver works with the grid data structure to reorder

the vertices so as to reduce potential �ll in the factorization process. This

results in an optimal parallel algorithm for reordering by cartesian nested

dissection. The elimination tree for the matrix is computed in parallel

using a combination of two novel edge-based algorithms that do not require

information regarding the connectivity of a given node with other nodes.

The factors of the matrix are then computed in using a distributed version of

the multi-frontal method. This is followed by the forward and backward

triangular solves to obtain the �nal solution.

An Iterative Grid Solver implements the basic operations of matrix

and vector algebra that are required by a typical iterative method, on the

sparse matrix implicitly embedded within the grid data structure. It also

exploits the additional information about the problem to construct a struc-

tural preconditioner for accelerating convergence. This preconditioner is

block diagonal with the size of each block bounded above by a constant.

This allows it to be constructed and factorized in a embarrassingly parallel

fashion, i.e., without any additional communication among processors. It is

extremely e�ective in accelerating the convergence of widely-used iterative

methods, outperforming several other popular preconditioners in addition

to being much easier to compute and use.

The performance of both the above types of grid solvers is demonstrated

by testing them with applications ranging from a simple two-dimensional,

rectangular grid to a fully unstructured, three-dimensional grid in use for

the simulation of advanced, solid-propellant rockets.

It should be mentioned that the grid approach is fundamentally di�er-

ent from the so called \matrix-free" or \element-by-element" methods used

in some �nite element applications. These are primarily linear algebraic

techniques employed to avoid constructing the entire sti�ness matrix at any

6

given time. In contrast, the grid approach does work with the whole sparse

matrix, but the matrix is in implicit format inside the grid data structure.

In other words, the application supplies the fully assembled sparse matrix

to the grid solver through the data representation that the application uses

for the grid.

1.5 Object-Oriented Framework

A potential problem with the design of a grid solver is that there is no

universally accepted format for the representation of a computational grid.

This is due to the fact that each discipline has its own objectives in using

a grid and therefore represents it in a fashion that suits its own purpose.

Since computational grids are used in a large number of di�erent �elds and

applications, it is impossible for any common consensus to evolve on this

matter. Furthermore, such consensus if not likely even if all areas agree to

achieve it because of the fact that memory is at an extreme premium in

large scale practical applications, and it is not feasible to store redundant

information in the grid data structure just to maintain uniformity.

Given these consideration, it is imperative that the design of the grid

solver be such that di�erences in various grid data structures can be incor-

porated without loss of any essential functionality. To that end, the grid

solver is designed as an object-oriented framework that can encompass

diverse grid representations and dimensions. A framework is simply a col-

lection of classes that collaborate to provide a speci�c functionality to a set

of applications that di�er signi�cantly. Such a framework is then instanti-

ated for each particular applications and customized to meet its individual

characteristics. The core functionality of sparse linear system solution is

implemented only once. The application speci�c methods are those that

vary from one usage to the next.

7

1.6 Outline

The rest of this dissertation is organized as follows. Chapter 2 de�nes the

concept of grid formally and also provides de�nitions for associated con-

cepts that are of importance in subsequent chapters. Chapter 3 describes

the optimal distributed algorithm for cartesian nested dissection. Chapter 4

concerns the computation of the elimination tree structure. Chapter 5 de-

scribes the adaptation of the multi-frontal method for grid factorization, as

well as forward and backward solution. Chapter 6 describes the design and

implementation of the iterative grid solver along with that of a structural

preconditioner for accelerating the convergence of such a solver. Finally,

Chapter 7 describes the design methodology of the object-oriented frame-

work for both solvers.

8

2 Computational Grids

A computational grid is a discrete representation of a continuous geomet-

ric domain. Computational grids have existed since the very inception of

the �eld of scienti�c computing. They are used in almost every major sci-

enti�c and engineering discipline including uid dynamics, solid mechanics,

physics, electrical engineering, and civil engineering to name a few. Their

principal role in these �elds is the geometric representation of natural and

arti�cial objects and phenomena such as aircraft, rockets, automobiles, cli-

mate patterns, ocean currents, galaxies, semiconductors, and myriad geo-

logical structures. The property of computational grids that allows them to

function e�ectively as models in such a vast range of applications is their

geometric and structural exibility. A grid can be one, two, or three di-

mensional, depending upon the complexity of the simulation. It can be

structured or unstructured, although it is the unstructured variety that pro-

vides the maximum exibility. A grid can be uniform , i.e., made up of the

same kind of building blocks, or hybrid , i.e., formed from a set of di�erent

components.

However, in spite of their universal popularity in a large number of scien-

ti�c computing �elds, the fact remains that computational grids have never

been subject to formal de�nition and analysis from a scienti�c computing

point of view. One possible explanation for this could be that the exible

character of grids themselves precludes such study with any reasonable de-

gree of rigor and uniformity. This is in direct contrast, for instance, to the

concept of a graph, which has been formalized and rigorously studied to a

highly advanced level over the years.

Nevertheless, all the di�erent disciplines that employ grids in their ap-

9

plications have developed their own data structures that adequately serve

their computational needs. Even though these di�er signi�cantly in de-

tail from discipline to discipline, there is a strong common thread running

through almost all such data representations for computational grids. This

chapter formally de�nes the notion of a computational grid using precisely

this commonality. The motivation is not to create a foolproof, water-tight

formal de�nition that can be used as a basis for a detailed and rigorous

formal study of computational grids and their applications. Instead, the

idea is simply to create a notational system that will prove adequate for the

purpose of describing the various algorithms and operations on grids that

appear throughout this dissertation.

Informally, a computational grid is simply a collection of geometric ob-

jects \attached" together in cartesian space. These objects abut other ob-

jects in the grid in a geometrically and topologically \coherent" fashion. For

instance, a structured two-dimensional rectangular grid consists of a num-

ber of rectangles organized in a structured fashion along the X and Y axes.

Each rectangle is attached to other rectangles in the grid through some or

all of its four edges. It may share some or all of its edges and nodes with

other rectangles. The entire structure is built in such a manner so as to

preclude any \overlap" among rectangles as well as any intersection of their

edges. A more complex example of a grid is a three-dimensional, tetrahedral,

unstructured grid, which has tetrahedra grouped together in three dimen-

sions in an irregular manner. Even though the arrangement of tetrahedra

is irregular compared with that of the rectangles in the prior example, the

rules of non-overlap and geometric and topological consistency still apply.

Such rules are crucial to prevent unforeseen and intractable errors with the

numerical algorithms that use such grids.

10

2.1 Formal De�nition

A computational grid is formally de�ned as G =< D;E;M > where D, E

and M are de�ned as follows:

� Dimensionality: D is an integer from the set f1; 2; 3g that denotes

the dimensionality of the computational grid. Thus, D = 1 for one-

dimensional grids and D = 2 or 3 for two or three dimensional grid

respectively.

� Entity Collection: E is a collection of sets of \entities" that make

up the computational grid. These sets are named E0 through ED

where the subscripts denote the dimensionality of the entities in the

corresponding set. Thus, E0 is a list of cartesian points each of which

is a member of the set RD where R is the set of real numbers. For

0 � i � D, Ei = set of all eki with k going from 1 through the

number of entities in Ei, denoted by j Ei j, and where eki is given by

eki �
Q

j2[0;i)(Ej)
d(ek

i
;j), where

Q
stands for cross product of the powers

of all entity sets of lower dimensions. The powers d(eki ; j) correspond

to the \degree" of each entity eki of set Ei with respect to all lower

entities of dimensionality j and will henceforth be referred to as the

\j-degree" of an entity eki from Ei.

� Entity Mapping Function: M is a function that maps entities and

sets of entities to their constituent entities of lower dimensionality.

Given an entity eki and an integer j < i, M(eki ; j) = set of all ej such

that ej 2 eki . For a set E
s
i , M(Es

i ; j) = 8ek
i
2Ei

S
M(eki ; j).

In essence, each entity of a particular dimensionality is de�ned in terms

of its constituent entities of lower dimensionality. The degree d(eki ; j) refers

to the number of entities of dimensionality j that are a part of the entity

eki of dimensionality i, with j < i. Note that the degree can vary between

11

entities belonging to the same entity set Ei. This is to allow the modeling

of so-called \hybrid" grids, where di�erent geometric objects of the same

dimensionality are present in the same grid structure.

Entities of various dimensionalities are usually known by speci�c names

in applications involving computational grids. Thus an entity of dimension-

ality zero is usually called a \node" or a \grid point," an entity of dimension-

ality one is typically referred to as an edge,and an entity of dimensionality

two is termed as either a \cell" in 2-D Finite Volume applications or an \el-

ement" in 2-D Finite Element applications. In the case of 3-D applications,

the terms cell and element are used to refer to entities of dimensionality

three while the generic term \face" is applied to entities of dimensionality

two.

For the rest of this dissertation, the above terms will be used interchange-

ably with the term \entities of dimensionality" one, two, or three.

It should be noted that this formal notation is by no means \strict"

in enforcing any rules regarding how the entities are actually positioned in

cartesian space. Indeed, the de�nition is general enough to include \grids"

that would be useless from a practical numerical application point if view. It

should therefore be emphasized that the motivation behind the above de�ni-

tion is merely to facilitate the description of the algorithms and operations

involved in the functioning of a grid solver.

2.2 Examples of Grids

The following examples illustrate the de�nition of computational grid given

in the previous section.

Figure 2.1 shows a two-dimensional, rectangular, structured grid. It

consists of four entities, e12, e
2
2, e

3
2 and e

4
2, of dimensionality two, twelve en-

tities, e11 through e121 , of dimensionality one, and nine entities, e10 through

e90, of dimensionality zero. Further, entities of dimensionality higher than

12

e
2

e
2

e
2

e
1
12

e
1
1

e
1
7 e

1
6

e
1
5

e
1
9

e
1
8

e
1
11

e
1
10

e
1

e
1
4

e
1

3

2e
2

1

4 3

e
0
4

e
0
5

e
0
6

e
0
7e

0
8

e
0
9

e
0
3

e
0
2

e
0
1

2

Figure 2.1: Entities of various dimensionality in two-dimensional, rectangu-
lar, structured grid.

zero are expressed as ordered tuples of entities of lower dimensionality. For

instance, e11 is expressed as < e20; e
9
0 >, denoting that the edge e11 con-

sists of two grid points e20 and e90. Similarly, entity e12 would be listed as

< e11; e
2
1; e

10
1 ; e

11
1 ; e

1
0; e

2
0; e

3
0; e

9
0 >, indicating the set of edges and grid points

included in it. The grid points would each be assigned coordinates X and Y

(assuming the grid is set up in the X-Y plane) and would hence be denoted

by < x; y >, where x and y represent the coordinate values. The degree

corresponding to the 2-D rectangles and edges (the 1-degree of rectangles)

is four, as there are four edges in any given rectangles. Similarly, the degree

associated with rectangles and grid points (the 0-degree of rectangles) is also

four, while the degree associated with edges and grid points (the 0-degree

of edges) is two.

This grid is one of the simplest two-dimensional grids and is usually

not represented using the grid de�nition given previously. However, it is

included here to illustrate the de�nition and emphasize its applicability to

a wide variety of computational grids.

13

e
2

1
e

8

1

e
6

1

e
3

1

e
1

e
9

1

e
10

1

e
5

1

e
1

1

e
7

1

e
2

4

e
2

3e
2

2

e
2

1
e

2

5
e5

0

e6

0

e1

0

e3

0

e4

0

4

Figure 2.2: Entities of various dimensionality in two-dimensional, triangular,
unstructured grid.

Figure 2.2 shows a two-dimensional, triangular, unstructured grid. It

di�ers from the grid in Figure 2.1 in that it is unstructured and the 2-D

cells or elements are triangles. As a result, both the 0-degree and the 1-

degree of each cell are three, while the 0-degree of each edge remains the

same. Thus, cell e12 is given by < e10; e
5
0; e

6
0; e

1
1; e

6
1; e

7
1 >.

Figure 2.3 depicts the cross-section of a three-dimensional, hybrid grid

made up of prisms and tetrahedra. Such a grid is typically used, for example,

in simulating uid ow past a bump in a channel. In the case of supersonic

ow, the region immediately above and down-�eld from the bump exhibits

so-called \boundary layer separation", which results in extremely high mach-

gradients in the Z direction perpendicular to the bump. Numerical stability

dictates that this critical area be gridded with prisms, while the area above

the boundary layer is gridded using tetrahedra to take advantage of certain

properties of tetrahedra that permit easy operations on the grid, such as

adaptation. Consequently, it is necessary to employ a hybrid grid with a

layer of prisms in the region of the boundary layer and a region of tetrahedra

resting on top of the prisms. Coherence is maintained because the triangular

ends of the prisms geometrically correspond to triangular faces of tetrahedra.

14

In this example, an additional set of entities E3 is added to the grid

de�nition. This set consists of the tetrahedra and prisms, each of which has

various degrees associated with entities of lower dimensionality. A prism has

�ve faces, two of which are triangular (the ends) and three are rectangular

(the sides). A tetrahedron on the other hand, has four faces, all of which

are triangles. Thus a prism has 2-degree 5, while a tetrahedron has 2-degree

4. Furthermore, a prism has six nodes or grid points and 9 edges, while

a tetrahedron has only 4 nodes and 6 edges, leading to di�erent 0-degrees

and 1-degrees for them as well. Also, the entity set E2 now consists of two

types of faces, rectangular and triangular, to accommodate the geometry of

prisms. As seen in the previous two examples, both these geometric objects

have di�erent 0 and 1-degrees.

This example highlights the crucial point that all the degrees of a cell

can vary depending upon the type of cell under consideration, e.g, a prism

or a tetrahedron. This provides a justi�cation for the degree mapping d in

the grid de�nition, which is speci�c to each entity instead of the entire set

of entities of a particular dimensionality.

Figure 2.3: Entities of various dimensionality in cross-section of three-
dimensional, hybrid, unstructured grid.

Figures 2.4 and 2.5 show two- and three-dimensional grids used for

15

simulation of solid propellent rockets. The elements of the two dimensional

grid are triangles, while those of the three-dimensional grid are hexahedra.

-3

-2

-1

0

1

2

3

0 2 4 6 8 10

Figure 2.4: Entities of various dimensionality in two-dimensional, triangular,
unstructured grid.

At this juncture, it is instructive to note a couple of points about the grid

de�nition that are evident from these three examples. First, the graph of the

sparse matrix associated with the grid is not explicitly available within the

grid structure, i.e., given a node, there is no direct way of generating a list

of all its incident edges. On the other hand, access is easily available to the

components of an entity of any dimensionality. This is a reection of the fact

that the numerical algorithms that use these grids require such easy access

to compute the numerical solution to the problem e�ciently. For instance, a

�nite-volume method for the solution of partial di�erential equations needs

to know the faces associated with a tetrahedral cell to compute e�ciently

the surface integrals for that cell, which then combine over the entire grid

to give the solution at the grid points. Thus, the grid de�nition described in

this chapter is a direct consequence of the data structures that are required

by numerical methods operating on computational grids in a large class

of applications. In other words, no special e�ort is required to generate

the information in the grid de�nition, as it is readily available from the

application itself.

16

−1000
100

−100
0

100

0

500

1000

1500

Figure 2.5: Entities of various dimensionality in three-dimensional, hexahe-
dral, unstructured grid.

17

Furthermore, the above grid de�nition is also able to include grids whose

topologies do not reect accurately the sparse matrix graph. For instance,

the sti�ness matrix generated by a �nite element application has some edges

that are not present in the grid topology. Thus, the sti�ness matrix for a

2-D rectangular grid might have edges corresponding to nodes diagonally

across each other in a given element. The grid de�nition handles such cases

simply by allowing the insertion of these edges in the edge list, with their

mapping to other grid entities included as well. It can also incorporate nodes

withmultiple degrees of freedom by adding extra nodes in the node set

to account for the additional degrees, along with their corresponding edges.

A variation of the multiple-degree case is the so called \mid-edge" node,

where an edge has an extra node at its midpoint. This too can be easily

incorporated into the exible grid de�nition provided in this chapter by a

similar insertion of extra entities.

2.3 Dual Graph of Grid

Graph theoretic literature de�nes a dual graph only for planar graphs , i.e.,

those graphs that can be embedded in a two-dimensional plane without any

edge crossings or jumps out of that plane. Here we extend this de�nition

to include three-dimensional graphs (grids) that may not, and in practice

rarely are, planar.

2.3.1 De�nition

The dual graph associated with a computational grid G =< D;E;M > is

given by G0 =< ED;MD > where ED is the entity list corresponding to

the highest dimensionality of the grid, and the mapping MD � (ED)
2 =

ED � ED. Essentially, the dual graph consists of the cells or elements of

a grid as dual vertices and a dual edge between two such vertices exists if

and only if they share an entity of dimensionality D� 1. The mapping MD

18

contains all the pairs of dual vertices with a dual edge connecting them.

e
2

e
2

e
2

2e
2

1

4 3

Figure 2.6: Dual graph of 2-D rectangular, structured grid.

This de�nition of a dual graph is illustrated for the three examples

given in the previous section. Figure 2.6 shows the dual graph for a two-

dimensional, rectangular, structured grid. The dual nodes, i.e., the cells in

E2, are encircled, and the dual edges of the dual graph are represented using

dashed lines. The positioning of the dual nodes corresponds exactly to the

centroids of the elements.

e
2

4

e
2

3e
2

2

e
2

1
e

2

5

Figure 2.7: Dual graph of 2-D triangular, unstructured grid.

Figure 2.7 shows the dual graph for the two-dimensional, triangular,

19

unstructured grid, while Figure 2.8 shows the same for the cross-section of

the three-dimensional, hybrid, tetrahedral-prismatic, unstructured grid. In

the latter case, the dual edges shown are actually projections of the real dual

edges onto the plane of the cross-section. This is to allow a two-dimensional

perspective of the dual graph for the three-dimensional grid.

Figure 2.8: Dual graph of cross-section of three-dimensional, hybrid, un-
structured grid.

It can be seen that dual edges leading \out of the domain", i.e., those

corresponding to actual edges or faces on the grid boundary are not marked

in any of the three examples shown here. It is su�cient to think of these

as being \grounded" or \boundary" edges, as they do not play a signi�cant

role in the functioning of any phase of a grid solver.

The above de�nition implicitly assumes that there is at most one dual

edge connecting two dual nodes. While this is certainly the case in all grids

in use by applications, the de�nition itself does not preclude any possibilities.

It is left entirely to the user of the grid solver to ensure that the grid in the

application conforms to this implicit rule.

An interesting property of the dual graph is that the degree of each dual

node is bounded above by a constant. This is to be expected since a dual

node represents a geometric object whose number of \sides" is bounded by

20

a constant | three for triangles, four for tetrahedra | and these sides form

the dual edges, thereby de�ning the degree of a dual node.

The concept of a dual graph with dual nodes and edges plays a crucial

role in several di�erent types of scienti�c computing applications. For in-

stance, a �nite element solver used this information to form the sti�ness

matrix for the system by combining the sti�ness matrices of each element.

A �nite volume method, on the other hand, uses the dual graph to com-

pute volume and surface integrals for the domain by combining volume and

surface integrals for a given cell. Consequently, the dual graph information

for a grid is typically readily included in the grid data structure for such

applications.

As will be seen in the next chapter, the dual graph also plays a critical

role in the design of an optimal algorithm for distributed cartesian nested

dissection. This illustrates one of the key advantages that can be derived

from utilizing the non-matrix information that is already available within

the grid data structure. A conventional sparse solver would simply ignore

the dual graph and proceed to treat the grid merely as a sparse matrix.

In doing so, it would sacri�ce the ability to exploit information about the

problem, such as the dual graph, to its bene�t.

21

3 Parallel Cartesian Nested

Dissection

One of the most e�ective heuristics for reordering sparse matrices is nested

dissection. In this process, the graph of the matrix is recursively bisected by

�nding a set of vertices at each step whose removal splits the matrix graph

into two disconnected components. Such a set is called a vertex separator

for the matrix graph. The matrix is reordered so that the vertices in the

two disconnected subgraphs are ordered �rst, followed by the vertices in the

separator. The consequence of such an ordering is that there cannot be any

�ll edges between a node in one of the two partitions and another from the

second. This further implies that the sparsity of the corresponding area

of the reordered matrix is preserved, thereby achieving the purpose of the

heuristic. There can, however, be �ll between nodes that lie in either of the

two partitions, and nodes on the separator itself. It is therefore advantageous

to have a separator as small in size as possible, where size is de�ned as

the number of vertices included in it. Furthermore, it is also bene�cial to

have a rough balance among the sizes of the two partitions. This ensures

that the entire matrix can be partitioned and reordered without using too

many separators in the process. Clearly, the di�culty in designing a good

nested dissection algorithm is the tradeo� between the twin goals of minimal

separator size and reasonably balanced partitions.

Cartesian nested dissection(CND) is a special form of nested dissection

that can be used when the vertices have cartesian coordinates associated

with them. The algorithm uses this coordinate information to compute

separators at each step of the dissection.

22

This chapter describes a novel parallel algorithm for cartesian nested dis-

section that takes advantage of the dual graph information available within

a grid data structure to �nd optimal cartesian separators at each stage of

the dissection process. Furthermore, this algorithm is eminently suited for

e�cient parallelization and is considerably less complex in terms of data

structure requirements than prior work in the area.

3.1 Previous Work

The idea of nested dissection was �rst proposed by George [9]. It involves

�nding a \peripheral" vertex of the matrix graph, and generating a \level

structure" based upon its connectivity. The graph is then partitioned by

choosing vertices that are roughly in the \middle" as de�ned by the level

structure. This process is then repeated recursively. It has been shown that

for planar matrix graphs, a reasonably small separator can be found [22].

Other heuristics for computing separators for nested dissection include spec-

tral bisection [27] and methods that use geometric projections and mappings

[12].

The �rst approach to nested dissection mentioned above su�ers from

signi�cant drawbacks for e�cient implementation in a parallel computing

environment. The generation of the level structure is inherently a serial

process, especially when nothing is known about the locality of the nodes and

edges of the matrix graph. Furthermore, e�cient parallel implementation

requires proximity of nodes that are \close" to each other in the graph, even

before the partitioning process has started.

Cartesian nested dissection (CND) obviates these obstacles by utilizing

the coordinate information associated with graph vertices. This allows for

the identi�cation of vertex locations without any knowledge of the local con-

nectivities of the matrix graph, thereby obviating the biggest hurdle in the

process of parallel implementation. For sparse problems derived from com-

23

putational grids, CND is a highly suitable choice for a reordering heuristic

as coordinate information is, by de�nition, always available in a spatial grid

data structure.

While the use of cartesian coordinates for partitioning irregular grids is

well known[2], a parallel algorithm for cartesian nested dissection was �rst

presented by Heath and Raghavan[16]. A key feature of this algorithm is the

ability to trade balance in the partition sizes for a smaller sized separator

at each step. Initially, the graph is distributed in an ad hoc manner across

all the processors in the system. At each step of the process, a \separating

value" along any one dimension is determined by taking into account the

partition balance requirements and the minimization of an estimate of the

size of the vertex separator. This separating value is then used to compute

an edge separator. This is followed by searches along both sides of the

edge separator to compute the actual vertex separator. Once the graph is

partitioned, the two portions are redistributed across processors and bisected

recursively. The procedure terminates when there is exactly one partition

per processor.

The above algorithm su�ers from certain serious drawbacks. First, it

uses an estimate of the size of vertex separator instead of the actual size in

order to �nd a suitable separator heuristically within a user-speci�ed toler-

ance for the allowable imbalance between the sizes of the two disconnected

subgraphs. This implies that it is impossible to provide any sort of guaran-

tee regarding the quality of the vertex separator obtained. In other words,

it is possible that the separator may have extraneous vertices not necessary

for the purpose of disconnecting the two subgraphs. Second, the process

of computing an edge separator and then using it to compute the vertex

separator adds to the overhead of the algorithm, as complicated searches

must be performed to �nd nodes that \straddle" the edge separator and to

identify those among them that are bona-�de members of the vertex sepa-

24

rator. Furthermore, this requires the usage of complex data structures, such

as \group trees", which are di�cult to maintain, especially in a parallel

execution environment. Finally, the algorithm in [16] requires the matrix

to be in the standard graph format and consequently su�ers from all the

shortcomings outlined in the introduction to this dissertation.

These shortcomings are overcome by the parallel cartesian nested dissec-

tion algorithm for computational grids that forms the subject of this chapter.

This algorithm utilizes the concept of the dual graph to compute e�ciently

vertex separators that are \optimal" in a certain sense of the term. This

algorithm works directly with the computational grid, thereby avoiding all

the shortcomings of the Heath and Raghavan approach. Speci�cally, the

algorithm minimizes the actual size of the cartesian axial vertex separator

instead of just an estimate. It also circumvents the construction of an edge

separator by exploiting a property of the dual graph that allows direct com-

putation of the vertex separator. Also, the algorithm does not require any

complex data structures, which results in important performance bene�ts.

Furthermore, the individual steps in the algorithm are simple enough to be

adapted to a parallel computing environment with relative ease.

We begin by de�ning certain key concepts and properties that are crucial

to the algorithm.

3.2 Contiguous Cartesian Axial Edge Separators

One of the critical elements of the parallel cartesian nested dissection algo-

rithm is the concept of a \cartesian axial edge separator." As mentioned

earlier, a vertex separator of any general graph is a subset of vertices of the

graph whose removal partitions the graph into two mutually disconnected

subgraphs. Similarly, an edge separator is a subset of edges of the original

graph whose removal has the same e�ect as a vertex separator.

For the purposes of this section, attention is restricted to a special kind of

25

S0 S1 S2 S3 S4 S5

1

2

3

4

5

Figure 3.1: Contiguous set of cartesian axial edge separators for 2-D trian-
gular, unstructured grid.

edge separator referred to as a \cartesian axial edge separator". Pictorially

this type of separator can be thought of as being generated by a \cutting

plane", perpendicular to one of the coordinate axes, that splits a graph

into three distinct parts, viz., the two groups of vertices and edges that lie

entirely on one side of the plane and the subset of edges that \straddle" the

plane, i.e., those edges having one vertex on either side of the plane. Note

that in the case of a two-dimensional grid or graph, such a separator is a

line perpendicular to one of the two coordinate axes.

Figure 3.1 illustrates the idea of a cartesian axial edge separator. The

dotted line S2 represents a cutting plane while the thick edges from the grid

represent the actual edge separator generated by this cut. It should be noted

that more than one cutting plane can generate the same edge separator. For

instance, the cutting plane S2 in Figure 3.1 can be moved slightly to the left

or right while still maintaining the same edges as part of the edge separator.

A contiguous set of axial edge separators is an ordered set wherein

each separator \di�ers" from its immediate neighbor by one vertex. This

idea is illustrated by the set of axial edge separators S0; S1; S2; S3; S4; S5

in Figure 3.1. It can be seen that there is exactly one vertex \between"

any two adjacent separators in the cartesian sense. For instance, vertex 1 is

26

between separators S0 and S1. A separator is said to \precede" (\succeed")

another separator if the latter is the former's immediate neighbor on the

\right" (\left"), i.e., in the increasing (\decreasing") cartesian axial direc-

tion. Similarly, a vertex is said to precede (succeed) a separator if the latter

is the former's immediate neighbor on the right (left), i.e., in the increasing

(\decreasing") cartesian axial direction. Finally, a vertex is said to precede

(succeed) another vertex if the latter is the former's immediate neighbor on

the right (left), i.e., in the increasing (\decreasing") cartesian axial direction.

A separator that has no predecessor (successor) is said to be the \starting"

(\ending") separator for the graph or subgraph under consideration.

In Figure 3.1, separators S0 and S5 are the starting and ending separa-

tors for the graph respectively. Vertex 1 succeeds separator S0 and precedes

separator S1 and vertex 2. Similarly, vertex 2 succeeds vertex 1 and sepa-

rator S1 and precedes vertex 3 and separator S2.

3.3 Properties of Cartesian Separators

The following two properties of cartesian separators are crucial in the process

of cartesian nested dissection:

� Duality of Separators: Given a grid and its dual graph, an edge sep-

arator of the dual graph corresponds to a vertex separator in the orig-

inal grid. Figure 3.2 illustrates this property for the two-dimensional

unstructured triangular grid.

The vertical line with arrows on the ends is the cutting plane (line),

while the thick dotted line represents the edge separator for the dual

graph shown with thin dotted lines. The corresponding vertex sep-

arator in the original grid is indicated by vertices marked with solid

circles and medium thick solid lines representing the edges between

them. The importance of this property lies in the fact that for any

27

Figure 3.2: Duality of edge and vertex separators for 2-D triangular grid
and its dual graph.

graph, an edge separator can be obtained from a cutting plane, but

it is much more di�cult to compute a vertex separator based upon

the same. As a result, this property facilitates the construction of a

vertex separator for a computational grid by �rst obtaining an edge

separator for the corresponding dual graph. It is then easy to translate

that edge separator into the required vertex separator because infor-

mation regarding the vertices included in any set of entities in the

grid is readily available in the grid structure. The parallel cartesian

nested dissection algorithm employs this approach for the generation

of vertex separators at each step.

� Vertex Separator Increment Function Property: Consider the

computational grid and its dual graph shown in Figure 3.3. The cut-

ting plane at position S1 generates an edge separator for the dual

graph consisting of dual edges 1-5 and 2-3. The corresponding vertex

separator in the original grid is given by vertices A-B-C. Now, for any

cutting plane, we de�ne the \next" dual node as the dual node that

would be the �rst to \change sides" with respect to the cutting plane

28

S1 S2
A

B

C
D

1

2

3

4

5

6

E

Figure 3.3: Vertex separator increment function property for 2-D triangular
grid and its dual graph.

if the plane were moved in the forward direction of its axis. Thus, the

next dual node for the cutting plane at S1 is 3, as it would be the

�rst node to change its position vis-a-vis the plane if, for example, the

plane were to be moved from S1 to S2. Clearly, a change in position of

a dual node in relation to the cutting plane changes the edge separator

de�ned by that plane. In the case of Figure 3.3 the new edge separator

with the cutting plane at S2 is given by 1-5, 3-6, and 3-4, with the

corresponding vertex separator for the grid consisting of vertices A-B-

D-C. The new edge separator thus obtained is said to be the \next"

edge separator for the original edge separator and the dual node that

changed sides. Furthermore, the dual node and the original separator

are said to be \previous" in relation to the new edge separator. Fi-

nally, the original edge separator is also said to be \previous" to the

dual node causing the change in separators. Applying these terms to

the example in Figure 3.3, the edge separator at S1 is previous to dual

node 3 and the edge separator at S2. The dual node 3 is previous to

29

the separator at S2 and next for the separator at S1, and the separator

at S2 is next to both dual node 3 and the separator at S1.

The Vertex Separator Increment Function 5f for a dual node is

de�ned as the di�erence in size between its previous and next vertex

separators. In other words, this function quanti�es the e�ect that the

inclusion of a given dual node has on the size of the vertex separator

that is next to it. Thus the function is positive if the size increases,

negative if it decreases, and zero if there is no change due to the inclu-

sion. Continuing with the example in Figure 3.3, the vertex separator

increment function for dual node 3 is +1 because the size of its next

vertex separator A-B-D-C is one greater than the size of its previous

vertex separator A-B-C.

TheVertex Separator Increment Function Property states that

the vertex separator increment function for a dual node ekD is given by

5f = jM(En
D; 0) �M(Ep

D; 0)j � jM(Ep
D; 0) �M(En

D; 0)j where E
n
D is

the set of dual edges of ekD that are part of the next edge separator and

Ep
D is the set of dual edges of ekD that are part of the previous edge

separator. Intuitively, the set di�erenceM(En
D; 0)�M(Ep

D; 0) consists

of those vertices that are introduced to the vertex separator as a result

of the inclusion of the dual node, whereas the set di�erenceM(Ep
D; 0)�

M(En
D; 0) represents those vertices that are dropped as a result of

the change in vertex separators. Clearly the change in separator size

is simply the di�erence in sizes of these two set di�erences. In the

example, M(En
D; 0)�M(Ep

D; 0) = C whileM(Ep
D; 0)�M(En

D; 0) = �

leading to a 5f value of +1.

These properties provide the foundation for the parallel cartesian nested

dissection algorithm described next. As explained earlier, the property of

dual separators allows the e�cient computation of vertex separators from

the corresponding edge separators of the dual graph. The property of the

30

vertex separator increment function allows the algorithm to choose an edge

separator of the dual graph that minimizes the size of the vertex separator

it corresponds to, thereby ensuring that the vertex separator calculated at

each step of the nested dissection process is the minimum axial cartesian

vertex separator for that step.

3.4 Parallel Cartesian Nested Dissection on Grid

The properties of the dual graph are exploited in the e�cient construction

of a vertex separator for a grid as part of the one-way bisection step. This

is then repeated recursively with successively smaller subgrids in the nested

dissection process.

3.4.1 One-Way Parallel Cartesian Bisection

This component forms the backbone of the overall nested dissection algo-

rithm, as it is applied repeatedly to the subgraphs generated at each step.

During cartesian bisection, the aim is to �nd a minimum cartesian plane

separator along a particular coordinate axis. The vertex separator incre-

ment function is used to compute exactly the sizes of the vertex separators

at each dual node, and then a simple minimization gives the location of the

minimum separator. The actual nodes belonging to the separator are readily

available via the mapping function M as described in the grid de�nition.

Figure 3.4 depicts the schematic for the parallel one-way cartesian bisec-

tion algorithm. Initially, the dual graph is distributed among the available

processors in a \linear" manner, based upon the centroids of the dual nodes,

by equally-spaced cartesian cutting planes orthogonal to a particular coor-

dinate axis. In the �rst step of the algorithm, each processor computes the

vertex separator increment function for each dual node within its subdo-

main. It then performs a pre�x operation on those values and computes

the cumulative vertex separator size at its \right" end. A parallel pre�x

31

0 1 P-1

Figure 3.4: Schematic for one-way CND algorithm.

operation is then carried out by all processors on these cumulative values

available one per processor. Each processor then adjusts the cumulative ver-

tex separator size on each of its dual nodes by adding to it the result of the

parallel pre�x operation. At this point, each dual node on each processor

has the exact size of the its next vertex separator. A global minimization is

carried out on all such sizes that fall within a user-speci�ed balance toler-

ance as de�ned in [16]. The location of this minimum provides the location

of the minimum cartesian axial separator, which is then computed using the

mapping function in the grid de�nition.

To understand why the above algorithm works, it is crucial to note that

a pre�x operation on the vertex separator increment function values over a

set of dual nodes in e�ect computes the exact size of the vertex separator at

each dual node with respect to the vertex separator just before the \�rst"

dual node in the set. For instance, a local pre�x operation by a processor

on its local dual node values computes the vertex separator sizes for all dual

nodes on that processor with respect to the vertex separator corresponding

to the left boundary of that processor. The global parallel pre�x operation

32

followed by the local adjustment mentioned in the previous paragraph does

exactly the same thing but for the entire dual graph, which in turn implies

that the end result of these steps is the computation of the exact vertex

separator size at each dual node.

The pre�x and parallel pre�x operations used in this algorithm can be

viewed as integration of the discrete vertex separator increment function

with the limits being the \�rst" and \last" dual nodes in the range over

which the pre�x is being performed.

3.4.2 Parallel Nested Dissection Algorithm

The parallel cartesian nested dissection algorithm uses one-way cartesian

bisection repeatedly on dual graphs of successively smaller sizes. It employs

recursion both in the grid space and the processor space. In other words,

initially, the entire set of available processors is used to compute a one-way

bisection of the whole grid along one of the coordinate axes. The dual graph

is then split into two disjoint subgraphs using the minimum cartesian axial

separator computed by one-way bisection. The processor set is also split

into two equal halves and allocated one per subgraph. This results in two

completely independent subproblems each of which is of the same form as

the original problem but with smaller graphs and fewer processors. The

recursion continues until there is only one processor in a processor set, at

which point a separator tree of depth log2 P has been computed, where P

is the original number of processors.

It is interesting to note that the above algorithm allows automatic load

balancing of the workload among the available processors even if the load

is initially unbalanced. This is due to the fact that the processors are split

in conjunction with the splitting of the dual graph following the one-way

bisection step. In other words, the tolerance in load imbalance across the

two sets of processors is exactly the same as the tolerance for load imbalance

33

for partitions provided by the user.

3.5 Implementation Details

This section presents details regarding the actual implementation of the

parallel cartesian nested dissection algorithm for computational grids. The

critical issues involved in this are the initial sorting of dual nodes and the

partitioning of the grid data structure, the computation of the separator

location followed by that of the separator itself, and the redistribution of

the grid data over the two partitions and their associated processor sets.

The programming language used for this implementation is C++. The

motivation behind the use of an object-oriented language, along with fur-

ther design details, is provided in chapter 7. Parallel computation is facili-

tated through the use of MPI as the implementation platform. This has the

advantage of making the implementation portable across di�erent parallel

architectures.

3.5.1 Initial Grid Partitioning

A simple approach to the initial partitioning of the grid data structure is to

use equally spaced cartesian planes that are orthogonal to a particular co-

ordinate axis to mark processor boundaries in the partitioning. Once these

planes are identi�ed, the next step is to assign dual nodes to processor par-

titions based upon their centroids. Thus, a dual node is assigned to one and

only one processor. Consistency of the grid data structure on any given pro-

cessor is maintained by assigning to it all entities of lower dimensionalities

that are included in the dual nodes that have already been allocated to that

processor. This results in more than one copy of lower dimensional entities

that lie on the separators between two adjacent processor partitions. As a

result, each such entity contains additional information about the list of pro-

cessors that have copies of that entity. This information is used repeatedly

34

in the various phases of both direct as well as iterative grid solvers.

It should be noted that the dual nodes are always maintained in sorted

order for each coordinate dimension. This is achieved by keeping the sorting

information for each dimension separate from the actual dual node list.

During the partitioning of the grid data structure, dual nodes are assigned to

a processor in sorted order along with all the sorting information associated

with them. As will be seen later, this allows the sorting to be done just once

for each dimension followed by repeated usage of the sorted order throughout

the rest of cartesian nested dissection. The important issue is to structure

the initial partitioning and the redistribution algorithms in such a way so

that the sorted order is maintained without signi�cant overhead.

3.5.2 Computing Separator

The crux of this algorithm has been described in the previous section. There

are, however, certain key details involved in computing the separator once

its location in the form of the separating value for the current dimension is

determined.

Once the location of the separator is known, the entire dual node set

for the current subgrid can be conceptually divided into two parts, viz.,

dual nodes that lie on one side of the separating value or the other. By

the property of separator duality, the corresponding vertex separator can

be easily identi�ed by �rst identifying the dual edges that form the edge

separator of the dual graph. This is done by locating those dual nodes in

the current subgrid that \abut" the separator to be computed, i.e., those

dual nodes that have at least one dual edge that links them with a dual node

from the other side of the separating value. Such dual nodes can be termed

\boundary" dual nodes. An obvious way to identify boundary dual nodes

is for each processor to do a linear search over its subset of dual nodes and

check all the dual edges of each. A more e�cient way is to note that in the

35

list of sorted dual nodes the boundary dual nodes form a contiguous subset

around the point where the �rst partition ends and the second begins, i.e.,

in the \left" partition, the boundary dual nodes are clustered together near

the right end in the sorted order, while in the \right" partition, they are

clustered together at the left end in the sorted order. It is therefore enough

to start searching for boundary dual node just at the point of separation in

each partition and scan linearly away from the partition until a dual node is

found that no longer has a dual edge going into the other partition. The cost

of this operation is linear in the number of boundary dual nodes, which is

itself of the order of the size of the vertex separator. Clearly, this approach

is much more e�cient than a simple linear search, particularly in the case

of large grids.

3.5.3 Grid Redistribution

Once the separator has been computed for a given subgrid, the next step

is the redistribution of the grid data structure over the two processor sets

that will continue the nested dissection process recursively to termination.

The critical issue here is the problem of maintaining the sorted order of dual

nodes so that re-sorting is not necessary.

The basic redistribution is done in a manner similar to the initial parti-

tioning of the grid. Each processor identi�es a \target" processor for each

dual node that currently lies within its partition. This identi�cation is done

on the basis of cartesian axial cutting planes that are similar to the ones

used in the initial partitioning process. Once the dual nodes are tagged,

the next step is to send them along with their constituent entities of lower

dimensionality to the appropriate processor. The processor then receives

any dual nodes that other processors may have sent to it. At the end of

this process, the initial subgrid is partitioned into two subgrids that share

the separator as their common boundary. Furthermore, the processor set

36

has been partitioned into two halves that can continue the nested dissection

process completely independent of each other.

The sorted order of dual nodes is preserved as follows. Each processor,

while sending the dual nodes to any other processor, sends them in the order

corresponding to the dimension along which the bisection in the next step

will occur. Furthermore, it also sends the ordering information for all other

dimensions along with it. While receiving dual nodes, a processor merges

the incoming list of dual nodes with the ones it has already accumulated,

thereby maintaining the sorted order at all times.

3.6 Complexity Analysis

Although the novel cartesian nested dissection algorithm for grids is fully

parallel, it is instructive �rst to consider the complexity for a sequential ver-

sion of the same. Also, as the parallel complexity is architecture dependent,

it will be analyzed for the hypercube parallel architecture. This analysis can

then be extended to other architectures if the need arises.

3.6.1 Serial Complexity

A serial version of the cartesian nested dissection algorithm would consist

of the following steps:

� Initialization: Sort the set of dual nodes in increasing order of cen-

troids in each coordinate dimension. This need be done only once, as

described in the previous section on implementation.

� Computation of Vertex Separator Increment Function: This

is done for each dual node along a dimension.

� Pre�x: This is a global accumulation (sum) operation over all dual

nodes in the current subgrid. The result of this operation is that each

37

dual node holds the exact size of the vertex separator on its immediate

\right".

� Computation of Separator Location: This is a global reduction

(minimization) operation over the subgrid, and generates the location

of the optimum cartesian axial vertex separator.

� Identi�cation of Separator: This is achieved with one pass over the

dual node list and use of the grid data structure to identify vertices

that lie on the vertex separator.

� Redistribution: This step is necessary only if the dimension for bi-

section is to be changed for the next level of nested dissection. If

it is, this is basically a rearrangement of the sorted sequence in that

dimension to reect the grid bisection in the current step.

Steps two through four (if needed) are performed recursively on both

subgrids generated at each stage of nested dissection. The number of levels

of nested dissection in the serial case is given by O(log2DN) where DN is

the number of dual nodes in the entire grid.

Clearly, the initial sorting step is O(DN log2DN). The pre�x, global

reduction, and separator identi�cation steps are linear in the number of

dual nodes in the subgrid under consideration. This number is successively

cut in half in conjunction with the size of subgrids at successive levels of

nested dissection. However, the number of subgrids at a level increases at

the same rate. Hence, at any given level, steps two, three, four and �ve of the

algorithm are linear in DN . As mentioned earlier, the last step is required

only in the case of a change in the dimension of bisection from one level

to the next. If this is indeed done, the cost is again linear in DN over all

subgrids and the redistribution essentially involves a linear rearrangement

of the dual node list using the original sorted order.

38

From the above, it is clear that the overall serial complexity of the al-

gorithm is O(DN log2DN). The algorithm by Heath and Raghavan has a

serial complexity of O(M log2N), where M is the number of edges and and

N is the number of nodes. Since the number of dual nodes in a grid is of the

same order as the number of nodes and edges, the asymptotic complexity is

the same for both algorithms. However, the constant terms are dramatically

di�erent. First, the initialization phase for Heath and Raghavan's algorithm

involves the construction of a \group tree" data structure | a step that has

the same asymptotic cost as sorting the vertices, but obviously adds to the

constant term. Furthermore, this group tree must be partitioned and up-

dated at each step of the nested dissection process, resulting in additional

overhead. The computation of the estimate for the separator and the lo-

cation of the straddling edges both involve a lot of computation that adds

further to the constant term at each level. In contrast to this, the cartesian

nested dissection algorithm for grids does not require any sophisticated data

structure such as a group tree for its operation. Not only does this eliminate

the initialization and maintenance costs for such a tree, but it also reduces

the memory requirement for the overall algorithm. Indeed, this algorithm

needs only a few temporary arrays in addition to the grid data structure

that is already available.

3.6.2 Parallel Complexity

The complexity of a parallel algorithm depends on of the parallel architec-

ture on which it is implemented. Heath and Raghavan [16] have calculated

the parallel complexity of their algorithm on a hypercube architecture. Their

approach is to consider parallel complexity in terms of the communication

complexity as well as the computational complexity of the algorithm. The

communication complexity of a parallel algorithm is de�ned as the number

of messages for a given processor over the entire course of the algorithm.

39

In some sense, this measures the cost imposed on the algorithm just by the

communication that is required for its functioning. Computational complex-

ity, on the other hand, corresponds to the conventional notion of complexity,

i.e., the aggregate computational work performed by a processor during ex-

ecution of the algorithm.

The complexity of the parallel cartesian nested dissection algorithm for

grids is analyzed using these two asymptotic benchmarks for e�ciency.

Communication Complexity

The algorithm developed by Heath and Raghavan involves all processors of

the system in the bisection of every subgraph at each level of nested dissec-

tion. Furthermore, once the nested dissection has terminated, this algorithm

requires a redistribution step that collects a \complete" subgraph at each

processor and sets up the data structure for the same. During the bisection

of each subgraph, the algorithm performs several accumulation, cascading,

and aggregation operations over all processors. Each of these operations

takes O(log2 P) messages per processor on a hypercube, since all P proces-

sors are involved every time. The �nal redistribution step can also be done

in O(log2 P) messages per processors. Since there are log2 P levels of nested

dissection followed by the redistribution step, the overall communication

complexity of the Heath and Raghavan algorithm is O(log2 P)
2.

In contrast to the above, the parallel CND algorithm for grids partitions

the processor set along with the grid at each step. This results in complete

independence of subproblems spawned at each step of nested dissection. It

also results in fewer processors communicating with each other at succes-

sive levels. At each bisection of a subgrid, the processor subset involved

performs exactly one parallel pre�x and one global minimization operation,

followed by the grid redistribution. All these operations involve O(log2 Pl)

messages per processors, where Pl is the number of processors in a processor

40

subset at level l and is equal to P=2l. Since there are log2 P levels of nested

dissection, the communication complexity is given by the sum of c log2(Pl)

over log2 P levels, where c is a constant. This summation is of the order of

c
2(log2 P)

2. This complexity is asymptotically the same as that in the Heath

and Raghavan algorithm. However, the constant term is reduced by a fac-

tor of one-half due to the fact that the number of messages per processor is

reduced by one with each successive level of nested dissection.

Computational Complexity

The computational complexity of each bisection step consists of two parts.

The �rst is the cost of non-communication, i.e., local computation on a

processor, while the other is the overhead of communication or the commu-

nication volume. For the Heath and Raghavan algorithm, the complexity of

the �rst part is given by O((M=P) log2N) where M is the total number of

edges, N is the total number of nodes, and P is the number of processors in

the system. The communication volume, on the other hand, is O(P log2 P).

The key observation in the derivation of the complexity of the �rst part is

that the local computation is essentially linear in the number of edges per

processor, which is O(M=P), and is also proportional to the number of lev-

els of nested dissection, which is O(log2N). For the second part, the cost

at a level is proportional to the size of the subgraph at that level multi-

plied by log2 P . Summation over all levels yields the communication volume

complexity as O(P log2 P).

The computational complexity of the new parallel CND grid algorithm

is essentially the same for the �rst part. The only di�erence is that the local

computation is linear in the number of dual nodes instead of edges. However,

since the number of dual nodes is of the same order as the number of edges

in a grid, the asymptotic complexity is identical. But for the second part,

the CND grid algorithm exhibits substantial improvement over the Heath

41

and Raghavan approach. This is due to the fact that all communication

operations at each level of nested dissection involve only a constant amount

of data. As a result, the communication volume is essentially the same

as the communication complexity derived in the previous subsection, i.e.,

O((log2 P)
2). This is clearly a signi�cant improvement over the O(P log2 P)

of the Heath and Raghavan algorithm.

In the �nal analysis, the complexity of the �rst part for both algorithms

dominates the complexity of the second part. As a result, the overall compu-

tational complexity is asymptotically the same for both approaches. How-

ever, the constant term is obviously substantially di�erent, owing to the

di�erence in complexities of the second part for the two algorithms. In the

Heath and Raghavan algorithm, both parts have the same cost asymptoti-

cally, which results in a larger constant term overall. However, for the new

CND algorithm, the complexity of the second part does not contribute to

the total cost, resulting in a lower overall constant term. This can be ap-

preciated by noting that the largest value for P currently realized is of the

order of 10; 000 for the Department of Energy ASCI machines. In this case,

P log2 P is approximately 130; 000, while (log2 P)
2 is less than 200. Here, a

di�erence of 50% in the constant term of the overall cost can mean a sub-

stantial di�erence in total cost. The fact that the asymptotic complexities

for both algorithms are the same, is meaningful only for very large values of

P that are not feasible in practice.

3.7 Applications and Performance

The CND algorithm presented in the previous sections is applied to two

applications involving computational grids.

The �rst application involves simulation of a solid-propellent rocket us-

ing a two-dimensional grid representing an axial cross-section of the rocket.

The elements are triangles, and the grid is an unstructured agglomeration

42

of such triangles. Figure 3.5 shows the initial partitioning of the grid among

eight processors. The brown lines depict the interprocessor boundaries. Fig-

ure 3.6 shows the grid after one step of CND, wherein the �rst-level separator

has been computed. The red line denotes the location of this separator. Fig-

ures 3.7 and 3.8 show the grid after two and three steps of CND. Note that

the second level separator is in the \gap" between the two disjoint portions

of the grid, which represents the interior cavity of the rocket. This is a

consequence of the minimization algorithm for bisection that seeks out the

optimal separator, which in this case is empty. Another interesting obser-

vation is that the red separator lines are \smoother" that the brown lines

denoting ad hoc partitioning of the grid. This is again due to the mini-

mization of separator size carried out by the grid bisection algorithm, as a

\jagged" separator is essentially larger in size than a smooth one.

It should be mentioned that the tolerance factor for partition balance

was maintained at 40% throughout the simulation. In other words, the sizes

of the two partitions obtained at each step were allowed to be in the 30% to

70% range of the size of the original grid. In practice, the algorithm achieved

good balance overall and the limits of the tolerance factor were never tested.

-3

-2

-1

0

1

2

3

0 2 4 6 8 10

Step 0

Figure 3.5: Initial partitioning of 2-D rocket grid.

The second application concerns simulation of the same solid-propellent

43

-3

-2

-1

0

1

2

3

0 2 4 6 8 10

Step 1

Figure 3.6: First step of CND on 2-D rocket grid.

-3

-2

-1

0

1

2

3

0 2 4 6 8 10

Step 2

Figure 3.7: Second step of CND on 2-D rocket grid.

-3

-2

-1

0

1

2

3

0 2 4 6 8 10

Step 3

Figure 3.8: Final step of CND on 2-D rocket grid.

44

rocket, but in all three dimensions using a three-dimensional, unstructured

grid. The elements of the grid are hexahedra or \bricks". The grid consists of

a cylindrical main casing to which a nozzle is attached. Figure 3.9 depicts the

initial ad hoc partitioning of the grid among eight processors, with the blue

lines once again denoting the interprocessor boundaries. Figures 3.10, 3.11,

and 3.12 show the successive stages of the CND algorithm applied to this

grid. As before, red lines indicate separators generated by the algorithm. An

interesting observation is that in the last CND step, the local minimization

of separator size results in the algorithm detecting the exact local minimum

at the point where the nozzle of the rocket attaches to its main body.

Figure 3.9: Initial partitioning of 3-D rocket grid.

The parallel performance of the CND algorithm is evaluated on a Sili-

con Graphics Origin 2000 parallel computer with up to 128 processors.

Six grids, two of each di�erent type, are used. Table 3.1 shows the names

and descriptions of these grids. GridsR128 and R256 are two-dimensional,

structured, rectangular grids of sizes 128 � 128 and 256 � 256 respectively.

Grids TRI16042 and TRI63316 are two-dimensional, unstructured, trian-

gular grids representing axial cross-sections of solid propellent rockets. The

numbers included in these names denote the number of elements included in

the grids. Similarly, grids BRI5112 and BRI32688 are three-dimensional,

45

Figure 3.10: First step of CND on 3-D rocket grid.

Figure 3.11: Second step of CND on 3-D rocket grid.

46

Figure 3.12: Final step of CND on 3-D rocket grid.

Grid Description

R128 128 � 128 2-D structured rectangular grid

R256 256 � 256 2-D structured rectangular grid

TRI16042 2-D unstructured triangular grid with 16,042 nodes

TRI63316 2-D unstructured triangular grid with 63,316 nodes

BRI5112 3-D unstructured cuboidal grid with 5,112 nodes

BRI32688 3-D unstructured cuboidal grid with 32,688 nodes

Table 3.1: List of test grids.

unstructured grids used in the full 3-D simulation of solid propellent rockets.

Table 3.2 shows the execution times in seconds for the CND algorithm on

each of the above six grids. The algorithm demonstrates reasonable speedup

up to 128 processors on all the grids, but speedup is greater on grids with

larger number of elements. This is to be expected as the communication

overhead is a smaller percentage of the overall workload on a grid that is

larger in size. In other words, the portion of the overall work that declines in

proportion to the number of processors employed is greater for larger grids.

By Amdahl's law, the overall speedup is naturally higher for such grids as

compared with smaller ones where the communication overhead forms a

higher percentage of the overall workload.

47

Grid Number of Processors
Type

1 2 4 8 16 32 64 128

R128 14.66 8.38 5.61 3.52 2.36 1.45 0.95 0.72

R256 65.23 37.49 24.61 15.56 10.01 6.43 3.84 2.36

TRI16042 24.83 15.03 9.4 5.92 3.81 2.49 1.8 1.35

TRI63316 92.63 57.6 35.2 22.64 14.5 9.67 5.99 3.64

BRI5112 3.31 1.89 1.15 0.79 0.57 0.43 0.36 0.3

BRI32688 22.56 14.1 8.96 5.54 3.66 2.3 1.69 1.22

Table 3.2: Execution times for CND algorithm.

48

4 Computing Elimination Tree

The elimination tree of a sparse matrix can be thought of as a \blueprint"

for the subsequent factorization phase of the sparse solution process. The

motivation for this concept comes from the need to express the dependencies

among the various columns of a sparse matrix vis-a-vis factorization, i.e.,

the need to know the column(s) whose values in the Cholesky factor are

a�ected by a given column of the matrix. This requirement arises in the

case of a sparse matrix because, unlike a dense matrix, a column in a sparse

matrix does not a�ect all columns that are numbered greater than itself in

the matrix ordering.

The elimination tree plays a crucial role in several di�erent ways during

the factorization phase of a sparse solver. It can be used in conjunction with

the original matrix graph to characterize �ll, i.e., it is possible to de�ne nec-

essary and su�cient conditions for �ll to occur in a particular location of the

Cholesky factor based upon the connectivities of those nodes in the original

matrix graph and their locations in the elimination tree. This in turn allows

the characterization of the row and/or column structure of the Cholesky

factor, a process also known as symbolic factorization. It is important

to note that the elimination tree allows the computation of these structures

before the factor is known. It also plays a central role in the numeric fac-

torization process, where it speci�es the order in which columns need to be

factorized in order to satisfy all the dependencies among them. For instance,

the multifrontal method, which forms the subject of Chapter 5.1, uses

the elimination tree to form the Cholesky factor.

The construction of the elimination tree itself involves a \bottom-up"

process, starting with the lowest numbered node in the matrix graph and

49

going up to the highest numbered node. At each step, information regarding

the adjacencies of a node in the original matrix graph is needed in order to

locate its correct position in the elimination tree structure. While this is

reasonably straightforward in the context of a conventional sparse solver, it

presents a signi�cant hurdle in the case of a grid solver, which does not have

the node adjacency information explicitly available to it at any stage of the

sparse solution process.

This chapter presents two novel serial algorithms for the construction of

the elimination tree of a matrix whose adjacency information is implicitly

embedded inside a grid data structure. These algorithms can be combined

in a parallel computing environment, which results in a parallel algorithm

for the construction of the tree for a grid already reordered by cartesian

nested dissection. This algorithm is asymptotically more e�cient than cur-

rent algorithms in literature.

4.1 Previous Work

According to Liu [23], the term elimination tree was �rst introduced by

Du� [4] and subsequently used by Jess and Kees [21]. Liu also credits

Schreiber [29] with being the �rst to de�ne the elimination tree structure

formally.

The literature is replete with variants of the elimination tree structure

that are used for various purposes. Examples include the separator tree

used in nested dissection, the element merge tree used in �nite elements,

and the assembly tree used to determine assembly order in the original

version of the multifrontal method. However, most of these variants are spe-

cial cases of the generalized elimination tree structure. Thus, it is su�cient

to study the construction, properties and usage of the elimination tree as far

as sparse factorization is concerned. The survey paper by Liu [23] remains

the most comprehensive reference on these matters.

50

The issue of parallel algorithms for the construction of an elimination tree

has not been the target of a signi�cant amount of research e�ort to date.

The �rst attempt on this front was made by Zmijewski and Gilbert [31].

However, their algorithm requires memory per processor that is linear in

the size of the entire sparse matrix, which is infeasible for practical applica-

tions where the entire problem cannot �t on a single processor. In addition,

the time complexity of this algorithm is logarithmic in the number of pro-

cessors, which implies that the execution time increases with the number of

processors utilized.

Heath and Raghavan [15] use the separator tree information that is gen-

erated as a result of nested dissection to design a parallel algorithm for the

construction of the elimination tree. Their algorithm improves both the time

complexity as well as the memory requirements of Zmijewski and Gilbert's

algorithm signi�cantly.

4.2 Fundamentals

We now provide a brief overview of the idea of an elimination tree. Details

regarding this can be found in the survey paper by Liu [23].

4.2.1 De�nition and Derivation

The elimination tree of a sparse matrix is a tree de�ned on the nodes of the

matrix graph. The root of the tree is the node with the highest number in

the matrix ordering. Furthermore, a parent node is always numbered higher

than any of its children.

The motivation for the elimination tree structure comes from the need

to express the dependencies among various columns of the sparse matrix

vis-a-vis factorization, i.e., the set of columns that depend on the value of a

given column during factorization. This is an issue only in the case of sparse

matrices, as in a dense matrix a column depends on all columns that come

51

before it in the ordering.

It can be shown that the dependencies among columns of a sparse matrix

correspond precisely to the nonzero entries of the �lled matrix, i.e., a column

a�ects exactly those columns whose corresponding rows have nonzero entries

in this column in the �lled matrix. However, this fact is of little use in

practice as the �lled matrix is not available in advance.

The solution is to represent only the \bare minimum" information needed

to capture all the column dependencies for the sparse matrix. A conceptual

method of achieving this is to perform a transitive reduction on the �lled

graph. This eliminates dependency information that can be inferred from

other dependency relations among columns of the matrix. A second ap-

proach is to perform a depth �rst search on the �lled graph, starting at

the highest numbered node, with ties between neighbors being broken by

their numbers in the ordering. This generates a spanning tree of the �lled

graph, which is exactly the same as the graph that results from the tran-

sitive reduction process, and is called the elimination tree of the sparse

matrix.

The elimination tree imposes an order on the factorization process by

mandating that all the children of a node be eliminated before the node itself,

which in turn implies that the factorization process begins at the leaves of

the tree and progresses up the tree to its root.

4.2.2 Properties

The elimination tree has several important properties that are crucial to

the design of algorithms for its construction as well as the determination

of the row and column structure of the Cholesky factor in the symbolic

factorization process. Of these, the following four are particularly relevant

to the problem of constructing the tree:

52

1. No Crossing Edges: An edge in the �lled graph is either an edge in

the elimination tree itself, or connects two nodes that have an ancestor-

descendent relationship. This property is evident from the fundamen-

tal property of a depth-�rst search viz. that an edge in the original

graph is either a spanning tree edge or a back edge from a node to one

of its ancestors.

2. Connectivity of subtrees: Given any node in the elimination tree,

the subtree rooted at that node is connected in the original matrix graph.

3. Fill Characterization Property I: A �ll edge can appear between

two nodes i and j, with i < j, if and only if there is some node k in the

subtree of i such that the entry (j; k) in the original matrix is not zero.

This property can be thought of as the \carry-through" property, as it

states that a nonzero entry in the original matrix is \carried up" the

elimination tree, creating �ll edges for each node along the way.

4. Fill Characterization Property II: A �ll edge can appear between

two nodes i and j, with i < j, if and only if there exists a path from i to

j in the original matrix graph exclusively through nodes numbered less

than i. This property can be derived from the �rst �ll characterization

and connectivity properties.

4.2.3 Construction

The two conceptual methods mentioned earlier for deriving the elimination

tree structure are of no practical use as they both require the structure

of the Cholesky factor. A practical algorithm for the construction of an

elimination tree can be designed using the properties of the elimination

tree discussed in the previous subsection. The most basic such algorithm

involves considering each column from the lowest numbered through the

highest numbered, and generating a sequence of forests, which eventually

53

results in the required elimination tree structure. The algorithm starts by

making the lowest numbered node a leaf of the tree. At each successive step,

the nonzero entries preceding the diagonal element in the corresponding row

are visited and the root node of the subtree for each is located. The current

node is then made the parent of all such root nodes. This idea is expressed

in the following algorithm (where A is the original sparse matrix and the

elimination tree is stored in a \parent" vector over all nodes):

for i=1 through Number_of_columns

for all j<i such that A[i,j] <> 0 do

root = root of subtree containing j;

if (root <> i)

set parent[root] = i;

end;

end;

8

7

6

4

3

2

1

5

9

1 2

5 6

3 4

7

8

9

Figure 4.1: 2-D structured grid and its elimination tree.

Figure 4.1 shows a structured, two-dimensional, rectangular grid and the

corresponding elimination tree obtained using the above algorithm. Note

54

that the ordering of nodes in the grid is obtained using nested dissection.

The �rst four steps of the algorithm result in nodes 1,2,3 and 4 being made

leaves in the elimination tree. Node 5 has edges in the original grid going

to nodes 1 and 2, which makes it the parent of them both. Similarly, node

6 has edges going to nodes 3 and 4, causing them to be its children. Node

7 has edges going to nodes 1 and 3, causing it to be made the parent of 6.

By similar logic, node 8 becomes the parent of 7 and 9 becomes the parent

of 8. At this point, the entire elimination tree is available.

It should be noted that this basic algorithm can be improved in e�ciency

by employing sophisticated methods such as path compression [23].

4.3 Edge-Based Construction of Elimination Tree

Unfortunately, in a situation where the sparse matrix is not available in

explicit format, the simple algorithm described in the previous section, as

well as all its advanced versions described in literature, are unusable. The

problem is that in a typical grid data structure, there is no way of directly

locating \all the nonzeros in a particular row" of the sparse matrix. Instead,

the information that is usually available is the two nodes that correspond

to a given edge in the original matrix. One possible solution is to compute

the row adjacencies for all columns in the matrix. However, this is exactly

the same as explicitly constructing the sparse matrix from the grid data

structure, which would compromise one of the motivating factors behind

the whole grid approach in the �rst place.

The challenge, therefore, is to design algorithms for constructing the

elimination tree that do not require explicit row adjacency information for

the sparse matrix.

An edge-based algorithm for computing the elimination tree is a modi�ed

version of the conventional algorithm wherein the edge information described

above is utilized in lieu of the explicit row adjacency information for a node in

55

the matrix graph. The following two sections describe two such algorithms

that compute the elimination tree of the matrix e�ciently, without extra

memory overhead.

4.3.1 First Edge-Based Algorithm

This algorithm is based upon the observation that a simple sort of the edge

data by the larger numbered node among its two constituents results in an

alignment of edges such that all \low-going" edges for a node are bunched

together. By low-going we mean edges that go from that particular node to

nodes that are numbered less than it.

Once the above sort is complete, the conventional algorithm can be used

as is, with some minor modi�cations for accessing the nodes through the

edge information:

for e = 1 through Number_of_Sorted_Edges

low = lower numbered node of e;

high = higher numbered node of e;

root = find(low);

if (root <> high)

parent[root] = high;

end;

Figure 4.2 illustrates the �rst edge-based algorithm. The edges are ac-

cessed in the order of increasing higher numbered nodes. In the �rst step,

edge (1,5) creates the subtree with node 1 as the child of node 5. Then, edge

(2,5) create the tree edge from node 2 to node 5. Similarly, (3,6) makes 6

the parent of 3, and (4,6) does exactly the same for 4. Edges (1,7) and (3,7)

connect the two disjoint subtrees with 5 and 6 as roots to 7 making it the

new root for the combined subtree. Finally, edges (5,8) and (8,9) make 8

56

(1 , 5) , (2 , 5) , (3 , 6) , (4 , 6) , (1 , 7) , (3 , 7) , (5 , 8) , (6 , 8) , (7 , 8) , (2 , 9) , (4, 9) , (8 , 9)
SORTED EDGE LIST

1

5

7

8

9

3

6

4

1

5

1

5

1

5

22 3

6

1 2

5 6

3 4 1

5

7

6

3 42

1 2 3 4

5 6

7

8

9

7

5 6

1 2 3 4

8

2

Figure 4.2: First edge-based algorithm.

the parent of 7 and 9 the parent of 8 respectively to generate the complete

elimination tree.

The advantage of this algorithm is that apart from the sorting, it is

almost identical to the conventional algorithm and is therefore as e�cient.

The disadvantage is that the sorting causes a non-trivial increase in cost,

although this can be minimized by employing hashing based linear time

algorithms.

4.3.2 Second Edge-Based Algorithm

Another approach to edge-based construction of the elimination tree involves

processing the edges in an arbitrary order. At each step, the subtrees con-

taining the two nodes of the current edge are \merged" along the paths from

the nodes to their respective roots. This maintains the validity of the result-

ing subtree vis-a-vis all the edges that have been \seen" up to that point.

When all the edges in the graph have been accounted for, the resulting tree

is the elimination tree for the whole matrix:

57

for e = 1 through NumberofEdges

low = lower numbered node of e;

high = higher numbered node of e;

if (parent[low] = NULL)

parent[low] = high;

else

do

find place = highest node in ancestry of low

such that parent[place] > high or

parent[place] = NULL or

parent[place] = high;

if (parent[place] = NULL)

parent[place] = high;

if (parent[place] = high)

do nothing;

if (parent[place] > high)

if (parent[high] = NULL)

parent[high] = parent[place];

parent[place] = high;

else

repeat do with low = high and high = parent[high];

enddo;

end;

Essentially, the above algorithm scans the set of edges in the grid, and

for each edge, with low and high as the lower and higher numbered nodes

respectively, considers the following possibilities:

� parent[low] = NULL : This implies that low is the root of its own

subtree. In this case, the only thing that needs to be done is to make

high the parent of low.

� parent[low] 6= NULL : In this case, node high must be inserted

somewhere in the \ancestral path" of node low. The correct place to

58

do so would be just below the �rst node in the ancestral path that is

numbered greater than high. If no such node exists, make the parent

of the root of low's subtree to high. If such a node is equal to high

itself, there is nothing to be done, as high is already in the ancestral

path of low. Otherwise, if the parent of high is null, set this node

to be the parent of high, else recursively insert high in the ancestral

path of this node.

Proof of Correctness:

We prove the correctness of the above algorithm by induction on the

set of edges of the matrix graph. The idea is to show that after processing

i edges of the matrix graph, the algorithm generates a structure that is

correct if we truncate the edge set at i. In other words, we show that after

step i, the algorithm has functioned correctly on subgraph of the matrix

graph that contains only the �rst i edges. In general, these i edges and

the nodes they contain will form a subgraph that is disconnected, since no

particular ordering of the edges is assumed. As a result, the algorithm will

produce an elimination forest at the end of i steps.

We let Pi denote the assertion that the algorithm functions correctly in

generating the elimination forest for the �rst i edges in the edge set of the

matrix graph.

When the �rst edge is considered, there is nothing in the elimination

forest, and hence the algorithm sets the higher node of the �rst edge to be

the parent of the lower node, thereby setting up the correct structure for a

subgraph of the grid containing just this edge. Thus, P1 is true.

Now, assume that Pi is true for all i < t. Consider Pt. Let th and tl be

the higher numbered and lower numbered nodes of the tth edge, respectively.

We show that Pt is true in each of the cases that can arise. If the parent

of tl is null, the algorithm sets it to th. Clearly, this is sets up the correct

relationship between the two as far as the edges that have been seen so far are

59

concerned. Furthermore, nothing else in the elimination forest is changed.

Hence, Pt is true in this case. If the parent of tl exists, we search up the

subtree starting at tl and �nd the last node that is numbered lower than th,

call it tp. Now, if the parent of tp is NULL, i.e., tp is the root of tl's subtree,

th should be made the parent of tp, as th in this case is the ancestor of tl as

well as every node in tl's current ancestral set. So Pt is true in this case as

well. If tp is the same as th, we need to do nothing, and Pt is obviously true.

Finally, if the parent of tp is not NULL, it is numbered greater than th by

the de�nition of tp, so we recursively merge the ancestral sets of th and tp.

This recursion terminates when it hits one of the earlier two cases, which

implies that Pt is true in this case as well.

1

7

3 1

5

7

3 1

5

7

8

3 1

5

7

6

3

8

1

5

7

6

3

8

EDGE LIST (RANDOM ORDER)

1

5

7

8

9

3

6

4

1 2 3 4

5 6

7

8

9

7

5 6

1 2 3

8

1

7

2

9

(1 , 7) , (3 , 7) , (1 , 5) , (7 , 8) , (3 , 6) , (5 , 8)*, (6 , 8)*, (2 , 5) , (8 , 9) , (4 , 6) , (2 , 9)*, (4 , 9)*

2

Figure 4.3: Second edge-based algorithm.

Figure 4.3 shows the functioning of this algorithm on the grid in �g-

ure 4.1. This time, the edges are in no particular order. Edge (1,7) makes 7

the parent of 1, and edge (3,7) does the same for 3. Now, edge (1,5) inserts

node 5 in the path from node 1 to node 7 using the \merge" portion of the

algorithm. Edge (7,8) makes 8 the parent of 7. Again, edge (3,6) inserts

60

node 6 in the path from node 3 to node 7, making 7 the parent of 6 and 6

the parent of 3. Edges (5,8) and (6,8) do nothing because 8 is already an

ancestor of both 5 and 6. Edge (2,5) adds 2 as another child of 5. Edges

(8,9) and (4,6) make nodes 9 and 6 the parents of nodes 4 and 8 respectively.

Finally, edges (2,9) and (4,9) again do nothing as 9 is already an ancestor

of 2 as well as 4.

The obvious advantage of this algorithm over the �rst edge-based al-

gorithm is that it does not require sorting of the matrix edges in order to

compute the elimination tree. This makes it more suitable for adaptation

to a parallel computing environment.

4.4 Parallel Algorithm for Computing

Elimination Tree

A conundrum in designing an e�cient parallel algorithm for constructing

the elimination tree is how to attain data locality before the algorithm

begins. Since the best indicator of data (and functional) locality is the elim-

ination tree itself, the problem is essentially a paradox, unless there is some

other way of providing the parallel algorithm with the locality information

it requires. In the case of reordering by nested dissection, such information

is readily provided by the so called separator or dissection tree, which is

generated by the dissection process.

Furthermore, the modus operandi employed by the CND algorithm de-

scribed in Chapter 3 results in a partitioning of the grid data structure that

is ideal from the point of view of parallel construction of the elimination

tree. Speci�cally, the CND algorithm allocates dual nodes wholly to a sin-

gle processor, while the processor boundaries are de�ned by the dual edges

that form the edge separator in the dual graph, which is also the vertex

separator of the original graph. In other words, vertices that belong to

61

separators are duplicated on two or more processors as the case may be.

Thus, the problem of computing the elimination tree is already partitioned

cleanly across processors because each processor can independently compute

the portion of the elimination tree on its side of a separator without any

communication whatsoever. An additional advantage vis-a-vis e�ciency is

that the \intra-separator" portion of the elimination tree is computed ex-

actly the same by two processors sharing a separator, since the separator

is duplicated in both. In fact, the only di�erence in the two versions of

an intra-separator subtree is the parent of the root of that subtree. Since

this parent is located in a separator at a higher level, each processor has a

di�erent view on it. This means that only a constant amount of communi-

cation between processors is needed per separator to accomplish the correct

computation of the view of the elimination tree for those two processors. As

will be seen later, this advantage results in an improvement in asymptotic

complexity of this algorithm over the previous approach proposed by Heath

and Raghavan [15].

From the above, it is clear that there are essentially two inter-connected

but di�erent subproblems within the overall objective of computing the elim-

ination tree. First, each processor computes the elimination tree based upon

its own \view" of the domain it holds in local memory, i.e., all the nodes

within its boundaries as well as nodes that lie on separators and are hence

shared with other processors. Once each processor has accomplished this,

the global elimination tree is computed by exchanging information across

separators, starting at the lowest level up to the highest separator that par-

titions the entire grid into two halves. This process takes log2 P steps, where

P is the number of processors in the system.

The problem of computing the local \view" of the elimination tree is

computationally the same as the problem of computing the elimination tree

for a matrix sequentially on a single processor. On the other hand, the global

62

computation that updates the views of the global elimination tree on each

processor involves communication between processors that share nodes of the

matrix graph. Given this scenario, it is natural to use the �rst edge-based

algorithm for computing the local view of the elimination tree and the second

edge-based algorithm for the global update. This dichotomy enables us to

take advantage of the simplicity of the �rst algorithm as well as the e�ciency

of the second. The added cost of sorting in the �rst approach is more than

o�set in practice by the fact that computation of the local views is done

entirely within a processor and is communication-free. The communication-

intensive global update step is handled by the second approach, which is

inherently more e�cient.

4.4.1 Proof of Correctness

The proof of correctness of this algorithm can be given in two parts. In the

�rst part we show that the local computation on each processor produces

the correct view of the elimination tree for that processor based upon the

portion of the grid that it has in its local memory. In the second part, we

show that the exchange of information across separator boundaries results in

each processor having the correct global view of its portion of the elimination

tree.

The proof for the �rst part is obtained by noting that the algorithm used

is the �rst edge-based algorithm, which is logically identical to the standard

serial algorithm for computing an elimination tree in literature.

The proof for the second part is as follows. Following the local com-

putation step, processors start exchanging information beginning with the

separator at the lowest level of CND, i.e., the separators that are computed

in the last step of nested dissection. The key to the proof is to observe that

after i such exchanges, each processor has the correct view of the elimination

tree of the subgrid at the ith level of CND to which it belongs. For example,

63

subgrids at the second lowest level of CND are formed by combining the

subgrids at the lowest level of CND on either \side" of the corresponding

separator at the lowest level. This is continued recursively up the separa-

tor tree. So, the e�ect of exchanging elimination tree information by two or

more processors across separators at a given level is that all those processors

obtain the view of the elimination tree for the subgrid that would be formed

if the subgrids at level one lower were actually combined. When this process

is repeated to the highest level of CND, the end result is that each processor

has the correct global view of its portion of the elimination tree.

4.4.2 Example

1 7

8

9

5 6

4

3

2

1 7 3

5

2

6

49

8
1 3

4

5
8

9

7

2

6

P0 P1

P2 P3

P0 P1

P2 P3

Figure 4.4: Parallel edge-based algorithm.

Figure 4.4 shows the construction of the elimination tree for the 2-D

grid in parallel. Initially, the grid is split up among four processors P0

through P3. The nodes and edges on the two separators are shared by more

than one processor and hence are shown with the appropriate number of

copies. In the �rst local step, each processor computes its own view of the

tree. Thus, the local view for P0 is the chain 2-5-8-9, while that for P1

is 4-6-8-9. Similarly, 1-5-7-8 and 3-6-7-8 are the views for processors P2

64

and P3 respectively. In the second step, processors update their views by

exchanging information across separators, beginning with the separator at

the lowest level. Processors P0 and P2 exchange information about node

5 thereby causing P0 to make node 7 the parent of 5 as per the second

edge-based algorithm. Similarly, on the other side, P1 makes 7 the parent of

6. Following this, all processors exchange information across separator 7-8-

9. Nothing is updated, however, because the parent information is already

correct on all processors. At this point, each processor has the correct parent

information about all the nodes (shared or otherwise) within its domain.

4.4.3 Complexity Analysis

The parallel algorithm proposed by Heath and Raghavan [15] has total cost

given by O(Mmax�(Mmax; N) + ND�(ND; ND) log2 P), where Mmax is the

maximum number of matrix edges on a processor, N is the number of nodes

in the matrix graph, � is the inverse of Ackerman's function, and ND is

the maximum number of nodes per separator. The �rst expression denotes

the cost of computing the local views of the elimination tree independently

on all processors. Since this is a serial algorithm for the construction of the

local subtree, it has a complexity equal to that of the serial algorithm for

elimination tree generation with path compression. The second expression

is the cost of performing exchanges across separator boundaries. Here, the

subexpression involving ND reects the cost of merging per step of the pro-

cess. Since there are log2 P such steps, the total cost is log2 P times that

subexpression.

The parallel algorithm for the construction of the elimination tree of a

grid demonstrates a marked improvement in the asymptotic complexity of

both the total cost as well as the communication volume over the Heath

and Raghavan approach. This is due to the fact that partitioning the grid

by the CND algorithm results in separators corresponding exactly to the

65

interprocessor boundaries in the domain. This implies that each processor

can compute the \intra-separator" portion of the elimination tree at each

step without any communication with any other processor. The only excep-

tion is at the root of the intra-separator subtree, whose parent can be set

di�erently by di�erent processors. As far as the complexity of the overall

algorithm is concerned, this crucial fact results in the factor of ND being

replaced by a constant term. This results in an overall computational com-

plexity of O(Mmax�(Mmax; N) + c log2 P), where c is some constant, and a

communication complexity of O(k log2 P), where k is another constant.

It should be mentioned that Heath and Raghavan also proposed a mod-

i�cation to their algorithm that uses more messages to improve e�ciency

under the assumption of small message latency. However, this algorithm is

still O(Smax(log2 P)
2), where Smax is the maximum separator size. Clearly,

the parallel algorithm discussed in this chapter is still more e�cient, since

it is only linear in log2 P .

66

Grid Number of Processors
Type

1 2 4 8 16 32 64 128

R128 2.23 1.18 0.61 0.33 0.18 0.11 0.06 0.05

R256 15.43 7.98 4.29 2.33 1.38 0.75 0.42 0.29

TRI16042 5.02 2.59 1.36 0.76 0.41 0.23 0.13 0.09

TRI63316 22.1 13.39 7.45 3.99 2.12 1.2 0.68 0.44

BRI5112 1.25 0.67 0.35 0.2 0.12 0.07 0.06 0.06

BRI32688 10.1 5.77 3.07 1.69 0.94 0.55 0.32 0.19

Table 4.1: Execution times for parallel elimination tree algorithm.

4.4.4 Parallel Performance

The parallel performance of the parallel algorithm for computing elimination

trees is evaluated on the six grids introduced in chapter 3. Table 4.1 shows

execution times in seconds of the parallel elimination tree algoithm on these

grids. As in the case of the CND algorithm, speedup is higher for grids

larger in size due reasons previously discussed. However, the elimination

tree algorithm exhibits better scalability overall as compared with the CND

algorithm. This is due to the fact that the communication overhead for

the algorithm presented in this chapter is signi�cantly lower, as discussed

in the section on parallel complexity. As a result, it forms a much smaller

fraction of the overall workload, which contributes to increased speedup and

scalability.

67

5 Factorization and Triangular

Solution

The factorization phase of a sparse linear system solver typically involves

a symbolic factorization step followed by the actual numeric factorization,

which results in the computation of the Cholesky factor. If a right-hand side

is available, factorization is followed by the forward and backward triangular

solution using the factor and its transpose. The symbolic factorization step

involves the determination of the row or column structure of the Cholesky

factor using the elimination tree and its properties in conjunction with the

graph of the original matrix. Once this structure is known, storage can then

be allocated for the factor in advance of the numeric factorization step.

One of the most widely used techniques for numeric factorization is the

so calledmultifrontal method originally due to Du� and Reid [5]. This is

essentially a reorganization of the submatrix Cholesky factorization process

for a sparse matrix such that the overall task is divided into a sequence of

factorizations of smaller matrices that are all dense. This allows the use

of dense matrix factorization kernels that can be signi�cantly more e�cient

than their sparse counterparts. The method uses the elimination tree struc-

ture to apply the outer-product updates of the submatrix Cholesky approach

in the correct order.

The forward triangular solution step involves a bottom-up traversal of

the elimination tree, the end result of which is the computation of the inter-

mediate solution to the system. The backward solution step is basically a

top-down traversal of the elimination tree, which generates the �nal solution.

This chapter describes the design and implementation of a parallel algo-

68

rithm for numeric factorization on a computational grid by an adaptation of

the multifrontal method. The symbolic factorization step is completely by-

passed by virtue of an implementation that allows the allocation of storage

dynamically during the numeric factorization. Parallel algorithms are also

used for the two triangular solution phases that follow numeric factorization.

5.1 Previous Work

Liu [24] reports that the multifrontal method was developed by Du� and

Reid as a generalization of the frontal method of Irons [20]. Liu further men-

tions that the essence of the method can be seen in the generalized element

method contained in an unpublished 1973 manuscript by Speelpenning, and

that the element merge model of Eisenstat, Schultz and Sherman [7] has

the same basic features.

Heath and Raghavan [15] have presented a parallel implementation of

the multi-frontal method against the backdrop of nested dissection of the

matrix graph. Their approach involves a simple assignment of subtrees of

the elimination tree to processors. This is essentially a recursive procedure

starting at the root of the elimination tree. The children of each node are

assigned disjoint processor subsets of the set of processors that are currently

available. Symbolic factorization is carried out in parallel by recursive ex-

change of information across processor subsets in a bottom-up fashion on the

elimination tree. The actual factorization process is carried out by \wrap-

mapping" the columns of the matrix onto the available processors. The

potentially signi�cant overhead of this communication-intensive approach is

reduced by combining it with the communication overhead induced by the

factorization.

As far as the triangular solution phases are concerned, it is widely rec-

ognized [14] that there is not much performance bene�t to be gained in a

parallel computing environment. In fact, it is di�cult to achieve even mod-

69

erately high parallel e�ciency in the case of triangular solution of dense

matrices. This is even more true in the case of sparse matrices, as the ir-

regular memory access patterns that are the norm in this situation preclude

any gains in e�ciency due to pipelining. However, in the case of a sparse

matrix reordered by nested dissection, it is possible to extract some limited

performance bene�t by using the parallelism inherent in the independence

of tasks in disjoint subtrees of the elimination tree.

Heath and Raghavan use a similar approach for the forward and back-

ward triangular solution phases of their solver. The elements of the inter-

mediate and �nal solution vectors are wrap-mapped across processors in a

manner analogous to that for the matrix columns. Once again, the commu-

nication overhead for this is combined with that required for the assembly of

the contributions to a given matrix column by its descendents in the elimi-

nation tree. The forward triangular solve uses a \fan-in" form of triangular

solution, while the backward solve uses the \fan-out" version [13].

5.2 Parallel Multifrontal Factorization on Grid

We now present a brief overview of the multifrontal method, followed by a

novel parallel implementation of the same on a computational grid.

5.2.1 Overview of Multifrontal Method

Liu [24] has provided a detailed exposition of he multifrontal method for

matrix factorization. In essence, this method is a bottom-up accumulation

operation on the elimination tree, where the operations performed at each

node result in the computation of the corresponding column of the Cholesky

factor at that node. Each node collects and combines update information

from all its children in the elimination tree, processes it, and passes part of

the results up to its parent. The process starts at each of the leaves and

ends when the root is reached. The information passed along from nodes to

70

their parents consists of submatrices that hold all the updates to the column

corresponding to a node from columns in its subtree.

The motivation behind the above approach can be understood by viewing

it as an e�cient way of managing the column updates in the submatrix

version of the Cholesky factorization algorithm. This is achieved by delaying

the actual application of updates to a given column by its descendents in the

elimination until all such updates are available. This permits the complete

update submatrix for a column to be treated as a dense matrix, thereby

facilitating the use of dense matrix techniques for the partial factorization

step at that column, which results in increased e�ciency due to better cache

performance as well as potential for vectorization.

In his survey paper [24], Liu de�nes an \extend-add" operator that is

used for the assembly of the update matrices for a given matrix column.

This operator performs a union of the sets of indices of nonzero entries in all

the update matrices, and sums the entries from each matrix that belong to

the same row/column, which results in the complete update matrix for that

column of the matrix. This is followed by partial factorization on this dense

matrix using standard full-matrix techniques. This generates the column

of the Cholesky factor corresponding to the column as well as its update

matrix for its parent in the elimination tree.

The procedure ends at the root, at which point the entire Cholesky factor

is available columnwise at the nodes of the elimination tree.

5.2.2 Parallel Implementation on Grid

As in the case of the elimination tree, execution of the multifrontal method

in a parallel message-passing environment can be looked upon in terms of

two di�erent subtasks. First, each processor executes the method on all

the nodes in its subtree. Upon completion of this �rst step, the nodes

on a processor that are entirely within its domain have been completely

71

processed and the their columns of the Cholesky factor have been computed.

However, the nodes that lie on separators cannot be processed until all

the submatrix updates from all their children have been received, including

those from nodes that may reside entirely within some other processor. The

second step, therefore, consists of processors continuing with the multifrontal

method for their separator nodes after exchanging submatrix information

about them with all other relevant processors. This process is again a log2 P

step operation culminating at the highest-level separator for the grid.

One of the novel features of the above implementation is that the conven-

tional symbolic factorization step is omitted completely. This is made possi-

ble by use of the dynamic memory allocation features of the C++ language.

An update matrix is represented as an associatively indexed two-dimensional

array using the map class of the Standard Template Library. The allo-

cation of additional memory (if required) during the combination of update

matrices using the extend-add operator is done transparently by methods

included in the map class. Since the column structure of the Cholesky factor

at any node is a function of the index sets of the update matrices that it

receives from its children in the elimination tree, this structure is computed

automatically during the \addition" of all such update matrices using the

extend-add operator. The obvious advantage of this step is that the overhead

of explicitly computing the symbolic factor, both in terms of computation

as well as communication, is e�ectively eliminated.

Figure 5.1 shows the operation of the multifrontal method on a 2-D

rectangular grid. The grid is split among four processors as before, and the

nodes and edges on the separators are shared among them. In the �rst step,

all processors execute the method on all internal nodes, i.e., nodes 1, 2, 3

and 4. The nodes on the separators receive their update matrices, but the

Cholesky columns are not computed. Then, processors P0 and P2 exchange

update matrices at node 5, while processors P1 and P3 do the same for

72

8

7

6

4

3

2

1

5

9

F

U = F + U + U

U = F + U + U

F

F

F

U = F + U + UU = F + U + U

U = F + U + U

U = F + U + UU = F + U

U = F + U

1

1

2 1

25

5

5

5

5 5 677 77
3

49

8

2

6

6

3

4 3

46

6

6

7

8

P0 P1

P2 P3

Figure 5.1: Application of multifrontal method.

node 6. Execution then continues and node 7 receives update matrices from

both sides. Following this, the process is completed as nodes 8 and 9 are

processed one after the other.

5.2.3 Performance

As mentioned earlier, the parallel implementation of the multifrontal method

on a grid eliminates explicit computation of the symbolic factor, thereby de-

riving a substantial performance bene�t. While it is true that some overhead

is required at each node to allocate memory dynamically, this can be done

by each processor locally without any communication overhead. This crit-

ical advantage is again due to the fact that the separator nodes form the

interprocessor boundaries in the grid partitioning, and hence all separator

information is replicated across processors that share it. As a result, a pro-

cessor can allocate memory for the copies of separator nodes that it stores

in its local memory without communicating with any of its neighboring pro-

cessors. Since communication overhead dominates computational overhead

in a parallel message-passing environment, the tradeo� is in favor of the

dynamic memory allocation approach.

73

Another important performance advantage of the grid algorithm over

the one presented in Heath and Raghavan [15] is that there is no need for

the step involving \assignment" of the subtrees of the elimination tree to

subsets of processors. The grid partitioning produced by cartesian nested

dissection itself serves as an e�ective allocation of tasks to processors. While

Heath and Raghavan have attempted to reduce the communication overhead

associated with this step by \merging" it with the communication for the

factorization process, a complete elimination of the step can certainly be

expected to yield a nontrivial performance bene�t.

Finally, in the parallel grid implementation, there is no need for the so

called \wrap-mapping" of matrix columns to processors as in the Heath and

Raghavan algorithm. This is also due to the fact that the grid partitioning

generated by CND serves as an adequate task partitioning strategy for the

numeric factorization as well as the forward and backward triangular solu-

tion phases of the solver, which results in the elimination of the inevitable

communication overhead associated with the mapping procedure.

Considering these three advantages in performance, the parallel grid im-

plementation of the multifrontal method can be reasonably expected to out-

perform the Heath and Raghavan approach in a parallel, message-passing

environment.

5.3 Forward and Backward Triangular Solution

Once the Cholesky factor has been determined, the last two steps in the

sparse solution process involve the solution of two triangular systems. The

�rst of these is a forward solve wherein the Cholesky factor is used to com-

pute the intermediate solution vector. This is followed by a backward solve

in which the transpose of the Cholesky factor and the intermediate solution

vector are used to compute the �nal solution.

74

5.3.1 Serial Algorithms

The sequential algorithm for the forward solve phase involves performing

a bottom-up traversal of the elimination tree in a manner similar to that

used for the multifrontal method. Starting with the leaves, each node com-

putes the intermediate solution corresponding to its location in the matrix

ordering. Once this is done, the right-hand-side value at each of the node's

neighboring ancestors is updated to reect the intermediate solution com-

puted at this step. This is due to the fact that the set of columns with

nonzero entries in a given column is given by a subset of the ancestors of

that column in the elimination tree [23]. The process ends when the inter-

mediate solution for the root is computed.

The serial algorithm for the backward solve is similar to that for the

forward solve phase except that the elimination tree is traversed top-down

starting at the root. Each node reads the �nal solution values at the nodes,

if any, in its column structure, which is a subset of the set of its ancestral

nodes. It then computes the �nal solution corresponding to its location in

the matrix ordering. This process ends when the �nal solution has been

determined for all the leaves in the elimination tree.

5.3.2 Parallel Approaches

The parallel algorithms for these two phases are closely related to that for

the multifrontal method. In the forward solve phase, each processor �rst

performs a local forward solve, up to but not including the separator nodes

within its domain. It then exchanges information across separators and,

once all the updates to a node are available, computes the intermediate

solution at that node. This process ends at the highest level separator. As

expected, the backward solution phase is the antithesis of the forward solve.

All processors �rst exchange information across separators starting from the

separator at the highest level. Once all updates to a given node are known,

75

the �nal solution is computed at that node and is passed on to its children.

Following the separator exchanges, each processor completes the process by

continuing the top-down traversal on its own local nodes, independent of

any other processor. The phase is complete when all leaf nodes have their

�nal solution values.

In the example given in the previous section, the forward solve starts

at leaf nodes 1, 2, 3, and 4. Once the intermediate solution is known at

these nodes, they update nodes 5, 6, 7 and 9 with their values. At this

point nodes 5 and 6 have all the information they need to calculate their

values of the intermediate solution, and after doing so, they update nodes

7, 8, and 9. This is followed by nodes 7, 8, and 9 calculating their values

in that order, with nodes 7 and 8 updating nodes 8, 9 and 9, respectively.

The backward solver begins at node 9. This is followed by node 8 reading

the solution from 9 and computing its own �nal solution. Similarly, node 7

gets solution values from nodes 8 and 9 and computes its own value. This

process continues to the leaf nodes 1, 2, 3, and 4, at which point all nodes

have their �nal solution values. It should be noted that communication

between processors takes place whenever a separator node is updated, so

that the information on each processor for that node accurately reects the

updates from others that share it.

The above implementation di�ers from that of Heath and Raghavan in

that the \fan-out" version of triangular solution is used in the forward solu-

tion phase, while the \fan-in" version is used in the backward solution phase

of the solver. This is the exact opposite of the Heath and Raghavan algo-

rithm. The reason for this is that the dynamically generated symbolic factor

is automatically represented in column structure format as a consequence of

the modus operandi of the multifrontal method. In the forward solve, a node

must \push" updates to its ancestors using its column structure, while in

the backward solve, a node has to \collect" updates from its ancestors using

76

the same column structure.

As in the case of the parallel implementation of the multifrontal method,

the parallel implementation of the triangular phases of the grid solver has

a signi�cant advantage over the algorithm proposed by Heath and Ragha-

van [15], viz., the elimination of the overhead associated with the \wrap-

mapping" of the solution vectors to the subsets of processors associated with

various subtrees of the elimination tree.

5.4 Performance

Tables 5.1 and 5.2 indicate the execution times in seconds for the parallel

multifrontal and triangular solution algorithms described earlier in this chap-

ter. In the case of the multifrontal algorithm, the local portion of the method

contributes heavily to the speedup and scalability of the overall algorithm,

while the global portion involves communication, and hence scales poorly.

In fact, the cost of the global operation is essentially �xed with regard to the

number of processors, as decreasing separator size (and conseqently smaller

message length) e�ectively o�sets a greater number of messages that are in-

evitably needed with increasing number of processors. However, the global

portion is still a fairly small fraction of the overall workload, which explains

the reasonable speedup and scalability attained.

The triangular factorization algorithm, however, exhibits poor speedup

and scalability. One reason for this is that the total workload is much smaller

in this case, while the communication overhead is almost the same as that

in the factorization phase. This has a deleterious e�ect on both speedup as

well as scalability due to Amdahl's law.

77

Grid Number of Processors
Type

1 2 4 8 16 32 64 128

R128 9.36 5.09 2.7 1.51 1.03 0.69 0.53 0.45

R256 31.62 17.15 9.43 5.22 3.21 2.19 1.74 1.4

TRI16042 14.98 8.52 4.58 2.49 1.55 1.21 0.93 0.78

TRI63316 59.48 30.67 15.71 8.8 4.92 2.96 1.91 1.54

BRI5112 2.34 1.19 0.85 0.68 0.58 0.5 0.47 0.45

BRI32688 13.79 8.21 4.3 2.29 1.44 1.1 0.87 0.76

Table 5.1: Execution times for parallel multifrontal method.

Grid Number of Processors
Type

1 2 4 8 16 32 64 128

R128 1.46 0.88 0.65 0.52 0.44 0.4 0.38 0.38

R256 4.23 2.56 1.64 1.1 0.86 0.71 0.63 0.59

TRI16042 2.31 1.58 1.04 0.7 0.54 0.46 0.42 0.41

TRI63316 7.68 4.86 2.74 1.73 1.27 1.0 0.84 0.72

BRI5112 0.52 0.43 0.39 0.36 0.35 0.35 0.37 0.36

BRI32688 2.16 1.39 0.9 0.65 0.49 0.41 0.36 0.33

Table 5.2: Execution times for parallel triangular factorization.

78

6 Iterative Grid Solvers

Iterative methods compute the solution to a sparse linear system by start-

ing with an initial estimate and performing repeated iterations to arrive at

successively better estimates. The computation involved in each iteration

typically consists of combinations of basic matrix and vector operations such

as matrix-vector multiply and vector inner and outer products. Such an it-

erative approach has certain advantages over the direct alternative in that

memory overhead is extremely low due to the fact that the matrix su�ers no

�ll. This is especially advantageous for three-dimensional problems, where

memory is perennially at a premium. Furthermore, iterative methods are

relatively simple to implement in a parallel or distributed computing envi-

ronment. This is because a signi�cant percentage of computational work

involved in an iterative method results from the basic matrix-vector multi-

ply operation. This operation can be easily adapted to a parallel computing

environment and a�ords a high degree of parallelism. For these reasons, it-

erative methods are a popular alternative to direct methods for the solution

of sparse linear systems.

The convergence rate of iterative methods can be substantially improved

by employing a preconditioner matrix. This is essentially a matrix derived

in some manner from the original matrix, but much easier to factorize than

its progenitor. The original matrix is conceptually multiplied by the inverse

of the preconditioner, and the right-hand side is adjusted accordingly be-

fore the start of iterations. Examples of some widely used preconditioning

techniques include diagonal scaling, bandwidth limitation and incomplete

Cholesky factorization. The idea is to lower the condition number of the

original matrix, thereby improving the convergence behavior of the iterative

79

method. The e�ectiveness of a preconditioner, therefore, depends critically

on the information that is known about the sparse matrix and especially the

source from which it is derived. Furthermore, a viable preconditioner must

be amenable to e�cient construction and factorization if the overall iterative

method is to be competitive. For the same reason, and also to maintain the

iterative method's advantage in terms of memory overhead, it should su�er

from as little �ll as possible during factorization.

A conventional sparse iterative method, like its direct counterpart, uses

one of the standard representations of a sparse matrix. The basic matrix

and vector algebraic operations are implemented using this representation.

The iterative method itself can then be built on top of these fundamental

operations in a structured manner. In the case of matrices implicitly avail-

able inside a grid data structure, this approach su�ers from the obvious

drawback that the sparse matrix has to be created explicitly, which entails

additional memory overhead. Furthermore, explicit creation of the sparse

matrix results in loss of information about the grid. Such information can

be potentially invaluable in the design of an e�ective preconditioner for the

problem.

An iterative grid solver di�ers from conventional iterative sparse solvers

in that the sparse matrix is implicitly available inside the grid data struc-

ture and is never created explicitly. Instead, the basic matrix and vector

operations required by the iterative method are implemented directly on the

grid data structure. This allows the grid solver to eliminate the memory

overhead associated with the explicit creation of the matrix. It also allows

it to exploit the additional information available in the grid data to design a

structural preconditioner that is block-diagonal, with the size of each block

bounded above by a small constant. Furthermore, it can be constructed in a

parallel message-passing environment without any additional communication

among processors. Its block-diagonal property also facilitates factorization

80

in an embarrassingly parallel, communication-free manner. Also, in prac-

tice, it is possible to minimize �ll during factorization, notwithstanding the

fact that �ll-minimization for an arbitrary matrix is NP-Complete [30].

Most important, this preconditioner is extremely e�ective in accelerating

the convergence of contemporary iterative methods on practical applications

compared with other preconditioners in current use.

6.1 Previous Work

We now present a brief overview of the evolution of iterative methods and

the preconditioners used to accelerate their convergence, along with widely

used techniques for their parallel implementation. The book by Saad [28]

is a comprehensive reference on the subject of iterative methods for sparse

linear systems.

6.1.1 Iterative Methods

The earliest iterative methods were the so called \relaxation" methods,

which involve modi�cation of the solution estimate a few components at

a time until convergence. Examples of such methods include the Jacobi,

Gauss-Seidel, SOR, and ADI methods. One of the problems with these

methods is the determination of an optimal relaxation factor for general

matrices. Due to this and other reasons, such methods are currently used

only as preconditioners.

Projection methods, on the other hand, extract an approximation to

the solution from a subspace in a canonical way, by using a projection

process. This technique is analogous to the Galerkin and Petrov-Galerkin

methods used in �nite element analysis.

A special class of projection methods is the so called Krylov meth-

ods, which use projection techniques on Krylov subspaces, i.e., subspaces

spanned by vectors of the form p(A)v, where p(A) is a polynomial in the

81

system matrix A. The most famous examples of these kinds of methods

include Conjugate Gradient (CG), Arnoldi, Generalized Minimum

Residual (GMRES), and Quasi-Minimum Residual (QMR) meth-

ods. Of these, CG, GMRES, and QMR are the most exible, robust and

hence more widely used methods in contemporary scienti�c computing.

6.1.2 Preconditioners

A signi�cant drawback of iterative methods as compared with direct meth-

ods is their lack of robustness. This can be a severely limiting factor in

their application to large, sparse linear systems. One way of improving the

performance of an iterative method signi�cantly is to employ a precondition-

ing to the problem before invoking the iterative sequence. Preconditioning

is a process in which the linear system is transformed into another system

with the same solution as the original, but with the likelihood that the new

system will be easier to solve using an iterative method. It has been the

experience of many researchers in practice that the success of the iterative

approach depends more critically on the choice of preconditioning technique

than on the actual iterative method used.

A large number of preconditioners have been proposed and analyzed

in literature [28]. Of these, the class of Incomplete LU or Incomplete

Cholesky factorization preconditioners are perhaps most common. The ba-

sic idea is to perform LU or Cholesky factorization on the original matrix,

but disallow �ll to various degrees of restriction. The factors thus obtained

are used in preconditioning of the sparse system. A variant of incomplete

factorization preconditioners are the so called approximate inverse pre-

conditioners, which involve approximating the inverse of the system matrix

and using it to precondition the same. Examples include the global iteration

and global steepest descent techniques for preconditioning. For block tridi-

agonal matrices that arise from the discretization of elliptic partial di�eren-

82

tial equations, a preconditioning technique known as block preconditioning

can be used e�ectively.

All of the above preconditioners are essentially derived from the coe�-

cient entries in the system matrix. While Saad [28] mentions that a pre-

conditioner can be derived using the special properties of the problem from

which the matrix is derived, an overwhelming majority of current precon-

ditioning techniques restrict themselves to just the structure and entries of

the original sparse matrix.

6.1.3 Parallel Implementation Techniques

A major advantage of iterative methods over the direct approach is their

ease of implementation in a parallel computing environment. This can be

attributed to the fact that most iterative methods are implemented using a

small set of fundamental matrix-vector operations that can be adapted to

various parallel computing environments without much di�culty. For the

Krylov class of methods, these basic operations are:

� Preconditioner Setup: This step involves the construction of the

preconditioner for the iterative method. The ease of parallel implemen-

tation in this case can vary substantially for di�erent preconditioners.

In general, structural preconditioners, i.e., those that are constructed

based upon matrix structure, can be generated more e�ciently than

other varieties. If incomplete factorization is necessary, this can signif-

icantly add to the overhead of construction. It is of critical importance

that a preconditioner be amenable to e�cient construction in paral-

lel. Otherwise, an iterative method may lose much of its advantage

compared with the direct approach.

� Matrix-Vector Multiplications: This operation forms the back-

bone of most iterative methods. A given sparse matrix is multiplied

by a vector, resulting in a di�erent vector. For a given node in the

83

matrix graph, the corresponding entry in the resulting vector is given

by a weighted sum of the entries in the multiplying vector at all its

neighboring vertices in the graph. The weights themselves are the en-

tries of the matrix that correspond to edges connecting the node to

its neighbors. Thus, if node A is connected to nodes B and C with

edges in the matrix graph, the resulting value at A is given by the

sum of the vB �M(A;B), vC �M(A;C) and vA �M(A;A), where v is the

multiplying vector andM is the matrix. Note that A itself is included

in the weighted sum.

� Vector Updates: An operation of the form Z = a � X + Y , where

Z, Y , and X are vectors and a is a scalar is called a vector update or

a \SAXPY" update. Elements of vector X are each multiplied by the

scalar a and added to corresponding elements of vector Y to obtain

the resulting vector Z.

� Dot Products: A dot product of two vectors X and Y is a scalar

obtained by summation of pairwise products of corresponding entries

in X and Y .

� Preconditioner Operation: This is essentially the application of the

preconditioner obtained in the construction step to the system matrix

during the iterative solution process. This involves an operation of

the form M�1v where M is the preconditioner and v a vector. In

practice, the inverse of the preconditioner is never computed explicitly,

but its factors are used to solve two triangular systems, the result

of which is the required vector. As in the case of construction of

the preconditioner, it is of vital importance that a preconditioner be

factorized and applied in an e�cient manner, especially in a parallel

computing environment.

84

In a distributed message-passing environment, most of the above op-

erations can be implemented with a reasonable degree of e�ciency. The

matrix-vector product can be implemented in two steps. In the �rst step,

a processor computes the (partial) products for nodes that are within its

partition. For nodes that have all neighbors inside the same processor, this

results in the computation of the �nal product for that node. The com-

puted product is partial for nodes that have one or more neighbors on a

di�erent processor. For such nodes, each processor must communicate its

partial products to the appropriate processors and in turn receive the partial

products that the other processors have computed for these nodes. In the

�nal step, each processor updates the partial products of the \boundary"

nodes to reect their correct �nal values. The vector update operation can

be implemented extremely e�ciently due to the fact that edges are not in-

volved. The value of the two vectors X and Y are available at the nodes, as

is the scalar a. Each processor simply computes the value of the update at

each node by doing a local scalar multiply and add for that node. No com-

munication is required at any stage of the vector update. The dot product

operation involves a �rst step that is similar to the vector update, in which

corresponding elements of the two vectors are multiplied. The second step

required a summation of these values over all nodes. This can be achieved

by a global reduction operation that is logarithmic in the number or pro-

cessors. The �nal step is a broadcast operation wherein the result of the

global operation is disseminated to all processors. The cost of this operation

is also logarithmic in the number of processors.

The e�ciency of the two operations involving preconditioners depends on

the type of the preconditioner used. In [28], Saad describes a class of precon-

ditioners called Parallel Preconditioners, the members of which are designed

in a manner meant to facilitate their e�cient construction and application.

Examples include the so called red-black ordering based preconditioners,

85

the multi-elimination incomplete factorization preconditioners, and the dis-

tributed incomplete factorization and SSOR preconditioners. Saad also men-

tions element-by-element preconditioners used in �nite element applications

and parallel row projection preconditioners. While all these preconditioners

exhibit varying degrees of parallelism in their construction and application,

a signi�cant amount of overhead is introduced in the process for most of

them. For instance, the red-black ordering preconditioner required costly

searches of the matrix graph to color the nodes. The parallel row projection

preconditioner involves partitioning of the node set into two disjoint subsets.

These additional requirements can seriously compromise performance of the

overall iterative method in a parallel computing environment.

6.2 Iterative Methods on Grids

Since an iterative method can be built using the basic matrix-vector opera-

tions outlined in the previous section, it can be implemented on a grid data

structure simply by adapting these operations to that data format. This is

made possible by the fact that all algorithmic steps that depend on the ac-

tual matrix representation are fully encapsulated inside the basic operations

that form the building blocks of the iterative method.

The critical issue in adapting the basic operations to a grid data structure

lies in the fact that the grid data does not contain explicit information

about the nodes that neighbor a given node in the matrix graph. Instead,

information is readily available about the two nodes that constitute an edge

in the graph. The problem, therefore, is to design algorithms for performing

the basic matrix-vector operations using just this information about the

sparse matrix. This is similar to the problem encountered previously in the

construction of the elimination tree for a sparse matrix embedded inside a

grid.

The solution to the above problem is to employ an edge-based strategy

86

instead of a node-based strategy used by conventional iterative methods.

The basic operations can then be adapted to a grid format in the following

manner:

� Matrix-Vector Multiplications: As mentioned earlier, for a given

node in the matrix graph, the corresponding entry in the resulting vec-

tor is given by a weighted sum of the entries in the multiplying vector

at all its neighboring vertices in the graph. The weights themselves are

the entries of the matrix that correspond to edges connecting the node

to its neighbors. In an edge-based strategy, each edge contributes the

product of its weight, i.e., its o�-diagonal entry in the sparse matrix,

and the element of the multiplying vector at one of its nodes to the

result at the other node. A similar operation is performed on its other

node. To account for the diagonal elements of the matrix, we consider

each node as having a self-loop which will contribute the product of

the diagonal entry corresponding to that node and the element of the

multiplying vector at that node to the result at the same node. When

all edges (including self-loops) have completed this operation for both

their nodes, the matrix-vector product is available at the nodes in the

graph. For example, assume that edge E consists of nodes A and B

in a matrix M , which is to be multiplied by a vector v. In the edge-

based strategy, E computes M(A;B) � vB and adds it to the result at

A, and computes M(A;B) � vA and adds it to the result at B. The self

loop at A computes M(A;A) � vA and adds it to the result at A, while

the self-loop at B does similarly. At the end of all such updates, for

any given node, the contributions from all its neighboring nodes have

been added to its result. In other words, the matrix-vector product is

complete.

� Vector Updates: This is the operation of the form Z = a �X + Y ,

where Z, Y , and X are vectors and a is a scalar. The grid imple-

87

mentation for this operation does not require an edge-based strategy

due to the fact that the update is simply an element-wise operation

involving three vectors. The matrix entries are never accessed. Since

the node information is directly available in a grid data structure, the

grid implementation for this operation is algorithmically the same as

that in the conventional case. However, the grid version does have

one signi�cant advantage in terms of e�ciency. A typical grid data

structure holds the node information in a one-dimensional array over

all nodes. This is unlike the conventional representation of a sparse

vector, which involves indices and, consequently, an additional level

of memory indirection for accessing the value in the vector. This re-

sults in performance degradation due to poor cache and vector uti-

lization during the SAXPY update operation. But in the case of the

grid format, since all vectors are essentially stored contiguously in

one-dimensional arrays over all nodes, their values are all available

contiguously in memory, resulting in optimum cache as well as vector

utilization. This illustrates once again the advantage of exploiting the

additional information available about the problem in a grid-based ap-

proach. The crucial observation is that all vectors associated with a

grid structure have the same sparsity structure, which facilitates their

storage as dense vectors, accruing all the advantages that usually go

with the latter.

� Dot Products: A dot product of two vectors X and Y is a scalar

obtained by summation of pairwise products of corresponding entries

in X and Y . The grid implementation for this operation is similar to

that for the SAXPY update except for the additional step required to

sum the element-wise products over all nodes in the grid.

Once all the above operations have been adapted to a grid data format,

any iterative method can be implemented by using these as black boxes. In

88

fact, as will be seen in the next chapter, an object-oriented implementation

of an iterative method with proper encapsulation and information hiding

requires no modi�cation whatsoever at the source level to incorporate the

change from a conventional to a grid representation of the sparse matrix.

6.2.1 Parallel Implementation of Basic Operations

The fundamental idea in the parallel message-passing implementation of the

basic operations on a grid is similar to that pertaining to the conventional

sparse matrix representation outlined in the previous section. Basically, a

processor performs the operation for the portion of the grid that lies within

its domain. In the case of the matrix-vector product, this causes the �nal

result to appear at nodes that have all their neighbors on the same processor.

For others, the result is merely partial. A communication step is required

to exchange such partial results between neighboring processors before the

entire product can be made available. In the case of the other two vector

operations, however, no communication is necessary, as the operation is

restricted to the nodes only.

As seen earlier, the partitioning of a grid by the cartesian nested dissec-

tion algorithm results in separators, which form the interprocessor bound-

aries and are replicated across all processors that share them. This implies

that the nodes and edges that constitute a separator are stored on multiple

processors. In this scenario, the �rst local step of the matrix-vector product

described above computes the �nal result for all nodes except those lying on

a separator. The communication step allows a processor to gather informa-

tion about the contributions to nodes on its separator from nodes located

on neighboring processors. A minor caveat concerns edges that lie within a

separator. To avoid replicating contributions by these edges to nodes within

that separator, processors claim ownership to such edges based upon some

priority scheme, such as one based upon processor numbers. This ensures

89

Grid Number of Processors
Type

1 2 4 8 16 32 64 128

R128 306 161 92 49 26 14 8 5

R256 1223 637 324 175 100 56 31 17

TRI16042 484 257 135 76 40 23 15 9

TRI63316 1892 992 512 268 143 77 43 24

BRI5112 281 149 85 46 24 13 9 6

BRI32688 956 491 261 144 76 42 24 14

Table 6.1: Execution times for one matrix-vector product operation.

that the contributions from edges in a separator are applied only once to

their nodes by the processor that \owns" them.

Again, with the basic operations implemented in parallel, the overall

iterative method can be implemented on the grid simply by use of these

operations as black boxes. This has an additional advantage of making the

iterative method independent of the parallel computing paradigm as well

as the matrix representation. This exibility and ease of implementation,

along with high performance and scalability, are the principal reasons for

preferring iterative methods over direct methods in a parallel environment.

Table 6.1 shows the execution time in milliseconds for one iteration of

the grid implementation of the matrix-vector product operation on the six

test grids introduced earlier. It can be seen that the algorithm exhibits ap-

preciable scalability illustrating one of the critical advantages of the iterative

approach to sparse linear solution.

6.3 Structural Preconditioner for Iterative Grid

Solvers

The critical problem in designing an e�ective preconditioner is the tradeo�

between ease of factorization of the preconditioner and the need to include

as much information from the original matrix as possible so as to have a sig-

ni�cant impact on the convergence rate. For most preconditioners currently

90

in use, it is di�cult to achieve both goals with a high degree of success.

The above tradeo� can be satisfactorily achieved in the case of the grid

approach to the solution of sparse linear systems. The fundamental idea is to

exploit the additional information about the problem that is typically avail-

able in the grid data structure to construct a preconditioner that is easily

factorizable by virtue of being block-diagonal, but still e�ective due to the

fact that it captures the essence of the matrix sparsity structure. The grid

information used to construct this preconditioner pertains to the grouping

of nodes and edges into higher-dimensional entities such as elements, cells,

and faces as described in Chapter 3. Formally, the preconditioner is a node-

set covering, pair-wise node-disjoint subset of the set of all entities in the

computational grid. In other words, the preconditioner is constructed by

choosing elements, edges, and other entities so that all of them taken to-

gether cover all the nodes in the grid, but no two entities selected have a

node in common. The second condition on the selection of entities gives the

preconditioner the block-diagonal property. Furthermore, since the number

of nodes that constitute any entity is bounded above by a constant, the

sizes of the blocks of the preconditioner are also bounded above in the same

manner, leading to ease of factorization.

6.3.1 Construction and Factorization in Parallel

Perhaps the most signi�cant advantage of the grid structural preconditioner

is that it is extremely e�cient to construct and factorize in a distributed,

message-passing system. In fact, both these operations can be carried out

without any communication among the processors whatsoever. This is due

to the fact that the edges and nodes that are shared between processors

can be assigned to one processor based upon its number, and thereafter all

processors can �nd that portion of the preconditioner that corresponds to

the subgrid within their domain. This does not require any communication.

91

Furthermore, once the preconditioner is constructed, the factorization can

also be performed entirely without communication, as factorization of each

block is totally independent of any other block.

Another important feature of this preconditioner is that the �ll it su�ers

during factorization can be minimized, in spite of the fact that minimization

of �ll is, in general, an NP-Complete problem [30]. This is made possible by

the block-diagonal nature of the preconditioner, where each block has its size

bounded above by a small constant. It is easy to show that the �ll for such

a matrix is minimized by the minimization of �ll for each of its diagonal

blocks. Since each diagonal block corresponds to a geometric object, the

�ll-minimizing ordering for that block needs to be computed only once and

used forever. Furthermore, since the size of such a block is typically in the

single digits, a brute-force algorithm for �ll minimization that checks all n!

possible orderings is entirely practical. In fact, for elements that are cliques,

such as triangles and tetrahedra, there is no �ll at all.

6.3.2 Example

8

7

6

4

3

2

1

5

9

1 5 7 8 3 6 2 9 4

4 -1 -1
-1 4 -1

-1 4 -1

 -1 -1 4

4

4

4

4

4

-1

-1

-1

-1

Figure 6.1: Grid structural preconditioner for 2-D rectangular grid.

Figure 6.1 shows the grid structural preconditioner obtained for the 2-D

grid example introduced earlier. The entities composing this are element

1-5-7-8, edges (3,6) and (2,9), and node 4. The preconditioner is also shown

92

in matrix format, and it can be readily seen that it is block-diagonal with

the size of the largest block being 4.

6.3.3 Convergence Performance

E�ectiveness of the structural preconditioner is demonstrated by utilizing it

in conjunction with two popular iterative methods to solve the 2-D Poisson

equation for a rectangular grid. The standard �ve-point implicit �nite dif-

ference discretization of Poisson's equation results in a symmetric positive

de�nite matrix, with 4 on its main diagonal and four nonzero o�-diagonals

with elements all equal to �1. Since this matrix is very well conditioned, for

testing purposes, it is perturbed by replacing one diagonal element by a very

large number (109) and another by a very small number (10�9). This renders

the matrix extremely ill-conditioned with a condition number of the order

of 1010 and allows e�ective evaluation of the preconditioner's capabilities.

The system thus obtained is solved iteratively using GMRES (General-

ized Minimum Residual) and QMR (Quasi Minimum Residual). Both meth-

ods are employed on the matrix without any preconditioner, with simple

diagonal scaling, a tridiagonal banded preconditioner, and the grid struc-

tural preconditioner obtained using the algorithm discussed earlier. Both

methods are marched with a maximum iteration limit of 100 and a toler-

ance equal to machine precision (10�16). GMRES has a restart of 3. The

size of the grid is 128 � 128.

Figure 6.2 shows the performance of GMRES in all four cases. As ex-

pected, with no preconditioner GMRES stagnates quickly and does not con-

verge in 100 iterations. A similar result occurs with the simple diagonal

scaling preconditioner. The tridiagonal preconditioner converges in 79 it-

erations. This is not surprising, as a tridiagonal preconditioner for a this

matrix has over 60% of the nonzero elements of the original matrix. In fact,

it is the best non-degenerate banded preconditioner in this case. The best

93

0 10 20 30 40 50 60 70 80 90 100

10
−16

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

Convergence Histories for GMRES with different preconditioners

Iterations

R
es

id
ua

l N
or

m
 (

Lo
ga

rit
hm

ic
)

Tridiagonal

Diagonal Scaling

Grid Structural

No Preconditioner

Figure 6.2: Convergence performance of GMRES with various precondition-
ers.

0 5 10 15 20 25 30 35

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

Convergence Histories for QMR with different preconditioners

Iterations

R
es

id
ua

l N
or

m
 (

Lo
ga

rit
hm

ic
)

No Preconditioner

Diagonal Scaling

Tridiagonal

Structural

Figure 6.3: Convergence performance of QMR with various preconditioners.

94

0 5 10 15 20 25 30 35

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

Convergence Histories for CG with different preconditioners

Iterations

R
es

id
ua

l N
or

m
 (

Lo
ga

rit
hm

ic
)

No Preconditioner

Diagonal Scaling

Tridiagonal

Structural

Figure 6.4: Performance of CG with various preconditioners.

performance is delivered by the grid structural preconditioner, which con-

verges to machine precision in 39 iterations. A surprising fact about this

result is that this preconditioner has exactly the same number of nonzeros

as the tridiagonal preconditioner, and yet it outperforms the latter by a

2-to-1 margin. One possible explanation for this is that the structural pre-

conditioner chooses its nonzeros more selectively rather than in the ad hoc

manner employed by the other. The performance of these two preconditioner

is predicted fairly accurately by the condition numbers of their respective

preconditioned matrices, with the condition number for the tridiagonal pre-

conditioner being about twice that of the structural grid preconditioner.

Figure 6.3 shows the performance of QMR in the same four scenarios.

Unlike GMRES, QMR converges for all four, but even here the structural

preconditioner outperforms the tridiagonal preconditioner by about 50%,

converging in 16 iterations as against 24 for the latter. A similar result is

obtained in the case of CG as shown in Figure 6.4

95

7 Design of Object-Oriented

Framework

Perhaps the strongest argument in favor of the conventional, explicit-matrix

approach to sparse linear system solution is the fact that the sparse matrix

representation is universally accepted and followed. This frees the designer

of a conventional sparse solver from having to deal with the source of the

sparse matrix and concentrate instead on a well-de�ned and well-studied

standard for matrix data representation. While it is true that, as described

in earlier chapters, this \strait-jacket" approach is responsible for some se-

rious limitations of conventional sparse solvers, it is also a fact that this

property of the conventional approach contributes heavily to the robustness

and universal applicability of these types of solvers.

In contrast, there is no universal agreement among scienti�c computing

disciplines that employ computational grids about the data representation

to be used for such grids. The principal reason for this is that each discipline

has evolved its own way of storing and manipulating grids over the years,

with no regard to the formats being used by allied �elds. Furthermore,

there is little chance of agreement among such user communities on this

issue, primarily because a given application needs to use only a small part of

the general grid de�nition for its purpose of numerical solution of scienti�c

problems. This, in conjunction with the limitations on available storage,

strongly militates against the possibility of any agreement on a common

data representation for computational grids.

The above presents the designer of grid solvers with a unique challenge.

Clearly, such solvers cannot possibly be made generic to a su�cient degree

96

by using imperative programming methodologies, such as FORTRAN and C,

that are currently most widely employed in scienti�c computing applications.

This is because algorithms implemented in an imperative programming lan-

guage are intimately tied to the data structures on which they operate. Even

a structured approach to this form of programming is inadequate, as grid

data structures vary signi�cantly enough from one application to another so

as to require a non-trivial amount of program modi�cation. This is always

a time-consuming, error-prone, and ine�cient process.

An obvious solution to this impasse is the use of object-oriented (OO)

techniques in the design and implementation of grid solvers. The OO

paradigm o�ers the highest level of information hiding and data encapsula-

tion among all programming methodologies. Furthermore, the mechanisms

of class derivation, inheritance, and operator and method overloading to-

gether facilitate an extremely high degree of code reuse among applications

that are even slightly related to each other. However, the power of the OO

approach can truly be maximized by adopting a \gestalt" view of the design

process and applying OO design principles to a class of related applications

as a whole.

AnOO framework[8] is a collection of classes that provide functionality

corresponding to a speci�c application domain. The functionality is common

to all members of the domain and is abstracted out using the OO capabil-

ities outlined in the previous paragraph. The member-speci�c details are

hidden inside the classes that form the framework. Thus, the implementor

of a framework can design algorithms that are built upon low-level methods

of the framework classes. These methods are implemented di�erently for

di�erent applications, depending upon the data structures that are hidden

inside the classes. Using the framework for a speci�c application is known as

\instantiating" the framework. Since the application speci�c details are en-

capsulated inside the framework classes, such instantiation can be achieved

97

with minimal program modi�cation and maximum code reuse. Furthermore,

whatever modi�cation is required is limited in scope to local methods inside

individual classes, as against that in the imperative programming paradigm,

where modi�cations are needed on a global scale to change data represen-

tations. This makes a tremendous di�erence in the ease, e�ciency, and

correctness of the modi�cation process. For these reasons, a framework is

widely considered to be the most powerful mechanism for code reuse in the

OO programming paradigm.

Examples of frameworks include a framework for maintaining, accessing,

and updating patient records in hospitals, a framework for handling all the

complex transactions at securities or commodities exchanges, and a frame-

work for telephone switching systems. In essence, a framework provides all

the building blocks for constructing a family of programs that solve similar

problems.

This chapter presents the design of an OO framework for direct and iter-

ative grid solvers. Its speci�cation is provided using the Uni�ed Modeling

Language[25], which is an industry standard for expressing the interactions

among components of an OO model. This is followed by descriptions of key

classes in the model and their members. A salient feature of OO languages

is the idea of templates, i.e., generic data structures and their associated

generic algorithms. The Standard Template Library[26] is a collection

of several important and useful data structures and algorithms that are im-

plemented using generic templates. The design of the framework for grid

solvers uses this feature of modern C++ compilers heavily. This usage is

outlined in the last section of this chapter.

7.1 Background

The origins of the OO programming paradigm can be traced to research

groups at the Xerox Palo Alto Research Center (PARC) working on

98

a graphical development environment for a language called Smalltalk in the

1970s. However, the transition of the OO idea from select research labora-

tories into the software development mainstream began in earnest with the

arrival of C++ in the early 1980s. Since then, there has been an explosion

in the use of this programming approach, spurred in no small measure by

the availability of several excellent compilers, both public domain as well as

proprietary, for C++ and other OO programming languages. In fact, today

any serious, nontrivial, mainstream software development project would be

considered infeasible without the use of some form of OO design.

With expanding use of the OO design philosophy came the rapid real-

ization that large OO designs can be extremely di�cult to communicate,

understand, and consequently implement and maintain due to the lack of

a standardized language for expressing the modeling process at an abstract

level. This led to calls for a universal, higher level modeling language for the

description of OO designs. Early e�orts in this direction were spearheaded

by three researchers, Grady Booch, James Rumbaugh and Ivar Jacobsson,

all working independently of each other. In 1995, the three joined forces and

formulated a draft of the so called Uni�ed Method, which represented a �rst

step in the standardization of the idea. This was followed by re�nements in

rapid succession, the end result of which was the birth of theUni�ed Mod-

eling Language (UML) [25] and its industry-wide acceptance in 1996.

Concurrent with the evolution of the UML, another important devel-

opment in the OO arena was the standardization of the C++ language

speci�cation. An important step in this regard was the release of the ANSI

standard for the language in the mid 1990s. While the advent of the Internet

has ushered in a new OO language (JAVA) that may be more suited for pro-

gramming in that environment, there can be little disagreement that C++

remains the dominant choice for the implementation of complex, large-scale

software projects with very strict requirements for robustness, maintainabil-

99

ity, and e�ciency.

Finally, an important piece of the OO mosaic is the idea of generic data

structures and programming. The idea is to use the capabilities of the OO

paradigm to design a generic set of data structures and algorithms that can

be reused with little or no modi�cation by any application that needs to

implement typical data structures such as lists, trees, sets, and hash tables

in conjunction with algorithms for searching, sorting, and otherwise ma-

nipulating them. Through the pioneering work of Alexander Stepanov and

others at HP Labs, this idea has materialized in the form of the Stan-

dard Template Library[26] that now forms a critical part of the standard

library in the ANSI C++ speci�cation.

The core capabilities of the OO methodology, in conjunction with the

power of generic data representation and programming, provide a solid plat-

form for the design and implementation of the OO framework for grid solvers.

7.2 Model Description

The �rst step in the design of an OO framework is the delineation of the

system model. A model de�nes the classes that are part of the system and

the relationships between them at a high level of abstraction. The UML

provides the concept of a class diagram[25] to facilitate a pictorial de�nition

of the model.

Figure 7.1 shows the UML class diagram for the model of the OO frame-

work for grid solvers. As per standard UML notation, the blue boxes rep-

resent classes. The text inside the boxes refers to the name of the corre-

sponding class. The red and green arrows correspond to two distinct types

of relationships between classes. A red arrow pointing from class A to class

B indicates an \aggregate" relationship between the two classes with class

A assuming a more \dominant" or a \master" role. In other words, an in-

stance of class A is associated with one or more instances of class B, without

100

FRONTAL MATRIX

NODE

GRID

DUAL NODE

DUAL EDGEEDGE

FACTOR COLUMN

Figure 7.1: Class diagram for framework model.

the instances of class B actually being components of class A. The dominant

nature of class A vis-a-vis class B comes from the \accessibility" or propa-

gation of data and operations between them, i.e., an instance of class A has

access to the instances of class B associated with it, but not vice-versa. In

contrast, a green arrow in the class diagram indicates a stronger relationship

of \composition" between two classes. For instance, a green arrow pointing

from class A to class B denotes that one or more instances of class B form

an integral part of an instance of class A. Thus, in terms of accessibility, an

instance of class A has access to the corresponding instances of class B, just

as it would to its other class attributes.

In �gure 7.1, the grid class can be thought of as the \container" class

in that it includes other grid component classes within itself. Thus, its

relationships with those classes, viz., dual node, dual edge, node, and edge,

are indicated with green arrows. In contrast, the dual node class is associated

with the dual edge, edge, and node classes in an aggregate manner, i.e., it

does not include instances of those classes within its de�nition. Therefore,

its associations with them are indicated using the red arrows. Similarly,

101

relationships among dual edges, nodes, and edges are also indicated using

aggregate notation in the form of red arrows from the dominant class to its

subordinate. The classes named \factor column" and \frontal matrix" are

created to serve the needs of the factorization process, wherein the frontal

and update matrices along with the columns of the Cholesky factor need to

be stored. Since they are both associated with the node class in an integral

way, their relationships with that class are indicated using green arrows.

Finally, a frontal matrix class can be thought of as the two-dimensional

\projection" of a sparse column vector. This is due to the fact that the

nonzero entries of a frontal matrix are de�ned by the cross-product of the

indices of nonzero entries in some column vector. This implies a composition

relationship between the factor column class and the dominating frontal

matrix class.

It should be noted that there are no separate classes provided for itera-

tive grid solvers. This is because an iterative grid solver has little additional

storage requirements other than temporary vectors. These can easily be

accommodated as scalars in each instance of the node class. The precon-

ditioner is represented simply by a boolean value associated with the dual

node, dual edge, edge, and node classes. Its factors can be captured using

the factor column class.

7.3 Class De�nitions

Once the system model has been designed, the next step is to de�ne the

speci�cations for the individual classes, i.e., the attributes and methods of

each class that collaborate to provide the core functionality required of the

OO framework.

In this section, we de�ne each of the principal classes of the framework

for grid solvers.

102

7.3.1 Grid Class

As mentioned earlier, the grid class can be conceived of as a \container" class

due to the fact that it incorporates all other major classes within its body. In

fact, the grid class is meant to capture all the necessary and su�cient details

associated with the grid data structure. In the case of a parallel, message-

passing computing environment, there is one instance of the grid class on

each processor, holding information pertaining to the subgrid assigned to

that processor.

The important attributes of the grid class include the sets of dual nodes,

dual edges, edges, nodes, and the mappings among them. It also holds

information regarding the cartesian extents of the (sub)grid, as well as those

of the entire domain, and the subdomain involved in the current phase of

CND. It also contains bu�ers that are used in communicating with other

processors.

The methods of the grid class pertain to the \macro" level operations of

the direct and iterative grid solvers, e.g., grid redistribution after each step

of CND, computation of the elimination tree, the multifrontal method, trian-

gular solution, and generation and factorization of the preconditioner. The

interactions of the grid class with its component class as well as instances of

itself on other processors are hidden within these methods. This provides an

additional layer of abstraction that can facilitate changes in implementation

from a parallel to a sequential environment and vice-versa, and also changes

in the component classes. None of these changes need a�ect the grid class

in any signi�cant manner.

7.3.2 Dual Node Class

As the name suggests, the dual node class incorporates all the data and

operations pertinent to the dual nodes of a grid. The salient attributes

of this class include links to instances of its component classes, viz., edges,

103

nodes, and dual edges. Its main methods are those that compute its centroid,

its vertex separator increment function during the CND process, and

a \stream-out" method that writes out all attributes of an instance of the

dual node class onto a sequential portion of memory. This is used during

grid redistribution, when dual nodes must be sent in their entirety from one

processor to another. There is also a corresponding \extract" method that

recreates a dual node from a sequential portion of memory.

7.3.3 Dual Edge Class

This class plays a critical role in the cartesian nested dissection algorithm.

Its main attributes are those that allow the two dual nodes on its ends to

determine the values of their respective vertex separator increment function.

In particular, this class stores the centroids of the two dual nodes on its ends.

It also contains a set that lists the identi�ers (ids) of the processors that may

share an instance of the dual edge. In such cases, that particular instance

of the dual edge class is replicated across all those processors.

The important methods of this class include a method that returns the

centroid for the other dual node given one of its two associated dual nodes,

and, as in the case of the dual node class, methods for streaming out and

extracting the attribute data in an instance of the dual edge class, to and

from a bu�er in sequential memory.

This class plays di�erent roles in two and three dimensional grids. In a

three dimensional grid, dual edges are \faces" of three dimensional elements

or dual nodes. For instance, a tetrahedron has four triangular faces that

de�ne its boundaries. A face is further made up of edges. Hence, there

is a clean separation among dual edges and edges in a three dimensional

grid with each entity corresponding to distinct types of geometric objects

with di�erent dimensionalities. However, in a two dimensional grid, dual

edges of a planar element are exactly the same as its edges. To address

104

this scenario, the dual edge class is made into a \holding class" for an edge

in a two dimensional grid. This means that an instance of the dual edge

class holds a reference to the instance of the edge class that contains the

edge information. However, the instance of the dual edge class still contains

the other information needed for computing the vertex separator increment

function in the CND process.

7.3.4 Edge Class

The principal involvement of this class is in the edge-based algorithms for

computing the elimination tree. Its main attributes include links to in-

stances of the node class, a set for listing the processors that may share

this edge, and type information used in marking edges that may belong to

separators. The methods for this class include those that return the lower

and higher numbered nodes of the two constituent nodes, methods for ma-

nipulating the processor set, and the two streaming and extraction methods

for transporting an edge across processors.

The edge class plays a pivotal role in allowing the framework to incorpo-

rate grids whose topologies do not correspond exactly to the sparse matrix

that is contained in them. Such cases can be handled simply by creating

extra instances of the edge class. Since the algorithms for computing the

elimination tree all use just the edge information of a grid, no additional

modi�cation is needed for the solvers to work correctly.

7.3.5 Node Class

This class is used heavily in the factorization and triangular solution phases

of the direct grid solver. In addition, it also holds information regarding

sparse vectors used during the iterative grid solution process. This class has

two component classes corresponding to a frontal matrix and a column of the

matrix factor. Instances of these classes form the most important attributes

105

of the node class. The instances of the frontal matrix class are used to store

the frontal and update matrices during execution of the multifrontal method.

The factor column class is used to store the corresponding column of the

matrix factor, once it is computed. Also, this class contains the processor

list attribute as in the case of earlier classes.

The methods of this class perform updates as required by the multifrontal

method, compute the intermediate and �nal solutions during the triangular

solution phases, and also provide access to the elimination tree information

stored in the form of the parent value at each node.

As in the case of the edge class, the node class a�ords a seamless way

in which to integrate applications whose sparse matrix graphs have nodes

in addition to those in the corresponding grid, as well as applications with

multiple-degree nodes. The idea is simply to create as many instances of the

node class as are needed to fully account for all such extra nodes and degrees

per node. Since the grid adaptation of the multi-frontal method only works

with the node set of the grid, no further changes are required.

7.3.6 Factor Column Class

This class is designed to store a sparse column of the Cholesky factor. It

forms a component of both the node as well as the frontal matrix classes.

Its main attributes are the nonzero entries of the column along with their

indices. It provides methods for adding, deleting, and updating these entries

and also for streaming out and extracting its attributes from a memory

bu�er. The last two methods are needed in the communication phase of

the multifrontal method, when updates from di�erent processors must be

combined.

106

7.3.7 Frontal Matrix Class

The frontal matrix class uses the factor column class to capture the details

and operations of the frontal and update matrices employed by the mul-

tifrontal method. A basic property of these matrices is that even though

they are, in general, sparse, their nonzero entries have indices derived by a

cross-product of a set of integers with itself. This presents a unique oppor-

tunity for structuring this class using the already available factor column

class, as an instance of the frontal matrix is clearly de�ned by a set of factor

column classes with the same set of indices for nonzero entries. As will be

seen in the next section, this property facilitates an easy and e�cient imple-

mentation of these classes that does not compromise the greatest advantage

of the multifrontal method, i.e., the ability to treat the frontal and update

matrices as dense.

7.4 Implementation Details

An important feature of C++ and other OO languages is the concept of

templates. A template can be thought of as a generic data structure param-

eterized by one or more classes. The idea is to create a data structure that

can be used with several di�erent classes that share certain common traits.

In this sense, a template is similar to a framework, but on a lower level of

abstraction. Generic algorithms are those that work with classes as one or

more parameters. This provides the user of such algorithms with a signif-

icant potential for code reuse by calling such an algorithm with di�erent

classes as parameters.

A combination of templates and generic algorithms can be an extremely

powerful tool for the design and implementation of large-scale, reusable, and

robust software systems such as application frameworks. As an example, a

data structure for sets can be designed e�ectively using these two ideas. A

107

set, and the operations that can be performed on it, does not depend on

the type of the members that belong to it. For instance, the operations for

insertion, deletion, union, intersection, and cardinality can be implemented

in exactly the same manner for a set of integers, complex numbers, people,

or anything else that can be grouped into a set. However, an imperative

programming language will require di�erent functions or subroutines for

these operations on each type of set. This results in several copies of code

that implements the set operations, each only slightly di�erent from the

others. In contrast, in the OO paradigm, it is su�cient to implement the

set data structure only once, as a template parameterized by the type of

elements in the set. The various set algorithms also can be parameterized in

a similar manner, and implemented only once. Thereafter, sets of di�erent

types can be obtained simply by instantiating the template with the class

name of the type in question. The generic algorithms then work on the

instantiated set without any modi�cation whatsoever.

It is not di�cult to see that the above approach can work well for other

data structures that do not depend on the type of objects being stored in

them such as trees, lists, hash tables, vectors, and associatively indexed

arrays or maps. It was precisely this idea that gave birth to the Standard

Template Library (STL), which is now an integral part of the ANSI C++

standard.

The implementation of the various classes in the OO framework for grid

solvers uses the STL heavily to facilitate e�ective and e�cient code reuse as

well as ease of adaptation of the framework to di�erent grid data structures.

Following are some of the ways in which the power of the STL is exploited

in the implementation of this framework:

� The sets of entities in the grid data structure are implemented as maps,

which are arrays indexed associatively by keys that are not necessarily

a contiguous subset of any enumerable set. For instance, a map can

108

consist of keys 1, 13, 24, and 32, and still provide e�cient access to its

elements based on one of these keys. In the case of the entity sets, the

keys are the global integer ids of those entities. This implementation

approach facilitates the management of these sets in the face of grid

redistribution, which calls for entities to be sent dynamically across

processors based on separator location at each step of cartesian nested

dissection.

� The sorting and searching operations required by di�erent phases of

the solvers are implemented using generic algorithms available for these

purposes in the STL.

� The factor column class is implemented using the map feature of the

STL. A sparse column is represented using the indices of its nonzero

entries as keys into a map of the nonzero values themselves. This

enables the solver implementation to take advantage of the transpar-

ent dynamic memory allocation capabilities of the map class, thereby

avoiding the need for explicit symbolic factorization. This, in turn,

eliminates the communication overhead that would result from having

to perform this step explicitly. Furthermore, the addition, deletion,

and other operations required to manipulate a column of the matrix

factor can be easily implemented using the generic algorithms already

available with the map feature.

� The frontal matrix class is implemented as a \map of factor columns"

with the same set of keys. As mentioned earlier, this is made possible

by the fact that the locations of nonzeros in frontal and update ma-

trices are de�ned by a cross product of an index set of integers with

itself. As in the case of the factor column class, this results in ease of

implementation of the various operations that need to be performed on

such matrices, the most important of which is the \extend-add" oper-

109

ation of the multifrontal method. The dynamic, transparent memory

allocation feature of maps facilitates the implementation of this opera-

tion by simple insertion and/or addition of matching entries of the two

matrices involved in it. Nevertheless, this implementation technique

does not compromise the critical advantage of frontal matrices, viz.,

their ability to be treated as dense matrices for the purposes of par-

tial factorization, since a map allows access to its elements in a serial

manner without requiring that access be initiated only through its set

of keys.

� The multifrontal method is implemented using the methods included in

the factor column and frontal matrix classes. Speci�cally, the updates

from the children of a node in the elimination tree are added together

using the extend-add operator within the frontal matrix class. The

partial factorization of the resulting dense matrix is carried out using a

method in the same class. The resulting column of the matrix factor is

stored in an instance of the factor column class and used subsequently

in the triangular solution phases of the algorithm.

The most signi�cant manifestation of the power of templates is in the

fact that their usage in the manner outlined above facilitates the ease of

instantiation of the overall OO framework extent. The basic idea behind

framework instantiation is to derive new constituent classes from those in

the framework and modify some of their methods that involve grid-speci�c

details. An implementation of the framework based upon templates and

generic algorithms guarantees that the derived classes can be used in place

of the parent classes without any modi�cation whatsoever.

110

8 Summary

This dissertation introduced the concept of aGrid Solver, which is a sparse

linear system solver that, unlike conventional sparse solvers, works directly

with the computational grid within the application. The sparse matrix itself

is never created in explicit form at any stage of the solution process. This

approach enables the grid solver to take full advantage of all the information

about the application that is available within the grid data structure. It also

eliminates the additional memory and performance overhead caused by the

mandatory conversion of matrix formats in the conventional approach.

Following are the salient contributions of this dissertation:

� A novel approach to the design and implementation of solvers for

sparse linear systems originating from grid applications, in which the

sparse matrix is never created in explicit format.

� An optimal parallel algorithm for cartesian nested dissection that is

more e�cient than previous algorithms for this problem. It also pro-

vides a theoretical guarantee for the quality of separators.

� Two new edge-based serial algorithms for the construction of the elim-

ination tree of a sparse matrix that do not require explicit access to

node adjacency information.

� A novel, edge-based parallel algorithm for computing the elimination

tree that is asymptotically more e�cient, both in terms of communica-

tion as well as computation, than any other currently known algorithm.

� E�cient adaptation of the multifrontal method for numeric factor-

ization as well as triangular solution in a parallel, message-passing

111

environment.

� An e�cient implementation technique for iterative grid solvers in a

parallel computing environment that does not require explicit creation

of the matrix at any stage, resulting in signi�cant saving in memory

overhead.

� A new structural preconditioner that can be constructed, factorized,

and used in an embarrassingly parallel fashion for grid problems. In

addition, this preconditioner is shown to be more e�ective than banded

preconditioners, in spite of having approximately the same amount of

matrix information.

� Design and implementation of the direct and iterative grid solvers as

an object-oriented framework that enables the use of the solvers for

grids of any dimension, structure, component types, and geometry

with minimal code modi�cation, maximum e�ciency, and maintain-

ability through reuse. This framework uses powerful tools available in

the OO paradigm such as templates and generic algorithms to provide

a very high level of data encapsulation and information hiding.

While the OO framework incorporates a complete set of algorithms for

both direct as well as preconditioned iterative approaches to the solution of

sparse linear systems arising from computational grids, there remain several

issues that can be addressed to improve the functionality and power of the

framework. In fact, one of the major motivations in using the framework

approach to the design of the grid solvers is to provide an \open software

architecture" that can be extended, adapted, modi�ed, or enhanced with

minimal programming e�ort and maximum e�ciency. Following are some

suggestions for future work in this area:

� The fact that exploitation of additional grid information allows the

design of an optimal and e�cient algorithm for cartesian nested dissec-

112

tion suggests the possibility that further advantages could be extracted

vis-a-vis e�ective matrix reordering from such grid information. For in-

stance, an interesting research problem would be whether it is possible

to �nd optimal separators in a more general sense, i.e., not restricted

to the subset of cartesian axial separators. An even more challeng-

ing line of investigation could be to determine if the NP-completeness

of minimum �ll for arbitrary matrix graphs does indeed apply to the

more restricted set of sparse matrices derived from \proper" computa-

tional grids. This would, of course, require a much more rigorous and

strict de�nition of what a proper grid should be.

� An obvious question about the factorization process is whether the grid

approach can be made to work for general nonsymmetric, inde�nite

matrices, which would either need some kind of pivoting or alternative

measures to ensure reasonable accuracy of the �nal solution.

� A possible enhancement to the construction of the structural precondi-

tioner would be to allow \priority selection" of grid entities to include

in the preconditioner. Such priority could be used to choose entities

of higher dimensionalities in regions of the grid where the solution ex-

hibits interesting features such as large gradients, vortices, shocks, or

boundary layers.

� The issue of dynamic grid adaptation has attained signi�cant promi-

nence in scienti�c computing in recent years. The basic idea is to

re�ne and unre�ne portions of a mesh to improve local accuracy, but

only where it is needed most, i.e., in regions containing interesting fea-

tures of the numerical solution. Another form of adaptation involves

maintaining the same mesh and topological connectivity, but moving

the grid points in response to dynamic phenomena being studied. A

natural question that may arise is whether grid solvers can handle a

113

dynamically changing mesh structure. A conventional sparse solver

would need to recreate the explicit sparse matrix from the new grid

data structure after every step of adaptation. On the other hand, a

grid solver, by de�nition, would simply operate directly on the new

data without requiring any extra overhead.

� A software design issue in the context of grid solvers is the facility to

allow imposition of boundary conditions on sections of the grid. This

is not a consideration in a conventional sparse solver due to the fact

that the explicit matrix creation process extracts only those parts of

the grid that are not a�ected by boundary conditions. In the grid

approach, special attention needs to be focused on this conceptually

minor, but computationally important problem.

114

References

[1] Alvarado, F., A. Pothen and R. Schreiber, \Highly parallel sparse tri-

angular solution", in Graph Theory and Sparse Matrix Computation,

Springer-Verlag, New York, pp. 141-157, 1993.

[2] Berger, M. J. and S. H. Bokhari, \A partitioning strategy for nonuni-

form problems on multiprocessors", in IEEE Trans. Computers, Vol.

C-36 (1987), pp. 570{580.

[3] Demmel, J. W., M. T. Heath, and H. A. van der Vorst, \Parallel nu-

merical linear algebra," in Acta Numerica, Vol. 2 (1993), pp. 111{197.

[4] Du�, I., \Full matrix techniques in sparse Gaussian elimination," in

Lecture Notes in Mathematics (912), ed. by G. Watson, Springer-Verlag,

New York (1982), pp. 71{84.

[5] Du�, I., and J. Reid, \The multifrontal solution of inde�nite sparse

symmetric linear equations," in ACM Trans. Math. Software, Vol. 9

(1983), pp. 302{325.

[6] Du�, I., \Parallel implementation of multifrontal schemes," in Parallel

Computing, Vol. 3 (1986), pp. 193{204.

[7] Eisenstat S., M. Schultz and A. Sherman, \Applications of an ele-

ment model for Gaussian elimination," in Sparse Matrix Computations,

J. R. Bunch and D. J. Rose, eds., Academic Press, New York (1976),

pp. 135{153.

[8] Gamma, E., R. Helm, R. Johnson, and J. Vlissides, Design Pat-

115

terns: Elements of Reusable Object-Oriented Software, Addison-Wesley

(1995).

[9] George, A., \Nested dissection of a regular, �nite element mesh," in

SIAM J. Numerical Anal., Vol. 10 (1973), pp. 345{363.

[10] George, A., and J. Liu, Computer Solution of Large Sparse Positive

De�nite Systems, Prentice-Hall, Englewood Cli�s, NJ (1981).

[11] George, A., and J. Liu, \The evolution of the minimum degree algo-

rithm," in SIAM Review, Vol. 31 (1989), pp. 1{19.

[12] Gilbert, J., G. Miller and S. Teng, \Geometric mesh partitioning: im-

plementation and experiments," in SIAM J. Scienti�c Computing, Vol.

19 (1998), pp. 2091{2110.

[13] Heath, M. T., and C. H. Romine, \Parallel solution of triangular sys-

tems on distributed-memory multiprocessors," in SIAM J. Sci. Stat.

Comput., Vol. 9 (May 1988), pp. 558{588.

[14] Heath, M. T., E. Ng, and B. Peyton, \Parallel algorithms for sparse

linear systems," in SIAM Review, Vol. 33 (1991), pp. 420{460.

[15] Heath, M. T., and P. Raghavan, \Distributed solution of sparse sym-

metric positive de�nite systems," in Proc. Scalable Parallel Libraries

Conf., IEEE Computer Soc. Press, Los Alamitos, CA (1994), pp. 114{

122.

[16] Heath, M. T., and P. Raghavan, \A cartesian parallel nested dissection

algorithm," in SIAM J. Matrix Anal. Appl., Vol. 16 (1995), pp. 235{253.

[17] Heath, M. T., \Parallel direct methods for sparse linear systems," in

Parallel Numerical Algorithms, ed. by D. E. Keyes, A. Sameh, and

V. Venkatakrishnan, Kluwer Academic Publishers, Boston (1997), pp.

55{90.

116

[18] Heath, M. T., and P. Raghavan, \Performance of a fully parallel sparse

solver," in Internat. J. Supercomput. Appl. High Perf. Comput., Vol.

11 (1997), pp. 49{64.

[19] Heath, M. T., and P. Raghavan, \Performance of parallel sparse

triangular solution," in Algorithms for Parallel Processing, ed. by

M. T. Heath, A. Ranade, and R. S. Schreiber, Springer-Verlag, New

York (1999), pp. 289{305.

[20] Irons, B. M., \A frontal solution program for �nite element analysis,"

in Internat. J. Numer. Meth. Engrg., Vol. 2 (1970), pp. 5{32.

[21] Jess, J., and H. Kees, \A data structure for parallel L/U decomposi-

tion," in IEEE Trans. Comp., Vol. C-31 (1982), pp. 231{239.

[22] Lipton, R., and R. Tarjan, \A separator theorem for planar graphs,"

in SIAM J. Appl. Math., Vol. 36 (1979), pp. 177{199.

[23] Liu, J., \The role of elimination trees in factorization," in SIAM Journal

on Matrix Analysis and Applications, Vol. 11 (1990), pp. 134{172.

[24] Liu, J., \The multifrontal method for sparse matrix solution: theory

and practice," in SIAM Review, Vol. 34 (1992), pp. 82{109.

[25] Muller, P., Instant UML, WROX Press Inc. (1997).

[26] Musser, D., and A. Saini, STL Tutorial and Reference Guide, Addison-

Wesley (1996).

[27] Pothen, A., H. Simon, and K. Liou, \Partitioning sparse matrices with

eigenvectors of graphs," in SIAM J. Matrix Anal. Appl., Vol. 11 (1990),

pp. 430{452.

[28] Saad, Y., Iterative Methods for Sparse Linear Systems, PWS Publishing

(1996).

117

[29] Schreiber, R., \A new implementation of sparse Gaussian elimination,"

in ACM Trans. Math. Software, Vol. 8 (1982), pp. 256{276.

[30] Yannakakis, M., \Computing the minimum �ll-in is NP-complete," in

SIAM Journal Alg. Disc. Meth., Vol. 2 (1981), pp. 77{79.

[31] Zmijewski, E., and J. Gilbert, \A parallel algorithm for sparse symbolic

cholesky factorization on a multiprocessor," in Parallel Computing, Vol.

7 (1988), pp. 199{210.

118

Vita

Akhil Vidwans was born in Chennai, India on the 13th of September, 1970.

He received his Bachelor of Technology degree in Computer Science and

Engineering from the Indian Institute of Technology, Mumbai, India, and his

Master of Science degree in Computer Engineering from the University

of Texas at Austin, Texas. He joined the graduate program in Computer

Science at the University of Illinois at Urbana-Champaign in the Fall of

1993.

119

