B1	B2	В3	B4	B5	B6
8	9	-9,5	36	150500	14
B 7	B8	B9	B10	B11	B12
3,5	-0,8	24	360	-3	15

С1 Решите систему

$$\begin{cases} (2x^2 - 5x - 3)\sqrt{\cos y} = 0, \\ \sin y = x. \end{cases}$$

Если $\cos y = 0$, то $y = \frac{\pi}{2} + \pi k$, $k \in \mathbb{Z}$, при этом из второго уравнения следует, что $x = (-1)^k$.

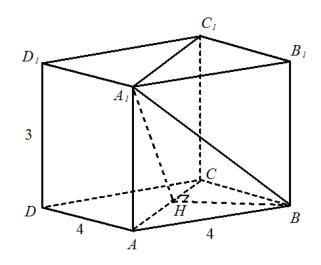
Если $\cos y > 0$, то из первого уравнения находим: x = 3 или $x = -\frac{1}{2}$.

При x=3 второе уравнение не имеет решений, а при $x=-\frac{1}{2}$, учитывая условие $\cos y>0$, получаем: $y=-\frac{\pi}{6}+2\pi k, k\in Z$.

Ответ:
$$((-1)^k; \frac{\pi}{2} + \pi k), (-\frac{1}{2}; -\frac{\pi}{6} + 2\pi k), k \in \mathbb{Z}$$
.

С2 В прямоугольном параллелепипеде $ABCDA_1B_1C_1D_1$ найдите угол между плоскостью AA_1C и прямой A_1B , если $AA_1=3$, AB=4, BC=4.

Из точки B проведем перпендикуляр BH к AC. $A_{\rm l}H$ – проекция $A_{\rm l}B$ на плоскость $AA_{\rm l}C$. Значит, нужно найти угол $BA_{\rm l}H$.



В прямоугольном треугольнике ABC находим: $BH = 2\sqrt{2}$.

В прямоугольном треугольнике A_1AB находим: $A_1B = 5$.

В прямоугольном треугольнике A_1HB находим: $\sin A_1 = \frac{BH}{A_1B} = \frac{2\sqrt{2}}{5}$.

Ответ: $\arcsin \frac{2\sqrt{2}}{5}$.

C3 Решите уравнение $\sqrt{x + 2\sqrt{x - 1}} - \sqrt{x - 2\sqrt{x - 1}} = 2$.

Сделаем замену переменной: $y = \sqrt{x-1}$. Получаем:

$$\sqrt{y^2 + 2y + 1} - \sqrt{y^2 - 2y + 1} = 2$$
; $|y + 1| - |y - 1| = 2$.

Учитывая, что $y \ge 0$ и поэтому y+1>0 Преобразуем уравнение: y+1-|y-1|=2; |y-1|=y-1.

Воспользуемся определением модуля. Получаем: $y-1 \ge 0$; $\sqrt{x-1} \ge 1$; $x \ge 2$.

Ответ: $x \ge 2$.

С4 В треугольнике ABC на стороне BC выбрана точка D так, что BD:DC=1:2. Медиана CE пересекает отрезок AD в точке F. Какую часть площади треугольника ABC составляет площадь треугольника AEF.

Возьмем точку K на AB так, что $DK \parallel EC$. Если BK = x, то KE = 2x и EA = EB = 3x. Значит, $S_{AEF5} = \left(\frac{3}{5}\right)^2 S_{AED} = \frac{9}{25} \cdot \frac{5}{6} S_{ABD} = \frac{9}{25} \cdot \frac{5}{6} \cdot \frac{1}{3} S_{ABC} = \frac{1}{10} S_{ABC}$. Ответ: 0,1.

С5 Найдите все значения a, при каждом из которых график функции $f(x) = x^2 - 3x + 2 - |x^2 - 5x + 4| - a$ пересекает ось абсцисс менее чем в трех различных точках.

Рассмотрим вспомогательную функцию $g(x) = x^2 - 3x + 2 - |x^2 - 5x + 4|$.

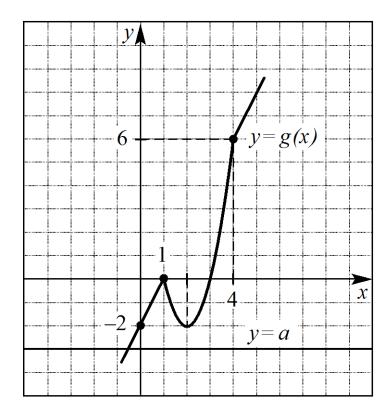


График функции f(x) пересекает ось абсцисс в двух или менее точках, если уравнение g(x) = a имеет менее трех различных корней.

Если
$$x \le 1$$
 или $x \ge 4$, то $|x^2 - 5x + 4| = x^2 - 5x + 4$, и $g(x) = 2x - 2$.

Если
$$1 < x < 4$$
, то $|x^2 - 5x + 4| = -x^2 + 5x - 4$, и $g(x) = 2x^2 - 8x + 6$.

График функции g(x) состоит из двух лучей и дуги параболы. На рисунке видно, что уравнение g(x) = a имеет менее трех корней, только если $a \le g(2)$ или $a \ge g(1)$.

$$g(2) = -2$$
; $g(1) = 0$.

Ответ: $a \le -2$, $a \ge 0$.

Найдите все пары натуральных чисел m и n, являющиеся решениями уравнения $2^m - 3^n = 1$.

При любом k число $3^{2k}+1$ дает остаток 2, а число $3^{2k-1}+1$ – остаток 4 при делении на 8. Значит, $3^n+1=2^m$, только если m=1 или m=2 (если $m \ge 3$, то 2^m делится на 8 без остатка).

Если m=1, то получаем уравнение $3^n=1$, решением которого является не натуральное число 0.

Если m=2, то получаем уравнение $3^n=3$, которое имеет натуральное решение n=1.

Ответ: m = 2, n = 1.