SOVIET CAMERA

Edited by Foxit Reader Copyright(C) by Foxit Corporation, 2005-2009 For Evaluation Unity. ТРУДОВАЯ КОММУНА НКВД УССР им. Ф. Э. Дзержинского

> КРАТКОЕ РУКОВОДСТВО К ПОЛЬЗОВАНИЮ ФОТО-АППАРАТОМ "ФЭД"

ХАРЬНОВ

Библиографическое описание этого издания помещено в "Літописі Укр. Друку", "Картковому репертуарі" и проч. показателях Украннской Книжной Палаты.

Сдано в набор 25¦X - 1934 года. Второе издание подписано к пенати 31 III 1935 г. Тираж 15000. Харьковский Обллит № 267 25/III- 35 г. Заказ № 116. Бумага 55х41 1/64 3/4 печ. листа 78.692.

Что такое "ФЭД"

"ФЭД" — универсальный пленочный фото - аппарат, расчитанный на производство при одной зарядке 36 снимков формата 24×36 мм и применимый для всех видов с'емки, как моментальной так и с выдержкой.

"ФЭД" является совершенным фото-аппаратом

и снабжен:

первоклассным об'ективом анастигматом с фокусным растоянием 50 мм и светосилой 1:3,5 в оправе с червячным ходом;

оптическим дальномером, автоматически сопряженным с механизмом червячного хода об'ек-

тива

оптическим видоискателем, дающим яркое изображение, точно соответствующее кадру, отображаемому об'ективом на пленке;

шторным затвором, допускающим моментальные экспозиции в пределах от 1/20 сек. до 1/500 сек.,

а также с'емки с выдержкой;

автоматическим механизмом подачи пленки, соединенным с заводом затвора, что исключает возможность повторной экспозиции на одном и том же отрезке пленки;

механизмом обратной подачи заснятой пленки в кассету, что дает (при наличии запасной кассеты) возможность перезаряжать аппарат вне тем-

ной комнаты.

К фото - аппарату "ФЭД" прилагаются: об'ективная крышка, одна кассета, краткое руководство к пользованию *) и справочные таблицы. "ФЭД" поступает в продажу в кожанной сумке, допускающей с'емку, не вынимая аппарата, и с наплечным кожанным ремнем.

"ФЭД" изготовляется на вновь построенном Фото - заводе Трудкоммуны НКВД УССР им. Ф. Э. Дзержинского целиком из советского сырья и ма-

териалов.

В качестве негативного материала для "ФЭД" применяется стандартная перфорированная кинопленка, отрезками по 1,60 м, что обеспечивает одновременную зарядку аппарата для производства 36 снимков.

Описание устройства "ФЭД"

В основу конструкции аппарата "ФЭД" положен принцип автоматичности работы и сопряженности механизмов. Так, в чисто механической части аппарата сопряжены завод затвора, механизм подачи пленки из кассеты на аппаратную катушку, а также механизм счетчика кадров. Иначе говоря, заводя затвор, мы, тем самым, одновременно перематываем пленку и отсчитываем количество произведенных снимков. В оптической же части аппарата сопряжены механизмы оптического дальномера и червячного хода об'єктива со шкалой глубины резкости. Иначе говоря, определив расстояние снимаемого предмета при помощи оптического дальномера, мы тем самым одновременно осуществляем и наводку об'єктива на резкость,

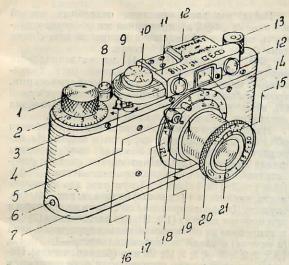


Рис. 1. Общий вид аппарата "ФЭД" и детали механизма управления аппаратом. 1) Головка затвора. 2) Шкала счетчика кадров. 3) Верхняя (нес'емная) крышка. 4) Корпус. 5) Кнопка рычажка червячного хода. 6) Стержень. 7) Нижияя (с'емная) крышка. 8) Кнопка-спуск. 9) Кольцо с резьбой кнопки. 10) Шкала скоростей. 11) Корпус оптических видоискателя и дальномера. 12) Линзы оптического дальномера. 13) Головка для перематывания пленки. 14) Линза оптического видоискателя. 15) Движок шкалы диафрати. 16) Выключатель подачи пленки. 17) Шкала расстояний. 18) Рычажок червячного хода. 19) Шкала глубины резкости. 20) Переднее кольцо оправы об'ектива со шкалой диафрати. 21) Об'ектив.

а, обратившись к шкале глубины резкости, — непосредственно узнаем границы этой глубины при данной наводке (в метрах) и при избранной нами диафрагме об'ектива.

^{*)} Подробное "Руководство" подготовляется к изданию.

Ниже мы даем описание отдельных частей механизма "ФЭД'а", примерная же последовательность приемов обращения с аппаратом при с'емке

дана будет в следующей главе.

"ФЭД" состоит (Рис. 1) из металлического корпуса (4), покрытого пластмассой (или вулканизированной резиной) с двумя металлическими, хромированными крышками — верхней, нес'емной (3), на которой сосредоточен механизм управления аппаратом и нижней, с'емной крышкой (7).

На передней стенке аппарата (Рис. 1) помещен об'ектив (21) в оправе с червячным ходом. На переднем кольце оправы об'ектива выгравирована шкала диафрагм (20), расчитанная по системе относительных отверстий в последовательности— 1:3,5; 1:4.5: 1:6.3: 1:9: 1:12.5; 1:18, при чем, для экономии места, числитель 1 (единица) на шкале, как обычно, опущен. Диафрагмирование об'ектива производится при помощи движка (15). Шкала расстояний (17) выгравирована на об'ективном кольце аппарата и дана (в метрах) в такой последовательности-1;1,25; 1,5; 1,75; 2; 2,5; 3; 4; 5; 7; 10; 20 и ∞ (бесконечность). Наводка по этой шкале производится передвижением рычажка червячного хода об'ектива (18), при чем сначала нажимают на кнопку (5) рычажка (18), выводят его из защелки и передвигают рычажок до совпадения указателя с нужным делением на шкале расстояний. Этот же рычажок (18) служит, и при определении расстояния до снимаемого предмета с помощью оптического дальномера (см. ниже). На нижнем кольце оправы об'ектива, кроме упомянутого уже указателя, имеется двухсторонняя шкала глубины резкости (19), автоматически указывающая границы глубины резкости от переднего до заднего плана снимаемого предмета при данной наводке на резкостьи при той или иной избранной диафрагме, В сложенном виде об'ектив погружен внутрь анпарата. Чтобы привести его в рабочее положение, берут аппарат в левую руку, обращают его об'ективом к себе, и, держась пальцами за края переднего кольца об'ектива (20), вытягивают об'ектив вперед до отказа. Затем, вращая то же переднее кольцо об'ектива, поворачивают об'ектив вправо, до отказа. В таком положении об'ектив установлен на бесконечность при условии, что упомянутый выше указатель совпадает с делением ∞ (бесконечность) шкалы расстояний (17).

На верхней крышке аппарата (3) размещены: головка для завода затвора (1) со шкалой счетчика кадров (2) и кнопка для спуска затвора (8). Эта кнопка (8) имеет кольцо с резьбой (9), на которую можно навинчивать проволочный трос для спуска затвора при с'емке с выдержкой.

На верхней крышке аппарата помещены кроме того выключатель механизма подачи пленки (16) и шкала скоростей затвора (10). Шкала скоростей дана в долях секунды при такой последовательности — 1/20, 1/30, 1/40, 1/60, 1/100, 1/200 и 1/500, при чем числитель 1 (единица), для экономии места, на шкале, как обычно, опущен. Значок "Z" служит для установки затвора на с'емку с выдержкой. Рядом со шкалой скоростей помещен корпус (11) для оптического дальномера и оптического видоискателя, а также головка для перематывания пленки (13).

Завод затвора производится поворотом до отказа головки (1) в направлении, указанном стрелкой, выгравированной на самой головке. После этого (но отнюдь не перед заводом затвора!), производится установка скорости затвора по шкале скоростей (10). Для этого диск шкалы скоростей осторожно приподнимают и также осторожно по-

ворачивают его до совпадения избранной скорости со стрелкой - указателем, помещенным на корпусе (11) видоискателя и дальномера, после чего диск снова опускают в свое гнездо.

Спуск затвора производят, нажимая указательным пальцем на кнопку (8), либо (при с'емке не "с руки", а со штатива, как при с'емке с выдержкой)— при помощи проволочного троса, привинчивающегося на кольцо с резьбой (9) кнопки (8).

Для определения расстояния до снимаемого предмета при помощи оптического дальномера, аппарат берут двумя руками за округленные стенки и приближают окуляр дальномера вплотную к правому глазу. Затем средним пальцем правой руки нажимают на кнопку рычажка червячного хода об'ектива (5), выводят этот рычажок (18) из защелки и, наблюдая избранный об'ект через окуляр оптического дальномера, постепенно передвигают рычажок. Сначала (если речь идет о предмете, находящемся ближе "бесконечности"), предмет, в среднем, более прозрачном зрачке, вырисовывается со сдвоенными контурами, затем, в меру передвижения рычажка, раздвоение контуров постепенно сокращается и, наконец, вовсе исчезает. В этот момент передвижение рычажка червячного хода прекращают - расстояние снимаемого предмета определено и его (расстояние) можно прочесть, пользуясь указателем шкалы расстояний.

Одновременно, и тем самым, и об'ектив автоматически установлен на нужное, определенное при помощи оптического дальномера, расстояние. Об'ясняется это тем, что, как мы уже знаем, механизм червячного хода обектива автоматически сопряжен с оптическим дальномером.

Оптический видоискатель (14) служит для определения границ снимаемого кадра. С этой целью, держа двум'я руками за округленные края аппарата, подносят окуляр оптического видоискателя вплотную к правому глазу и избирают подходящую точку с'емки, отходя или приближаясь к снимаемому об'екту.

Выключателем (16) механизма подачи пленки пользуются при перематывании пленки, заряжая или разряжая аппарат. Выключение механизма подачи пленки производится перемещением выключателя (16) из исходного положения к букве "В", т. е. в направлении стрелки, выгравированной на

крышке аппарата.

Для обратного перематывания заснятой пленки в кассету надо, выключив механизм подачи пленки, поднять головку вверх до отказа (Рис. 3) и вращать ее по направлению стрелки, выгравированной на головке. По окончании перематывания головку опускают до отказа и снова включают механизм подачи пленки, повернув выключатель (16) до упора в стержень, выступающий на крышке.

Шкала счетчика кадров (2), после зарядки аппарата, перед началом с'емки ставится на "0" (нуль). Для этого, пользуясь двумя заклепками на шкале, поворачивают шкалу до совпадения "0" (нуля) шкалы со стрелкой на крышке, При вращении шкалы головка (1) вращаться не должна.

На нижней (с'емной) крышке аппарата (Рис. 2) имеется замок со складной поворотной ручкой (1), а также штативная гайка (2) для укрепления аппарата на штативе при с'емке с выдержкой.

Нижнюю крышку аппарата снимают, поднимая складную поворотную ручку (1) и поворачивая ее до отказа по направлению, указанному стрелкой,

к надписи "откр". Затем крышку осторожно приноднимают и снимают ее со стержня (3), находящегося ниже штативной гайки (2). Закрывают же крышку, укрепляя ее на том же стержне и, плотно укрепив крышку, поворачивают поворотную ручку в обратном предидущему направлении, к надписи "закр".

Как зарядить "ФЭД" пленкой

Держат аппарат нижней с'емной крышкой вверх и снимают, как выше было указано (Рис. 3), нижнюю крышку аппарата. Затем вынимают из аппарата кассету, находящуюся справа и аппаратную катушку, находящуюся слева. Теперь отодвигают аппарат в сторону и раскрывают кассету (Рис. 4), нажимая головкой кассетной катушки о доску стола (Рис. 5). В результате кольцокрышка (Рис. 4/3) освобождается из кассеты и из корпуса вынимают кассетную катушку (Рис. 4/2).

Теперь приступают к зарядке кассеты пленкой, производя эту работу при проверенном красном (а для панхро - пленки—зеленом) освещении тем-

ной фото - лаборатории.

Сначала отрезают 1,60 м. негативной кинопленки (для отмера ее удобно сделать надрез на
краю стола) и один конец ее обрезают, придавая
ему форму трапеции. Затем, держа кассетную
катушку головкой вниз, задвигают обрезанный
конец пленки в зажим кассетной катушки (Рис. 6),
загибают обрезанный конец пленки наружу и наматывают пленку (эмульсией внутрь, т. е. к оси
кассетной катушки). После этого кассетную катушку вдвигают в корпус кассеты, при чем конец
пленки проходит через кассетную щель (Рис. 7).
Наконец кассету закрывают крышкой - кольцом.

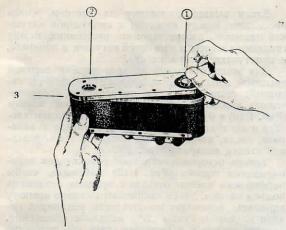


Рис. 2. Снятие нижней крышки аппарата "ФЭД". 1) Складная поворотная ручка. 2) Штативная гайка. 3) Стержень.

После этого работу можно проводить снова при обычном, но лучше не слишком интенсивном освещении.

Из кассеты вытягивают, за выступающий свободный конец пленки, примерно 10 см пленки и обрезают край, обращенный к низу кассеты, как видно на Рис. 8. (Можно, конечно, и заранее обрезать так край пленки). Кассету берут теперь в правую руку, а аппаратную катушку в левую, обращают и кассету и аппаратную катушку головками вниз и зажимают (Рис. 9) срезанный конец пленки в зажиме аппаратной катушки (эмульсионной стороной наружу, т. е. целлулоидной стороной пленки к оси аппаратной катушки).

Затем выдвигают пленку из кассеты, чтобы расстояние между кассетой и аппаратной катушкой примерно соответствовало расстоянию между гнездами кассеты и кассетной катушки в аппарате,

и приступают к зарядке его.

Для этого открытый аппарат держат верхней крышкой вниз, обращая аппарат передней (об'ективной) стенкой от себя, передвигают предварительно выключатель механизма подачи пленки (Рис. 1/16) к букве "В" и осторожно вдвигают кассту и аппаратную катушку в их гнезда в аппарате, следя, чтобы пленка попала в щель у зад-

ней стенки аппарата (Рис. 10).

Теперь осторожно вращают головку для перематывания пленки (Рис. 1/13), наблюдая, чтобы перфорация пленки совпала с зубцами механизма подачи пленки. Затем закрывают нижнюю крышку аппарата, переводят выключатель механизма подачи пленки от буквы "В", исходное положение, заводят затвор и производят спуск его, вторично заводят затвор и производят спуск, в третий раз заводят затвор. (Признаком того, что пленка перематывается при заводе затвора, служит вращение головки (Рис. 1/13) в сторону обратную стрелке, выгравированной на головке. Наконец устанавливают, как выше было описано, шкалу счетчика кадров (Рис. 1/2) на "0" (нуль).

Этим процесс зарядки аппарата заканчивается

и можно приступать к самой с'емке.

После того, как содержащаяся в кассете пленка исчерпается (узнают об этом по счетчику кадров, помня, что отрезка пленки в 1,60 м достаточно для производства 36 снимков, а также по тому, что головка для завода затвора не заводится), выключают механизм подачи пленки, переводя выключатель по стрелке к букве "В",

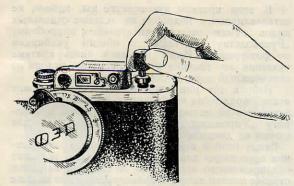


Рис. 3. Перематывание пленки.

выдвигают головку механизма перематывания пленки (Рис. 1/13) и вращают ее в направлении, стрелки, выгравированной на головке (Рис. 3). Тем самым пленка перематывается с аппаратной катушти снова в кассету. Признаком того, что вся пленка перемотана, служит отсутствие вращения кнопки (8), а также заметно облегченное вращение головки механизма перематывания пленки. Тогда нижнюю крышку аппарата открывают, и вынимают кассету. После этого можно приступать к перезарядке кассеты и к проявлению пленки.

Техника с'емки "ФЭД'ом"

Как мы уже упоминали, "ФЭД" — это универсальный аппарат, применимый для всех видов с'емки, как моментальной (т. е. "с руки"), так и с выдержкой (со штатива). В этом кратком руководстве мы, однако, не останавливаемся подробно на технике отдельных видов с'емки, отсылая читателей к подробному "Руководству", а также к общим учебникам офотографии. Ниже мы даем лишь краткие указания по технике с'емки "ФЭД'ом", исходя из своеобразной конструкции нашего аппарата.

Избрав тот или иной об'ект с'емки, прежде всего определяют необходимую экспозицию, пользуясь, с этой целью, напр., прилагаемой к аппарату "Упрощенной таблицей экспозиции" для

с'емки на дневном свету.

Ввиду особой важности правильного определения экспозиции для успешной работы в условиях одновременного проявления 36 снимков на одном отрезке пленки, напомним факторы, влиящие вообще на продолжительность экспозиции. Факторами этими являются: а) степень светочувствительности негативной пленки, применяемой для с'емки, определяемая градусами светочувствительности; б) сила света и условия освещения, зависящие от часа дня, времени года, состояния неба и географической широты местности, в) характер самого об'екта с'емки, определяемый, главным образом, интервалом яркостей его, г) светосила об'ектива при избранной диафрагме, определяемая соотношением "фокусное расстояние об'ектива: диаметр рабочего отверстия об'ектива". Иные второстепенные факторы мы тут не упоминаем.

Все эти основные факторы учтены в прилагаемой к "ФЭД'у" "Упрощенной таблице экспозиции", которая расчитана на с'емку в средней полосе СССР. При с'емке в северных областях СССР показатели "Таблицы" следует удвашвать, а при с'емке в южных областях — вдвое сокращать экспозицию. Таблица рассчитана для с'емки при

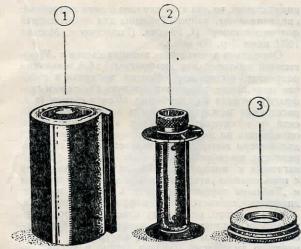


Рис. 4. Касета аппарата "ФЭД" в собранном и разобранном виде. 2 Кассетная катушка. 3 Кольцо - крышка.

дневном свете на кино - пленке чувствительностью в 16 - 170 Шейнера, что, примерно, соответствует 240 - 3080 Хартера и Дриффильда. При применении негативной пленки иной чувствительности, необходимо производить соответствующую поправку, исходя из того, что повышение чувствительности на каждые 30 Шейнера отвечает, примерно, удвоению чувствительности и, следовательно, эскспозиция в таком случае вдвое сокращается.

Что же касается экспозиции при искусственном освещении, а также при некоторых специальных

видах с'емки, то для этих случаев с'емки подробные сведения дают, напр., "Таблицы для определения фотоэкспозиции" И. Рэдена. (Гизлегпром, Москва

1932, цена 3 р. 50 коп.).

Определив экспозицию, которая дается в "Упрощенной таблице" для диафрагмы 1:6,3, и заметив результат, выдвигают об'ектив аппарата в рабочее положение, избирают нужную для с'емки диафрагму, исходя из "глубины" об'екта с'емки (т.е. расстояния между передним и задним планом обекта от об'ектива; расстояния эти лучше всего определить не на глаз, а при помощи оптического дальномера аппарата) и пользуясь шкалой глубины резкости, имеющейся на оправе об'ектива. (В прилагаемых к аппарату "Таблицах" даны указания к пользованию этой шкалой, а также приведены и "Таблицы глубины резкости"). Избрав нужную диафрагму, соответственно диафрагмируютоб'ектив.

После этого, исходя из известной продолжительности экспозиции для диафрагмы 1:6,3, вносят возможные поправки на фактически установленную диафрагму, заводят затвор и устанавливают нужную скорость по шкале скоростей.

Затем приступают к наводке об'ектива на резкость и к самой с'емке, т. е. нажимом на

кнопку спускают затвор.

При моментальной с'емке ("с руки") которая возможна при скоростях затвора от 1/20 сек., широко, для устойчивости, раздвигают ноги, берут аппарат двумя руками, как показано на Рис. 11 и Рис. 13, и производят определение расстояние снимаемого предмета при помощи оптического дальномера. Если же об'ект с'емки имеет "глубину", то, в этом случае, определяют расстояние среднего плана об'екта, а необходимую резкость переднего и заднего планов обеспечивают соот-

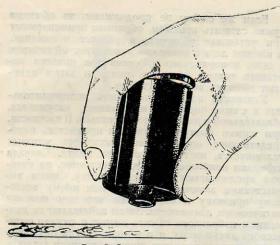


Рис. 5. Открывание кассеты.

ветствующим диафрагмированием об'ектива, о чем сказано было выше.

Определив расстояние и тем самым, как мы знаем, автоматически установив об'ектив на резкость, переводят глаз к окуляру оптического видоискателя, контролируют кадр и производят спуск затвора, нажимая указательным пальцем на кнопку-спуск затвора. На этом процесс с'емки данного кадра заканчивается.

Произведя с'емку, приводят движок шкалы диафрагм и рычажок червячного хода об'ектива в нужные для следующей с'емки положения и аппарат, после нового завода затвора и т. д., го-

тов к следующей с'емке.

Если же с'емку не продолжают, то об'ектив нужно сложить приемом, обратным применяемому при установке об'ектива в рабочее положение. А именно: держа аппарат в левой руке об'ективом к себе, поворачивают об'ектив при помощи переднего кольца влево, до отказа и затем вдви-

гают об'ектив внутрь аппарата.

Указанная последовательность подготовительных к с'емке операций не является, разумеется, обязательной и может видоизменяться. В частности, при с'емке быстродвижущихся предметов, непосредственное определение расстояния которых усложняется, поступают, обычно, иначе. Сначала избирают наиболее выгодное расстояние, на котором предполагают произвести с'емку. Затем это расстояние замечают по тому или иному внешнему признаку и определяют его при помощи оптического дальномера. Затем наблюдают за движением избранного об'екта с'емки в окуляр оптического дальномера и в момент, когда раздвоенность контуров исчезнет, производят спуск затвора, желательно успев предварительно проконтролировать кадр, для чего сыстро приближают к правому глазу окуляр оптического видоискателя.

Весьма полезно пользоваться, подготовляясь к процесу с'емки, "Таблицей глубины резкости", а также "Таблицей наводки на резкость от перед-

него плана до бесконечности". "Таблица глубины резкости" содержит данные о границах резкого изображения предметов от переднего до заднего плана при пользовании различными диафрагмами. По сравнению с имеющейся на оправе об'ектива шкалой глубины резкости, эта "Таблица" отличается тем, что в ней непосредственно даны величины глубины резкости для всех возможных наводок об'ектива (в метрах).

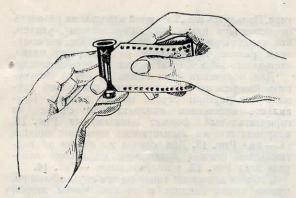


Рис. 6. Вставка обрезанного конца пленки в зажим кассетной катушки.

Как видно из "Таблицы глубины резкости", глубина резкости всегда будет иметь большую величину в сторону "бесконечности", нежели в сторону переднего плана. Исходя из этого и рассчитана "Таблица наводки на резкость от переднего плана до бесконечности", помогающая ориентироваться при наводке об'ектива по шкале расстояний для получения возможно большей глубины между резко передаваемыми передним планом и "безконечностью".

Практическое значение пользования этой таблицей иллюстрирует такой пример: устанавливая наш об'ектив, задиафрагмированный до 1:6,3, на ∞ (бесконечность), получаем, как видно из "Таблицы глубины резкости", резкое изображение, начиная от бесконечности до переднего плана, отстоящего на расстоянии 13 метров от об'ектичности.

тива. Пользуясь же "Таблицей наводки на резкость от переднего плана до бесконечности", узнаем, что, наводя по шкале расстояний на 13 м., мы получеам резкое изображение от переднего плана, отстоящего в 6,5 м. от аппарата, до бесконечности.

Для получения при с'емке "с руки" безукоризненно резких снимков важно правильно держать аппарат при спуске кнопки затвора. Правильное положение аппарата при с'емке на горизонтальный формат показано на Рис. 11, неправильное же, вызывающее дрожание аппарата,— на Рис. 12. Для случая же с'емки на вертикальный формат правильное положение аппарата дает Рис. 13, а неправильное — Рис. 14.

Избегая дрожания аппарата при спуске затвора, нужно также следить и за тем, чтобы второй сустав указательного пальца лежал плотно на корпусе аппарата и в таком положении пальца нажимать концом его на кнопку-спуск.

Для с'емки аппаратом "ФЭД" с выдержкой применяют, как обычно, штатив, при чем для с'емки на горизонтальный формат аппарат непосредственно навинчивают на штатив (Рис. 15), при с'емке же на вертикальный формат применяется, в дополнение к штативу, обыкновенная штативная головка (Рис. 16). Пользуясь ею, можно вообще придавать аппарату любые уклоны.

Остальные процессы (определение расстояния и наводка на резкость, диафрагмирование и контролирование кадра) производятся, при с'емке со штатива, теми же приемами, что и при моментальной с'емке "с руки".

Как уже сказано было выше, при установке шкалы скоростей затвора на значок "Z", заведенный затвор готов к с'емке с выдержкой. Помнить, однако, нужно о том, что об'ектив, в этом

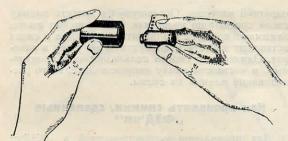


Рис. 7. Вкладывание кассетной катушки в кассету и выпуск конца пленки в кассетную щель.

случае, будет открыт до тех пор, пока мы еще нажимаем на кнопку-спуск и закрывается, с отнятием пальца от кнопки. Значек "Z" на шкале скоростей затвора "ФЭД'а" соответствует, следовательно, значку "В" ("короткая выдержка") а не значку "z" ("долгая выдержка") обычных центральных затворов. Поэтому при с'емке "ФЭД'ом" с выдержкой (а также вообще со штатива) лучше пользоваться для спуска кнопки упомянутым уже проволочным тросом. При некоторой сноровке можно, однако, обходится и без него, нажимая на кнопку - спуск указательным пальцем, как обычно.

Когда все 36 снимков сделаны, пленку перематывают, как было выше описано, с аппаратной катушки снова в кассету и, вынув кассету из аппарата, можно приступать к проявлению пленки.

Можно, однако, проявлять пленку и по частям, в меру производства снимков. Для этого, необходимо раскрыть аппарат (в темной лаборатории!), выключить механизм подачи пленки, вынуть осторожно кассету и аппаратную катушку, разрезать пленку возде щели кассеты и снять пленку с ап-

паратной катушки. Оставшуюся в кассете пленку снова срезают по краю, как было описано выше, зажимают конец ее в аппаратиой катушке и снова вставляют кассету и аппаратную катушку в аппарат. Однако этот способ нельзя признать практичным, в частности ввиду непроизводительного расходования пленки на срезы.

Как проявлять снимки, сделанные "ФЭД'ом"

Для проявления экспонированной в "ФЭД'е" пленки нужна темная комната, освещаемая надежным и проверенным светом — красным — при обработке обыкновенной и ортохроматической и зеленым — при обработке панхроматической пленки.

Самый процесс проявления, в зависимости от наличного оборудования, можно проводить по одному из трех основных способов, кратко описанных ниже.

I. Если под руками нет специального оборудования для проявления экспонированной кинопленки, то поступают так;

1) Приготовляют четыре ванночки размером 13×18 см. или, лучше, 18×24 см. Первую ванночку наполняют проявителем, а вторую — кислым закрепителем (рецепты проявителя и закрепителя приводятся ниже). Третью же и четвертую ванночки наполняют чистой водопроводной водой комнатной температуры.

2) Вынув пленку из кассеты (при красном свете) опускают пленку сначала в ванночку с водой и размачивают там эмульсию пленки в течение 2-3 м. Затем, держа пленку за срезанные края (для удобства края пленки можно зажать обычными деревянными прищепками), переносят пленку в ванночку

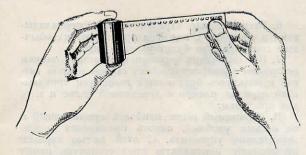


Рис. 8. Кассета наполнена пленкой и конец ее обрезан для зажима в аппаратной катушке.

с проявителем, проводя пленку через раствор проявителя, начиная с одного конца пленки до другого, несколько раз. Удобнее, однако, положить на дно ванночки стеклянный стержень, снабженный по краям утолщениями (напр. из резины) и подвести под него пленку, обращая целлулоидную сторону ее к стержню.

3. После того, как, в результате проявления, границы кадров будут видны на пленке достаточно ясно, пленку снова переносят в ванночку с водой и там разрезают пленку (при помощи ножнии) на несколько отрезков, в промежутках между кадрами.

4. Затем кладут эти отрезки пленки снова в ванночку с проявителем и заканчивают в ней проявление, контролируя процесс, как обычно, на просвет красного лабораторного фонаря.

5. Проявленные отрезки пленки прополаскивавают в ванночке с водой и переносят в ванночку с кислым закрепителем, где ведут закрепление, как обычно, можно при оранжевом свете лабораторного фонаря. 6. Закрепленные отрезки пленки перекладывают в ванночку с водой и промывают их обыч-

ным способом, как будет указано ниже.

7. По окончании промывки отрезки пленки осторожно протирают с обоих сторон мокрой ваткой и, пользуясь булавками с головками, прикалывают отрезки пленки к деревянной полке и т. п.

для просушки.

II. Описанный выше, наиболее примитивный и не весьма удобный, способ проявления можно значительно упростить. С этой целью заранее изготовляют деревянную прямоугольную рамку 18 × 24 см. с невысокими деревянными подставками по углам и с боковыми деревянными планками, которые заокругляют. Готовую рамку купают в горячем жидком парафине, а затем—в холодной воде.

1. Вынув из кассеты пленку, узкий конец ее укрепляют кнопкой на боковой планке проявительной рамки и всю пленку, эмульсионным слоем наружу, наматывают на рамку по боковым заокругленным планкам. Свободный конец пленки укрепляют после того кнопкой на одной из поперечных или боковых планок рамки.

Размерный чертеж такой рамки дан на рис. 17, а рамка с намотанной пленкой показана на рис. 18.

2. Приготовив заранее четыре ванночки, как сказано в п. I, опускают сначала рамку на 2—3 минуты в ванночку с водой, чтобы размочить слой эмульсии пленки. При этом нужно избегать образования на поверхности эмульсии воздушных пузырьков.

3. Затем рамку с пленкой переносят в ванночку с проявителем, где и ведут проявление, время от времени покачивая ванночку и следя за тем, чтобы рамка с пленкой все время была покрыта

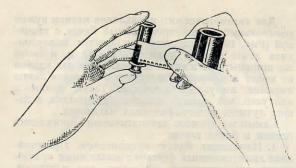


Рис. 9. Зажимание обрезанного конца пленки в аппаратной катушке.

раствором проявителя. Контроль самого процесса при этом способе проявления несколько осложнен, однако все же возможен — рамку с пленкой подносят, время от времени, к красному фонарю и судят о процессе, рассматривая отдельные кадры.

4. После окончания проявления, рамку с пленкой переносят в ванночку с водой, прополаскивают там пленку и переносят рамку в ванночку с закрепителем. По окончании закрепления пленку промывают в ванночке с водой, пользуясь той же рамкой, т. е. не разматывая с нее пленки.

 Промытую пленку осторожно протирают мокрой ваткой и, не снимая с рамки, сушат в су-

хом непыльном помещении.

III. Можно, наконец, проявлять пленку и автоматически. Способ этот наиболее практичен, однако применение его предполагает наличие специального, но не сложного, оборудования и главное — необходимых навыков в определении экспозиции.

Для автоматического проявления пленки нужен специальный светонепроницаемый бачек с крышкой (Рис. 19), к которому прилагается целлулоидная лента длиною примерно, в 1,80, м, и такой же ширины, как и кино - пленка. Лента эта однако не имеет перфорации; вместо нее по краям ленты имеются выпуклые шишечки. Такие бачки с целлулоидной лентой имеются в продаже в наших лучших фотографических магазинах.

Самый же процесс автоматического проявления

пленки в бачке таков:

1. Наполняют бачек проявителем. Приготовляют два стеклянных стакана с невысокими краями такого же, примерно, диаметра, как и проявительный бачек. Один из этих стаканов наполняют раствором закрепителя, а другой — чистою водою.

2. Переходят к работе при свете красного фонаря. Раскрывают кассету и кино-пленку, обрезав узкий подрезанный край ее, сматывают вместе с целлулоидной лентой проявительного бачка, обращая эмульсионную сторону пленки внутрь, к выпуклым шишечкам целлулоидной ленты. Свободный конец целлулоидной ленты заматывают до конца и весь моток зажимают резинкой, не очень тугой.

3. Сначала, для размягчения слоя эмульсии пленки, помещают моток (пленка - лента) в воду минуты на 2-3, пользуясь для этого одним из упомянутых выше стаканов с водой. Опускание мотка в воду производят плавными движениями, избегая образования воздушных пузырьков и, с той же целью, несколько раз осторожно поворачивают моток в стакане.

4. Размоченную пленку так же осторожно, плавными движениями, опускают в бачек с проявителем, закрывают его крышкой и, если послед-

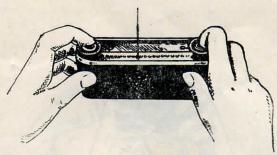


Рис. 10. Зарядка аппарата. Стрелкой показана щель для пленки.

няя совершенно плотно закрывает бачек,— включают оранжевый или даже белый свет.

5. Процесс проявления контролируют по времени, для чего нужно предварительно, опытным путем, установить необходимую продолжитель, ность проявления, исходя из нормально экспонированного снимка на данной негативной пленке, данного рецепта проявителя и данной температуры его (обычно 17 - 180 Цельсия).

6. Закончив проявление в бачке, включают снова красный свет, из бачка вынимают моток, прополаскивают его в воде и переносят моток в стакан с кислым закрепителем. Применяя свежий раствор кислого закрепителя, можно пользоваться во время процесса закрепления и оранжевым светом, не рискуя вызвать вуаль на негативах.

7. По окончании закрепления, моток промывают, пользуясь упомянутым выше стаканом для воды, обычным порядком. Закончив промывку, моток разматывают, отделяют пленку от целлулоидной ленты, осторожно протирают пленку с обеих

Рис. 11. Правильное положение аппарата при с'емке на горизонтальный формат.

сторон мокрой ваткой и сушат, подвешивая в сухом, непыльном месте.

8. В этом процессе можно ограничиться применением одного только светонепроницаемого бачка, не пользуясь стеклянными стаканами для воды и закрепителя. В этом случае, закончив проявление, сливают проявитель из бачка и наполняют его водой для прополаскивания. Затем эту воду тоже сливают и наполняют бачек раствором закрепитель и промывают моток, как обычно, в том же бачке.

Этот способ требует особо внимательного ухода за бачком, который следует перед каждым проявлением самым тщательным образом промывать. То же относится, во всех случаях, и к целлулоил-

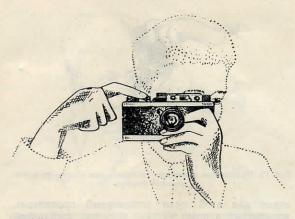


Рис. 12. Неправильное положение аппарата при с'емке на горизонтальный формат.

ной ленте, которую, по окончании негативного процесса, также тщательно вымывают водой и подвешивают для сушки.

Требования к негативу, а, следовательно, и к процессу проявления, определяет то, что негативы, сделанные "ФЭД ом", ввиду их малого формата, копируются, преимущественно по способу про-экционного копирования, т. е. при помощи увеличителя.

В связи с этим негативы должны быть достаточно прозрачны, без излишней плотности, и с хорошей проработкой деталей в тенях.

Поэтому для проявления пленок, экспонированных в "ФЭД'е", рекомендуется применять нежно и медленно работающие проявители. При-

Рис. 13. Правильное положение аппарата при с'емке на вертикальный формат.

годен для этой цели глициновый проявитель, концентрированный раствор которого составляют по такому рецепту:

Этот концентрированный раствор разводят для проявления 3-5 об'емами воды, при чем температура рабочего раствора должна поддерживаться на уровне 17-180 Цельсия. Понижение температуры отрицательно отражается на проявляющих свойствах глицинового проявителя. Следует также избегать загрязнения растворов глицинового проявителя следами серноватистокислого натрия (гипосульфита), входящего в состав раствора закрепителя.

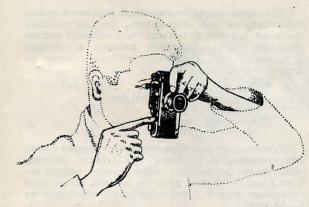


Рис. 14. Неправильное положение аппарата при с'емке на вертикальный формат.

Проявление негативов в проявителе, составленном по указанному выше рецепту, разведенном 4-мя об'емами воды, и при температуре 17 - 180 Цельсия, продолжается обычно 6-7 минут, при чем кадр начинает вырисовываться, примерно, через 90, сек. Это важно иметь ввиду, проявляя пленку по способу I.

Однако, как уже было указано, рекомендуется опытным путем установить, исходя из данных выше указаний, нужную продолжительность проявления, ориентируясь на данные условия, а также исходя из требований к характеру негатива, кратко изложенных выше.

В подробном "Руководстве к "ФЭД'у", а также в общих учебниках по фотографии приводятся и другие рецепты проявителей, в частности рецепт специального "мелкозернистого" проявителя.

Для закрепления проявленных негативов нужно применять кислый закрепитель. Для составления раствора его можно пользоваться обычной кислой фиксажной солью, которая имеется в продаже в патронах, либо составлять раствор самому по такому, напр., рецепту:

Температуру раствора закрепителя также нужно поддерживать на уровне 17-180 Цельсия. Закрепление ведут до полного исчезновения белого налета с целлулоидной стороны пленки, после чего оставляют пленку в растворе закрепителя еще на 5—10 минут.

Окончательную промывку закрепленных пленок следует производить тщательно—в течение минимум $^{1}/_{2}$ часа в текучей воде или в течение минимум часа в 6-10 сменах стоячей воды.

Негативы, промытые наспех или недостаточно тщательно, плохо сохраняются, покрываясь со временем кристалическим налетом, пятнами и даже вовсе выцветают, что, разумеется, приводит к непригодности негатива к копированию.

Как копировать негативы, сделанные ,,ФЭД'ом",

Негативы "ФЭД'а", формат которых, как мы знаем, 24×36 мм, копируют преимущественно проэкционно, т. е. при помощи увеличителя, получая в результате фотографические позитивы большого формата.

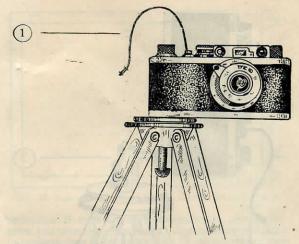


Рис. 15. Положение аппарата при с'емке со штатива на горизонтальный формат. 1) Проволочный трос.

Поскольку "ФЭД" снабжен совершенным анастигматом, дающим безукоризненно резкое, до самых краев кадра, изображение, негативы, сделанные "ФЭД'ом", если конечно, наводка на резкость произведена была безукоризненно, можно увеличивать до очень больших форматов, как то 18×24 см, 24×30 см, а в отдельных случаях даже до 30×40 и 50×60 см. При чем допустимый масштаб увеличения определяет не столько размер самого негатива, сколько т. н. зернистость проявленного фотографического изображения. Некоторые негативные эмульсии дают весьма

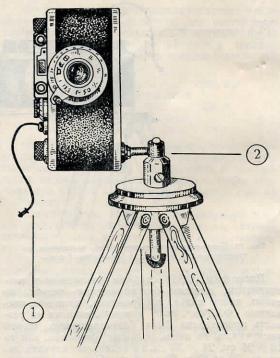


Рис. 17. Положение аппарата при с'емке со штатива на вертикальный формат. 1) Проволочный трос. 2) Штативная головка.

крупное зерно изображения, стающее заметным даже при небольшом, сравнительно, увеличении 34

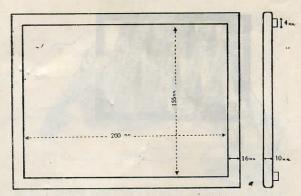


Рис. 17. Размерный чертеж рамочки для проявления пленки.

негатива. В этих случаях возможность значительного увеличения негативов ограничивается. При увеличении же до формата 13×18 см, не говоря уже о меньших форматах— 9×12 и 10×15 см, даже сравнительно крупное зерно негативного изображения заметно не влияет на качество позитивного изображения.

Для увеличения негативов "ФЭД'а" Фото-завод Трудкоммуны НКВД УССР им. Ф. Э. Дзержинского в настоящее время подготовляет к выпуску на рынок совершенный увеличитель, специально приспособленный для увеличения негати-

вов, сделанных "ФЭД'ом".

Но для увеличения негативов на кино-пленке можно пользоваться любым увеличителем, поскольку техника увеличения негативов "ФЭД'а" в основном мало отличается от увеличения обычных негативов. Предпочтение, все же, нужно отдать

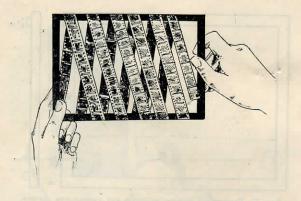


Рис. 18. Проявительная рамочка с намотанной на нее пленкой.

увеличителям с опаловым стеклом для рассеивания света, а также с хорошей вентиляцией коробки рефлектора, т. к. слишком высокая температура вредно влияет на целлулоид пленки. Рекомендуется также пользоваться об'ективами с возможно более

коротким фокусным расстоянием.

Приступая к процессу увеличения, зажимают пленочный негатив между двух безукоризненно чистых стекол, вставляют его в негативодержатель увеличителя, включают источник света и проэктируют изображение на принимающий экран, напр., на обычную копировальную рамку, вложив в нее, под чистое стекло, листок чистой белой бумаги.

Затем устанавливают формат увеличения и производят грубую, а затем и точную наводку на резкость. Нужные для этого операции зависят от 36

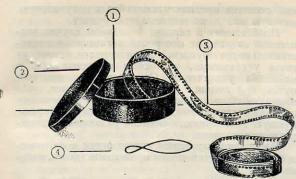


Рис. 19. Проявительный бачек. 1) Бачек. 2) Крышка. 3) Целлулоидная лента и 4) Резинка.

системы и конструкции увеличителя и поэтому тут не описываются.

Наведя на резкость, выключают источник света увеличителя (либо прикрывают об'ектив увеличителя оранжевым или красным фильтром), кладут в копировальную рамку, служащую принимающим экраном, листок бромистой бумаги, включают источник света увеличителя (либо, если применяли фильтр, - убирают его) и экспонируют.

Бумагу для увеличения подбирают в зависимости от характера негатива. Так контрастные негативы увеличивают на бумаге мягкой или нормальной градации, нормальные-на нормальной, вялые же и очень вялые — на контрастной или особо-контрастной бумаге. Глянцевая поверхность бумаги пригодна для небольших увеличений, а также для сюжетов технического характера, для больших же увеличений, а также для художественных сюжетов предпочтительно брать полуматовую,

матовую или даже шереховатую бумагу.

Необходимая в каждом отдельном случае экспозиция зависит от плотности негатива, светочувствительности бумаги, интенсивности источника
света увеличителя, светосилы об'ектива его, и
масштаба увеличения. Определяют ее опытным
путем, при помощи узкой полоски бумаги, экспонируемой постепенно, полосками, с различными
продолжительностями; проявив полоску, избирают
нужную экспозицию, оценивая различно экспонированные полоски.

Проявление позитивов можно вести в параамидофеноло-гидрохиноновом проявителе такого, напр. состава:

Воды 1000 см ³	
Сернистокислого натрия (суль-	
фита) кристаллического 75 г	
Параамидофенола4 г	
Гидрохинона 4 г	
Углекислого натрия (соды) 75 г	
Бромистого калия (1:10) 2 cm ³	

Для проявления бумаг этот концентрированный раствор разводят перед проявлением 0,5—1 об'емом воды, придерживаясь температуры 17-180 Цельсия.

Закрепление позитивов ведут в обычном растворе кислого закрепителя, а затем позитивы про-

мывают, сушат и т. д., как обычно.

Понятно, что, применяя вместо бромистой бумаги диапозитивные пластинки, можно, при помощи такого же увеличителя, изготовлять с негативов "ФЭД'а" также и диапозитивы—как для проэктирования через проэкционный аппарат на экран так и для непосредственного рассматривания.

Что же касается контактного копирования негативов "ФЭД'а", то для этого пользуются той же бромистой бумагой, так же, как выше было указано, подбирая градацию ее, в зависимости от характера негатива. Поверхность же бумаги сле-

дует тут лучше избирать глянцевую.

В обычную копировальную рамку вкладывают безукоризненно чистое стекло и на него — эмульсией внутрь рамки — кладут пленку, разрезавши ее предварительно на несколько частей. Негативы для одновременного копирования подбирают, по возможности, одинаковой плотности и контрастности и экспонируют. Экспозиция тут зависит от плотности негатива, светочувствительности бумаги, интенсивности источника света и расстояния его от рамки. Проявление, и вообще обработку контактных позитивов "ФЭД'а", ведут, как обычно.

Более подробные сведения по технике позитивного процесса в работе с "ФЭД'ом" можно почерпнуть из общих учебников и руководств по фотографии. Кроме того упомянутый выше специальный увеличитель к "ФЭД'у" будет снабжен

кратким руководством.