|
|
|
![]() |
![]() |
![]() |
![]() |
![]() |
Билет №1. Понятие информации. Виды информации, ее свойства, классификация. Информационные процессы. Передача информации. Информационная система, управление, обратная связь. Билет №2. Понятие о кодировании информации. Позиционные и непозиционные системы счисления. Двоичная арифметика. Билет №3. Подходы к изменению информации. Преимущества и недостатки вероятного и алфавитного подходов к измерению информации. Единицы измерения информации. Скорость передачи информации. Пропуская способность канала связи. Билет №4. Понятие алгоритма: свойство алгоритмов, исполнителя алгоритмов. Автоматическое исполнение алгоритма. Способы описания алгоритмов. Основные алгоритмические структуры и их реализация на языке программирования. Оценка эффективности алгоритмов. Билет №5. Язык программирования. Типы данных. Реализация основных алгоритмических структур на языке программирования. Основные этапы разработки программ. Билет №6. Технология программирования. Структурное и объектно-ориентированное программирование. Процедуры и функции. Локальные и глобальные переменные. Билет №7. Типы данных. Структуры данных. Обработка массивов. Итеративные и рекурсивные алгоритмы обработки массивов. Многомерные массивы. Билет №8. Основные понятия и операции формальной логики. Законы логики. Логические переменные. Логические выражения и их преобразования. Построение таблиц истинности логических выражений. Билет №9. Логические элементы и схемы. Типовые логические устройства компьютера: полусумматор, сумматор, триггеры, регистры. Описание архитектуры компьютера с опорой на составляющие ее логические устройства. Билет №10. Моделирование как метод познания. Информационные модели. Основные этапы компьютерного моделирования. Билет №11. Информационные основы управления. Общие принципы управления. Роль обратной связи в управлении. Замкнутые и разомкнутые системы управления. Самоуправляемые системы, их особенности. Понятие о сложных системах управления, принцип иерархичности систем. Самоорганизующиеся системы. Билет №12. Архитектура современных компьютеров. Основные устройства компьютера, их функции и взаимосвязь. Магистрально-модульный принцип построения компьютера. Безопасность, гигиена, эргономика, ресурсосбережение, технологические требования при эксплуатации компьютерного рабочего места. Комплектация компьютерного рабочего места в соответствии с целями его использования. Билет №13. Компьютерные сети. Аппаратные средства компьютерных сетей. Топология локальных сетей. Характеристики каналов (линий) связи. Профессии, связанные с обеспечением эксплуатации сетей. Билет №14. Основные этапы становления информационного общества. Информационные ресурсы государства, их структура. Образовательные информационные ресурсы. Информационная этика и право, информационная безопасность. Правовые нормы, относящиеся к информации, правонарушения в информационной сфере, меры их предотвращения. Билет №15. Классификация и характеристика программного обеспечения компьютера. Взаимосвязь аппаратного и программного обеспечения компьютера. Многообразие операционных систем. Понятие о системном администрировании. Программные и аппаратные средства для решения различных профессиональных задач. Билет №16. Компьютерные вирусы и антивирусные программы. Специализированное программное обеспечение для защиты программ и данных. Технологии и средства защиты информации в глобальной локальной компьютерных сетях от разрушения, несанкционированного доступа. Билет №17. Понятие файла. Файлы прямого и последовательного доступа. Файловый принцип организации данных. Операции с файлами. Типы файлов. Аппаратное обеспечение хранения данных и функционирования файловой системы. Билет №18. Виды профессиональной информационной деятельности человека и используемые инструменты (технические средства и информационные ресурсы). Профессии, связанные с построением математических и компьютерных моделей, программированием, обеспечением информационной деятельности людей и организаций. Билет №19. Кодирование графической информации. Растровая и векторная графика. Средства и технологии работы с графикой. Создание и редактирование графических информационных объектов средствами графических редакторов, систем презентационной и анимационной графики. Форматы графических файлов. Способы сжатия. Билет №20. Кодирование звуковой информации. Форматы звуковых файлов. Ввод и обработка звуковых файлов. Использование инструментов специального программного обеспечения и цифрового оборудования для создания и преобразования звуковых файлов.
|
Билет №10 Моделирование как метод познания. Информационные (нематериальные) модели. Назначение и виды информационных моделей. Основные этапы компьютерного моделирования. Построение информационной модели для решения поставленной задачи из любой предметной области, ее анализ на адекватность объекту и целям моделирования. На современном этапе развития человечества нельзя найти такой области знания, в которой в той или иной мере не использовались бы модели. Науки, в которых обращение к модельному исследованию стало систематическим, не полагаются больше лишь на интуицию исследователя, а разрабатывают специальные теории, выявляющие закономерности отношений между оригиналом и моделью. История моделирования насчитывает тысячи лет. Человек рано оценил и часто применял в практической деятельности метод аналогий. Моделирование прошло долгий путь – от интуитивного использования аналогий до строгого научного метода. В этом вопросе рассматриваются как общие вопросы моделирования, так и компьютерного математического моделирования в частности. Термины «модель», «моделирование» являются неразрывно связанными, поэтому целесообразно обсуждать их одновременно. Слово модель произошло от латинского слова modelium, которое означает: мера, образ, способ и т.д. Его первоначальное значение было связано со строительным искусством, и почти во всех европейских языках оно употреблялось для обозначения образа или прообраза, или вещи, сходной в каком-то отношении с другой вещью. В энциклопедическом словаре «Информатика» под моделью объекта понимается «другой объект (реальный, знаковый или воображаемый), отличный от исходного, который обладает существенными для целей моделирования свойствами и в рамках этих целей полностью заменяет исходный объект». В философской литературе можно найти близкие по смыслу определения, которые обобщаются так: «Модель используется при разработке теории объекта в том случае, кода непосредственное исследование его не представляется возможным вследствие ограниченности современного уровня знания и практики. Данные о непосредственно интересующем исследователя объекте получаются путем исследования другого объекта, который объединяется с первым общностью характеристик, определяющих качественно-количественную специфику обоих объектов». В схожем определении В.А. Штофа можно выделить такие признаки модели: · это мысленно представляемая или материально реализуемая система; · она воспроизводит или отображает объект исследования; · она способна замещать объекты · ее изучение дает новую информацию об объекте. В дискуссиях, посвященных гносеологической (гносеология – теория познания) роли и методологическому значению моделирования, термин «моделирование» употребляется как синоним познания, теории, гипотезы и т.п. Например, часто термин «модель» употребляется как синоним термина «теория» в случае, когда теория еще недостаточно разработана, в ней мало дедуктивных шагов, много упрощений, неясностей (например, в физике термин «модель» может употребляться для обозначения предварительного наброска или варианта будущей теории при условии значительных упрощений, вводимых с целью обеспечения поиска путей, ведущих к построению более точной и совершенной теории). А.И. Уемов выделяет обобщенные признаки модели: 1. Модель не может существовать изолированно, потому что она всегда связана с оригиналом, т.е. той материальной или идеальной системой, которую она замещает в процессе познания. 2. Модель должна быть не только сходна с оригиналом, но и отлична от него, причем модель отражает те свойства и отношения оригинала, которые существенны для того, кто ее применяет. 3. Модель обязательно имеет целевое назначение. Таким образом, модель – это упрощенный ( в том или ином смысле) образ оригинала, неразрывно с ним связанный, отражающий существенные свойства, связи и отношения оригинала; система, исследование которой служит инструментом, средством для получения новой и (или) подтверждения уже имеющейся информации о другой системе. Возвращаясь к понятию «моделирование», следует подчеркнуть в работах ученных, применяющих метод моделирования), что моделирование в широком смысле слова есть не только процесс построения модели, но и ее исследования. Еще одно понятие, неразрывно связанное с моделированием, - формализация. Формализация – это один из этапов моделирования, в результате завершения которого, собственно, и появляется модель процесса или явления. Приведем выдержку из работы Н.П. Бусленко, где, на наш взгляд, отражены основные особенности этого процесса: «Формализации любого реального процесса», которое представляет собой первую попытку четко изложить закономерности, характерные для исследуемого процесса, и постановку прикладной задачи. Содержательное описание является исходным материалом для последующих этапов формализации: построения формализованной схемы процесса и модели для него». Более детально понятие и процесс формализации обсуждается в разделе «Этапы компьютерного математического моделирования». Несколько слов о натуральном и модельном экспериментах, о специфике модели в качестве средства экспериментального исследования в сравнении с другими экспериментальными средствами. Рассмотрение материальных моделей в качестве средств, орудий экспериментальной деятельности вызывает потребность выяснить, чем отличаются те эксперименты, в которых используются модели, от тех, где они не применяются. Под экспериментом понимается «вид деятельности, предпринимаемой в целях научного познания, открытия объективных закономерностей и состоящий в воздействие на изучаемый объект (процесс) посредством специальных инструментов и приборов». «Специфика эксперимента как формы практической деятельности в том, что эксперимент выражает активное отношение человека к действительности. В силу этого в гносеологии проводится четкое различие между экспериментом и научным познанием. Хотя всякий эксперимент включает и наблюдение как необходимую стадию исследования, однако в нем, помимо наблюдения, содержит и такой существенный для практики признак, как активное вмешательство в ход изучаемого процесса». Существует особая форма эксперимента, для которой характерно использование действующих моделей в качестве специальных средств экспериментального исследования. Такая форма называется модельным экспериментом. В отличие от обычного эксперимента, где средства эксперимента так или иначе взаимодействуют с объектом исследования, здесь взаимодействия нет, так как экспериментируют не с самим объектом, а с его заместителем. При этом объект-заместитель и экспериментальная установка объединяются, сливаются в действующей модели в одно целое. Таким образом, обнаруживается двоякая роль, которую модель выполняет в эксперименте: она одновременно является и объектом изучения, и экспериментальным средством. Для модельного эксперимента характерны следующие основные операции: 1) переход от натурального объекта к модели – построение модели (моделирование в собственном смысле слова); 2) экспериментальное исследование модели; 3) переход от модели к натуральному объекту, состоящий в перенесении результатов, полученных при исследовании, на этот объект. Модель входит в эксперимент, не только замещая объект исследования, но и может замещать условия, а которых изучается объект натурального эксперимента. Натуральный эксперимент предполагает наличие теоретического момента лишь в начальный момент исследования – выдвижение гипотезы, ее оценку и т.д., теоретические соображения, связанные с конструированием установки, а также на завершающей стадии – обсуждение и интерпретация полученных данных, их обобщение; в модельном эксперименте необходимо также обосновать отношение подобия между экстраполировать на этот объект полученные данные. В информатике часто используется понятие «информационная модель». Отметим, что это понятие впервые встречается в работах В.М. Глушкова, было развито и детализировано В.К. Белошапкой и в настоящий момент прочно вошло в терминологический словарь науки «Информатика»: «Хочется подчеркнуть, что большинство авторов, оперирующих понятиями «информационное моделирование», избегают определенного типа «Информационной моделью называется…», что вполне объяснимо сложностью данного понятия. Энциклопедический словарь содержит следующие рассуждения на эту тему: «Специалистов, работающих в направлении информатики, объединяет, во-первых, центральная для информатики идея того, что информационные процессы обладают свойствами, независящими от их физического воплощения и общими для всех сфер природы и общества, и, во-вторых, общая схема информатизации, т.е. представления изучаемых явлений и решаемых задач в виде систем, перерабатывающих информацию, Эта схема выглядит так. Сначала создается информационная математическая модель изучаемого объекта. Виды этих моделей разнообразны: формальные системы, автоматы, сети Петри, игровые модели и др. Выбор вида модели зависит от информационной сущности объекта, а не от его физической природы». Здесь прослеживаются связь с математикой («информационная математическая модель» рассматривается как нечто неразрывное) и предельно широкое толкование обсуждаемого понятия. Исходя из него, любое моделирование, отличное от создания материальных копий объекта (т.е. натурного моделирования), можно отнести к информационному». Далее в статье обсуждается различные аспекты информационного моделирования. Гораздо более общее определение дает «Толковый словарь по информатике», предлагая на выбор два прямых определения: информационная модель – это а) «формализованное описание информационных структур и операций над ними», б)«параметрическое представление процесса циркуляции информации, подлежащей автоматизированной обработке в системе управления». Включение в понятие «информационное моделирование» практически всех видов моделей, имеющих отношение к процессу познания (поскольку это информационный процесс), целесообразнее заменить более узким: считать информационными моделями именно модели информации (данных и информационных процессов). Таким образом, масса численных и математических моделей сразу выпадает из круга информационных моделей. Классифицируя модели, разные авторы исходят из той терминологии и тех принципов, которые им наиболее привычны в силу рода их деятельности. В литературе, посвященной аспектам моделирования, представлены различные классификационные признаки, по которым выделены различные типы моделей. Остановимся на некоторых из них. Так, В.А. Штоф называет такие признаки, как · способ построения (форма модели), · качественная специфика (содержание модели). По способу построения модели бывают материальные и идеальные. Назначение материальных моделей – специфическое воспроизведение структуры, характера, протекания, сущности изучаемого процесса. Из материальных моделей можно выделить: а) физически подобные модели (они сходны с оригиналом по физической природе и геометрической форме, отличаясь от него лишь числовыми значениями параметров – действующая модель электродвигателя, паровой турбины); б) пространственно-подобные модели (сходство с оригиналом на основе физического подобия – макеты самолетов, судов); в) математически подобные модели (не имеют с оригиналом ни физического, ни геометрического сходства, но объект и модель описываются одинаковыми уравнениями – аналогия между механическими и электрическими колебаниями). В дальнейшем нас будут интересовать прежде всего идеальные (абстрактные) модели, поэтому остановимся на этом вопросе подробнее. В статье выделяются такие виды абстрактных (идеальных) моделей. 1. Вербальные (текстовые) модели. Эти модели используют последовательности предложений на формализованных диалектах естественного языка для описания той или иной области действительности. 2. Математические модели – очень широкий класс знаковых моделей (основанных на формальных языках над конечными алфавитами), широко использующих те или иные математические методы. 3. Информационные модели – класс знаковых моделей, описывающих информационные процессы (возникновение, передачу, преобразование и использование информации) в системах самой разнообразной природы. Граница между вербальными, математическими и информационными моделями может быть проведена весьма условно; возможно, информационные модели следовало бы считать подклассом математических моделей. Однако в рамках информатики как самостоятельной науки, отделенной от математики, физики, лингвистики и других наук, выделение информационных моделей в отдельный класс является целесообразным. Вот какое определение понятия математическое моделирование предлагает в энциклопедическом словаре по информатике: «Математическое моделирование – это описание, воспроизведение, изучение и прогнозирование всевозможных процессов и явлений с помощью математических и вычислительных средств. Объект любой природы (физический, химический, биологический и т.д.), отображаемый с помощью математической модели, т.е. в терминах функций, уравнений, неравенств и других соотношений, может быть понят путем исследования и решения соответствующих математических задач». И далее, «математическое моделирование позволяет имитировать в принципе невоспроизводимые или нежелательные ситуации, например, прогноз погоды, траекторию космического корабля, последствия ядерной войны». По мере создания и совершенствования ЭВМ математическое моделирование все чаще использует мощнейшее техническое средство – компьютер. Более подробно об этом речь пойдет далее, а пока кратко обсудим основные этапы численного моделирования (компьютерного эксперимента). Общая схема процесса приведена на рисунке. Первый этап – определение целей моделирования. Основные их них, как предлагает А.Б. Горстко, таковы: 1) модель нужна для того, чтобы понять, как устроен конкретный объект, какова его структура, основные свойства, законы развития и взаимодействия с окружающим миром; 2) модель нужна для того, чтобы научиться управлять объектом (или процессом) и определить наилучшие способы управления при заданных целях и критериях; 3) модель нужна для того, чтобы прогнозировать цель исследования, необходимо всестороннее изучить структуру моделируемого объекта (процесса). После этого переходят к формализации объекта (процесса), результатом которой и будет в нашем случае математическая модель. Содержательное описание в словесной форме согласно Н.П. Бусленко содержит: · сведения о физической природе исследуемого процесса; · сведения о количественных характеристиках элементарных явлений исследуемого процесса; · сведения о месте и назначении каждого элементарного явления в общем процессе функционирования рассматриваемой системы; · постановку прикладной задачи, определяющую цели моделирования исследуемого процесса. Содержательное описание процесса обычно самостоятельного знания не имеет, а служит лишь основой для дальнейшей формализованной схемы и математической модели процесса. Формализованная схема является промежуточным звеном между содержательным описанием и математической моделью и разрабатывается в тех случаях, когда из-за сложности исследуемого процесса переход от содержательного описания к математической модели оказывается невозможным. На этапе построения формализованной схемы должна быть дана точная математическая задача исследования с указанием окончательного перечня искомых величин и оцениваемых зависимостей.
Прежде всего составляется список величин, от которых зависит поведение объекта или ход процесса, а также тех величин, которые желательно получить в результате моделирования. Обозначив первые (входные) величины через x1, x2, …, xn; вторые (выходные) через y1, y2, …,yk, можно поведение объекта или процесса символически представить в виде yj=F j(x1, x2, …, xn) (j=1,2, …, k), где Fj символически обозначает некоторые математические операции над входными величинами. Важнейшим этапом моделирования является разделение входных параметров по степени важности влияния их изменений на выходные. Такой процесс называется ранжированием. Чаще всего невозможно, да и не нужно учитывать все факторы, которые могут повлиять на значения интересующих нас величин yj. От того, насколько умело выделены важнейшие факторы, зависит успех моделирования, быстрота и эффективность достижения цели. Отбрасывание (по крайней мере при первом подходе) менее значимых факторов огрубляет объект моделирования и способствует пониманию его главных свойств и закономерностей. На этапе перехода от формализованной схемы к математической модели необходимо перейти от абстрактной формулировки модели к формулировке, имеющей конкретное математическое наполнение. В этот момент модель представляет перед нами в виде уравнения, системы уравнений, системы неравенств, дифференциального уравнения или системы таких уравнений и т.д. Утверждается, что «для преобразования формализованной схемы в модель необходимо прежде всего, воспользовавшись соответствующими схемами, записывать в аналитической форме все соотношения, выразить все логические условия. Последним этапом формализации является идентификация модели – определение параметров и структуры модели – определение параметров и структуры модели, обеспечивающей наилучшее совпадение исходных данных объекта и данных полученных на модели объекта». Можно считать, что модель адекватна реальному процессу, если некоторые характеристики процесса совпадают с экспериментальными с заданной степенью точности. Действительно, важнейшими требованиями к модели, согласно А.Д. Мышкису, являются требования адекватности и простоты и оптимальности. Требование адекватности модели изучаемому объекту (процессу) относительно выбранной системы его характеристик предполагает: · правильное качественное описание объекта по выбранным характеристикам; · правильное количественное описание объекта по выбранным характеристикам; Для достижения адекватности модели процессу необходимо осуществлять контроль: · размерностей; · порядков; · характера зависимостей; · экстремальных ситуаций; · граничных условий; · математической замкнутости. Разработка алгоритма и составление программы для ЭВМ – творческий и трудноформализуемый процесс. В настоящее время достаточно распространенным подходом к программированию остается структурным подходом к программированию остается структурный подход, основными приемами которого являются модульность, использование лишь базовых алгоритмических структур, разработка алгоритма «сверху вниз» с дальнейшей пошаговой детализацией. Другим, не менее (а может быть, более) популярным подходом является объектно-ориентированное программирование. Графический пользовательский интерфейс целесообразно реализовать, используя визуальные возможности программирования. В последнее время такой подход нашел широкое распространение в связи с увеличением быстродействия ЭВМ, многие из которых работают под управлением графических операционных систем. Относительная простота изучения и «кнопочная» технология, когда создание интерфейса программы значительно ускоряется, делают эти средства привлекательными для создания демонстрационных программ. Для постановки научных целесообразнее использовать более традиционные средства, т.к. здесь наиболее важной является скорость вычислений, а не оформление программы. В некоторых случаях расчеты удобно провести, используя готовые программные продукты, например, электронные таблицы или специальные математические пакеты. После составления программы с ее помощью решается простейшая текстовая задача (желательно с заранее известным ответом) с целью отладки и тестирования программы, устранения грубых ошибок. Затем следует собственно численный эксперимент. В случае несоответствия модели реальному процессу происходит возврат к одному из предыдущих этапов. Возможные точки возврата указаны на схеме: либо в процессе огрубления были отброшены какие-то важные факторы или же было взято слишком много незначительную модель; либо выбор метода исследования оказался не слишком удачным и нужно использовать более сложный и точный. После внесения тех или иных изменений вновь проходим по части технологической цепочки и делаем это до тех пор, пока не будут получены приемлемые результаты. По окончании компьютерного эксперимента с математической моделью накопленные результаты (чаще всего численные) обрабатывается тем или иным способом (опять же с помощью компьютера) и интерпретируются. Чаще удобной для восприятия формой представления результатов являются не таблицы значений, а графики, диаграммы. Иногда численные значения пытаются заменить аналитически заданной функцией, вид которой определяет экспериментатор. Обработанные данные в конечном итоге попадают в отчет (или научную статью) о проделанном эксперименте. Продолжая разговор о математическом моделирование с привлечением компьютера, поговорим о классификации математических моделей. К классификации математических моделей разные специалисты подходят по-своему, положив в основу классификации различные признаки. Можно классифицировать модели по отраслям наук: математические модели в физике, биологии, социологии и т.д. – это естественно, если к этому подходит специалист в какой-либо сфере деятельности. Можно положить в основу классификации применяемый математический аппарат: модели, основанные на применении обыкновенных дифференциальных уравнений, дифференциальных уравнений в частных производных, стохастических методов, дискретных алгебраических преобразований и т.д., - это естественно для математика, боле интересующегося аппаратом математического моделирования. Наконец, человек, интересующийся общими закономерностями моделирования в разных науках безотносительно к математическому аппарату, ставящий на первом месте цели моделирования, скорее всего использует следующую классификацию (классификационный признак – цели моделирования): · дескриптивные (описательные) модели; · оптимизационные модели; · многокритериальные модели; · игровые модели; · имитационные модели. В дальнейше6м мы будем придерживаться именно этой классификации, поэтому остановимся на ней чуть подробнее и приведем ряд поясняющих примеров. Моделируя движение кометы, вторгшейся в Солнечную систему, исследователь описывает (предсказывает) траекторию ее полета, расстояния, на котором она пройдет от Земли, и т.д., т.е. ставит чисто описательные цели. В этой ситуации нет никаких возможностей повлиять на движение кометы, что-то изменить. На уровне других процессов можно воздействовать на них, пытаясь добиться какой-то цели. В этом случае в модель входит один или несколько параметров, доступных влиянию. Например, меняя тепловой режим в зернохранилище, можно стремиться подобрать такой, чтобы достичь максимальной сохранности зерна, т.е. оптимизировать процесс. Часто приходится оптимизировать процесс по нескольким параметрам сразу, причем цели могут быть весьма противоречивыми. Например, зная цены на продукты и потребность человека в пище, организовать питание больших групп людей (в армии, летнем лагере и д.р.) как можно полезнее и как можно дешевле. Ясно, что эти цели, вообще говоря, совсем не совпадают, т.е. при моделировании будет несколько критериев, между которыми нужно искать баланс. Игровые модели могут иметь отношение не только к детским играм (в том числе и компьютерным), но и к вещам весьма серьезным. Например, два полководца перед сражением в условиях наличия неполной информации о противостоящих армиях в бой те или иные части и т.д., учитывая возможную реакцию противника. В математике есть специальный раздел – «Теория игр», где изучаются методы принятия решений в условиях неполной информации. Иногда модель в большой мере подражает реальному процессу, т.е. имитирует его. Например, моделируя изменение (динамику) численности микроорганизмов в колонии, можно рассматривать много отдельных объектов и следить за судьбой каждого из них, ставя определенные условия для его выживания, размножения и т.д. Если при этом не ставится целью вмешательство и регулирование численности колонии, то отличие имитационной модели от дескриптивной достаточно условно; это, скорее, вопрос терминологии. Выполним построение информационной модели для решения поставленной задачи, ее анализ на адекватность объекту и целям моделирования. В качестве примера рассмотрим моделирование в социологии. Оптимальная ставка налога. Налоговая политика государства оказывает существенное влияние на развитие его экономики. С целью увеличения наполнения бюджета государство стремится максимизировать налоги. Действительно ли это приведет в перспективе к постоянному все большему пополнению бюджета, или такая политика государства может по нему же больно ударить? Постараемся ответить на этот вопрос с помощью приведенной ниже модели. Пусть Nt– налоговые поступления некоторого предприятия за год t; Pt - полная прибыль предприятия за год t (без вычета налогов); S % - ставка налога на прибыль; R % - рентабельность предприятия; Ct- капитализируемый предприятием за период [0, t] остаток прибыли; K - начальный капитал предприятия. Тогда C0=K; Pt=Ct-1*R/100; Nt=Pt*S/100; Ct=Ct-1+Pt – Nt. Исходными данными в этой модели являются начальный капитал, ставка налога на прибыль, рентабельность предприятия. Приведенная ниже программа позволяет в соответствии с полученной моделью исследовать зависимость сбора налогов от величины ставки на прибыль при прочих фиксированных параметрах. program Nalog; var K, R, S: Real; I, j, n: Byte; P, Na: Real; C: Array [1 . .7] Of Real: T, TT: Text; Begin {файл налогов при разных ставках} Assign (T, `nalog. txt`); reWrite (T); {файл капитализируемой прибыли} Assign (TT, `nalog1. txt`); reWrite (TT); write (`Введите начальный капитал, рентабельность предприятия`); readln (K, R); write (`:`); readln (n); write (TT, 0:5); write (T, 0:5); for j := 1 to 7 do begin C[j]:=K; write (TT, C [j] : 14:1); write (T, 0. 0 :12:1) end; writeln (T); writeln (TT); for i:=1 to n do begin write (TT, i:5) ; write (T, i:5); for j := 1 to 7 do begin P := C[j] * R/100; {меняем ставку налога от 10 до 70%} Na : = P * (j * 10) / 100; C [j] := C[j] + (P –Na); write (T, Na:12:1); write (TT, C[j]:14;1) end; writeln (T); writeln (TT) end; close (T); close (TT) End. Проследим, как влияет ставка налога на суммарный сбор налогов на протяжении времени наблюдения. Наблюдается удивительный, казалось бы, эффект: чем меньше ставка налога, тем большим в перспективе будет суммарный сбор налогов. Вот и ответ на вопрос: не нужно душить предприятия высокими налогами, и это довольна грубая. Она не учитывает множества факторов, в частности, то, что рентабельность предприятия со временем меняется, существует другие затраты, кроме указанных, и д.р. Тем не менее моделирование позволяет проследить общие тенденции налогообложения производства. И, наконец, для определения оптимальной ставки налога необходимо в соответствии с данной моделью произвести расчеты для предприятий разной рентабельности и выяснить, при какой ставке налога достигаются максимальные суммарные сборы. Здесь оптимальная ставка определена примерно в 23%.
|
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |