|
|
|
![]() |
![]() |
![]() |
![]() |
![]() |
Билет №1.
Понятие информации. Виды информации, ее свойства, классификация.
Информационные процессы. Передача информации. Информационная система,
управление, обратная связь. Билет №2. Понятие о кодировании информации. Позиционные и непозиционные системы счисления. Двоичная арифметика. Билет №3. Подходы к изменению информации. Преимущества и недостатки вероятного и алфавитного подходов к измерению информации. Единицы измерения информации. Скорость передачи информации. Пропуская способность канала связи. Билет №4. Понятие алгоритма: свойство алгоритмов, исполнителя алгоритмов. Автоматическое исполнение алгоритма. Способы описания алгоритмов. Основные алгоритмические структуры и их реализация на языке программирования. Оценка эффективности алгоритмов. Билет №5. Язык программирования. Типы данных. Реализация основных алгоритмических структур на языке программирования. Основные этапы разработки программ. Билет №6. Технология программирования. Структурное и объектно-ориентированное программирование. Процедуры и функции. Локальные и глобальные переменные. Билет №7. Типы данных. Структуры данных. Обработка массивов. Итеративные и рекурсивные алгоритмы обработки массивов. Многомерные массивы. Билет №8. Основные понятия и операции формальной логики. Законы логики. Логические переменные. Логические выражения и их преобразования. Построение таблиц истинности логических выражений. Билет №9. Логические элементы и схемы. Типовые логические устройства компьютера: полусумматор, сумматор, триггеры, регистры. Описание архитектуры компьютера с опорой на составляющие ее логические устройства. Билет №10. Моделирование как метод познания. Информационные модели. Основные этапы компьютерного моделирования. Билет №11. Информационные основы управления. Общие принципы управления. Роль обратной связи в управлении. Замкнутые и разомкнутые системы управления. Самоуправляемые системы, их особенности. Понятие о сложных системах управления, принцип иерархичности систем. Самоорганизующиеся системы. Билет №12. Архитектура современных компьютеров. Основные устройства компьютера, их функции и взаимосвязь. Магистрально-модульный принцип построения компьютера. Безопасность, гигиена, эргономика, ресурсосбережение, технологические требования при эксплуатации компьютерного рабочего места. Комплектация компьютерного рабочего места в соответствии с целями его использования. Билет №13. Компьютерные сети. Аппаратные средства компьютерных сетей. Топология локальных сетей. Характеристики каналов (линий) связи. Профессии, связанные с обеспечением эксплуатации сетей. Билет №14. Основные этапы становления информационного общества. Информационные ресурсы государства, их структура. Образовательные информационные ресурсы. Информационная этика и право, информационная безопасность. Правовые нормы, относящиеся к информации, правонарушения в информационной сфере, меры их предотвращения. Билет №15. Классификация и характеристика программного обеспечения компьютера. Взаимосвязь аппаратного и программного обеспечения компьютера. Многообразие операционных систем. Понятие о системном администрировании. Программные и аппаратные средства для решения различных профессиональных задач. Билет №16. Компьютерные вирусы и антивирусные программы. Специализированное программное обеспечение для защиты программ и данных. Технологии и средства защиты информации в глобальной локальной компьютерных сетях от разрушения, несанкционированного доступа. Билет №17. Понятие файла. Файлы прямого и последовательного доступа. Файловый принцип организации данных. Операции с файлами. Типы файлов. Аппаратное обеспечение хранения данных и функционирования файловой системы. Билет №18. Виды профессиональной информационной деятельности человека и используемые инструменты (технические средства и информационные ресурсы). Профессии, связанные с построением математических и компьютерных моделей, программированием, обеспечением информационной деятельности людей и организаций. Билет №19. Кодирование графической информации. Растровая и векторная графика. Средства и технологии работы с графикой. Создание и редактирование графических информационных объектов средствами графических редакторов, систем презентационной и анимационной графики. Форматы графических файлов. Способы сжатия. Билет №20. Кодирование звуковой информации. Форматы звуковых файлов. Ввод и обработка звуковых файлов. Использование инструментов специального программного обеспечения и цифрового оборудования для создания и преобразования звуковых файлов.
|
Билет №11 Информационные основы управления. Общие принципы управления. Роль обратной связи в управлении. Замкнутые и разомкнутые системы управления. Самоуправляемые системы, их особенности. Понятие о сложных системах управления, принцип иерархичности систем. Самоорганизующиеся системы. В повседневной жизни часто приходится встречаться с процессами управления: пилот управляет самолётом, а помогает ему в этом автоматическое устройство – автопилот; директор и его заместители руководят производством, а учитель – обучением школьников; процессор обеспечивает синхронную работу всех узлов компьютера, а каждым его внешним устройством руководит специальный контролёр; без дирижёра большой оркестр не может согласованно исполнить музыкальное произведение, а хоккейная или баскетбольная команда обязательно имеет одного или нескольких тренеров, которые организуют подготовку спортсменов к соревнованиям. В наиболее общем виде управление есть совокупность действий, осуществляемых человеком, группой людей или автоматическим устройством (автоматом), направленных на поддержание или улучшение работы некоторого объекта. Эта деятельность ведётся либо по заданным извне правилам, либо планируется самостоятельно в соответствии с известной целью управления. Управлять – значит влиять на ход какого-либо процесса в живом организме, машинах, обществе или на состояние некоторого объекта. Управление обязательно ведётся целенаправленно, а случайные хаотические воздействия на систему не имеют к этому прямого отношения. Независимо от природы исполнительных и управляющих органов процесс управления имеет определённые общие закономерности. Их изучением занимается специальная наука, которая называется кибернетикой. Слово “кибернетика” происходит от греческого слова, означающего в переводе “кормчий”. Основоположником кибернетики является американский учёный Норберт Винер (1894-1964). В 1948 году вышла его книга “Кибернетика, или Управление и связь в животном и машине”, заложившая основы новой науки. В Советском Союзе большой вклад в развитие теоретической и прикладной кибернетики внесли академики Аксель Иванович Берг (1893-1979) и Виктор Михайлович Глушков (1923-1982). Кибернетические исследования заключаются в изучении наиболее общих свойств процессов управления в живых и неживых системах. При этом используются в основном абстрактные системы, т.е. некоторые обобщённые модели реальных систем различной природы – технических, биологических или социальных. Именно такой подход позволяет отразить наиболее общие закономерности, не обращая внимания на второстепенные детали устройства конкретных систем. Предметом новой науки стали не только биологические и технические системы, но и системы любой природы, способные воспринимать, хранить и перерабатывать информацию и использовать её для управления и регулирования. Кибернетические разделы информатики богаты подходами и моделями в исследовании разнообразных систем и используют в качестве аппарата многие разделы фундаментальной и прикладной математики. Управление является информационным процессом. Действительно. Для принятия тех или иных решений и их реализации требуется постоянно производить различные действия с информацией. Сначала нужно получить и обработать данные о состоянии регулируемого объекта и окружающей его среды. Затем сформированные в результате проведённого анализа управляющие команды необходимо передать контролируемому объекту для изменения его состояния в соответствии с целью управления. Часто при организации процесса управления требуется также хранить поступающую информацию, для того чтобы использовать её в дальнейшем. Таким образом, в ходе управления применяются всё наиболее важные виды работы с информацией, фигурирующие в определении информационного процесса. Итак, в рассматриваемой научной дисциплине основными являются понятия управление и информация. Необходимо отметить, что первоначально все исследования в области информации относились к кибернетике, так как считалось, что использование информации в системах управления является центральной проблемой. Однако с развитием науки область её проблем расширялась, изучались всё новые аспекты работы с информацией, и, в конце концов, проблемы управления выделились в самостоятельную область. В результате возникла более общая наука – информатика, в которую в качестве одной из составных частей вошла кибернетика. Несмотря на многообразие задач, решаемых в кибернетике, разнообразие моделей, подходов и методов, кибернетика остаётся единой наукой благодаря использованию общей методологии, основанной на теории систем и системном анализе. Система – это предельно широкое, начальное, строго не определяемое понятие. Предполагается, что система обладает структурой, т.е. состоит из относительно обособленных частей (элементов), находящихся, тем не менее, в существенной взаимосвязи и взаимодействии. Существенность взаимодействия состоит в том, что благодаря ему элементы системы приобретают всё вместе некую новую функцию. Новое свойство, которыми не обладает ни одним из элементов в отдельности. В этом состоит отличие системы от сети, также состоящей из отдельных элементов, но не связанных между собой существенными отношениями. Сравните, например, предприятие, цеха которого образуют систему, поскольку лишь всё вместе приобретают свойство выпускать конечную продукцию (и ни один из них в отдельности с этой задачей не справиться), и сеть магазинов, которые могут работать независимо друг от друга. Кибернетика как наука об управлении изучает не все системы вообще, а только управляемые системы. Зато область интересов и приложений кибернетики распространяется на самые разнообразные биологические, экономические, социальные системы. Одной из характерных особенностей управляемой системы является возможность переходить в различные состояния под влиянием управляющих воздействий. Всегда существует некое множество состояний системы, из которых производится выбор оптимального состояния. Отвлекаясь от конкретных особенностей отдельных кибернетических систем и выделяя общие для некоторого множества систем закономерности, описывающие изменение их состояния при различных управляющих воздействиях, мы приходим к понятию абстрактной кибернетической системы. Её составляющими являются не конкретные предметы, а абстрактные элементы, характеризующиеся определёнными свойствами, общими для широкого класса объектов. Поскольку под кибернетическими системами понимаются управляемые системы, в них должен присутствовать механизм, осуществляющий функции управления. Чаще всего этот механизм реализуется в виде органов, специально предназначенных для управления. Управляющая часть системы, вырабатывающая сигналы управления на основе информации о состоянии управляемой системы (изображены на рисунке стрелкой от управляемой части системы к управляющей её части) с целью достичь требуемого состояния возмущающих воздействий. Совокупность правил, по которым информация, поступающая в управляющее устройство, перерабатывается в сигналы управления, называется алгоритмом управления. На основе введённых понятий можно определить понятие “управление”. Управление – это воздействие на объект, выбранное из множества возможных воздействий на основе имеющейся для этого информации или развитие данного объекта. В системах управления решаются четыре основных типа задач управления: 1) регулирование (стабилизация); 2) выполнение программ; 3) слежение; 4) оптимизация. Системы, изучаемые в кибернетике, могут быть очень сложными, включающими в себя множество взаимодействующих объектов. Однако для понимания базовых понятий теории можно обойтись простейшей из таких систем, которая содержит всего два объекта – управляющий и исполнительный. Практическим примером может служить, например, система, состоящая из светофора и автомобиля. Как ни удивительно, даже в таких небольших системах информационное взаимодействие может быть построено по разным схемам. В простейшем случае управляющий объект посылает команды исполнительному объекту, никак не учитывая его состояния. В рассматриваемом случае каждая система состоит из единственного объекта, но это, разумеется, совсем не обязательно. Например, на практике автомобилей на перекрёстке обычно несколько. Для того чтобы управляющая система начала работать, в неё необходимо ввести некоторую исходную информацию о способах управления (в случае светофора она содержит программу переключения управляющих сигналов). Используя входную информацию, управляющая система начинает выдавать команды управления для исполнительной системы (объекта управления). Поскольку в описанной схеме воздействия передаются только в одном направлении, она называется разомкнутой. Помимо описанной выше, разомкнутыми системами являются всевозможные информационные табло на вокзалах и аэропортах, которые управляют перемещениями многочисленных пассажиров. К рассматриваемому классу систем можно отнести и всевозможные современные программируемые бытовые приборы. В обществе также существует способ управления, когда состояние его членов никак не влияет на принимаемые законы и решения, он называется диктатурой. Как правило, описанная схема управления не очень эффективна и нормально работает только до возникновения экстремальных условий. Так, при больших потоках транспорта возникают пробки, в аэропортах и вокзалах приходится дополнительно открывать справочные бюро, в микроволновой печи при неправильной программе может произойти перегрев, из-за которого кусочки продуктов разлетятся по стенкам; диктаторы чаще всего вынуждены бежать из своей страны, спасаясь от справедливого гнева населения. Более современные системы управления отслеживают результаты деятельности исполнительной системы. В таких системах дополнительно появляется ещё один информационный поток, на этот раз от объекта управления к системе управления; в литературе его принято называть обратной связью. Именно по каналу обратной связи передаются сведения о состоянии объекта и степени достижения (или, наоборот, не достижения) цели управления. Такая система называется замкнутой. Главным принципом управления в замкнутой системе является выдача управляющих команд в зависимости от получаемых сигналов обратной связи. Легко понять, что управляющая система стремится скомпенсировать любое отклонение объекта от состояния, предусмотренного целями управления. Например, если на одной из улиц перекрёстка машин накопилось много, а на другой их практически нет, то алгоритм поочерёдного перекрытия улиц требуется нарушить, чтобы по возможности пропустить максимум машин по перегруженной улице. Обратную связь, при которой управляющий сигнал стремится уменьшить (скомпенсировать) отключение от некоторой поддерживаемой величины, принято называть отрицательной. Сущность управления с помощью обратной связи хорошо описал основоположники Н.Винер в своей статье “Моё отношение к кибернетике. Её прошлое и будущее”: “Мысль моя заключалась в следующем. В устройствах управления применяется метод стабилизации действия, при котором какая-либо величина, зависящая от успеха действия, подаётся обратно на вход устройства как новая регулирующая порция информации. Так как каждое отклонение от заданного значения здесь компенсируется корректирующим действием в противоположном направлении, то подобная обратная связь называется отрицательной. Нам… пришло в голову, что такие простые человеческие действия, как вождение автомобиля, регулируются отрицательными обратными связями. Мы поворачиваем рулевое колесо автомобиля не по заранее составленной программе, а так, что если мы отклоняемся слишком влево, то правим вправо, и наоборот. Поэтому мы были убеждены, что отрицательная обратная связь участвует в человеческом механизме управления и, в частности, в том, при помощи которого мы следим взглядом за самолётом ”. Приведём ещё несколько примеров замкнутых систем управления. Начнём с хорошо знакомого вам примера – обучения в классе. Здесь управляющую систему представляет учитель, а ученики являются объектом управления (авторы просят прощения, если применение принятой в кибернетике терминологии кому-то показалось обидным; помните, что научные термины всегда лишены эмоциональной окраски и никого не унижают и не обижают). Прямой канал передачи информации – это передача знаний учителем, а обратная связь – ответы учеников, результаты контрольных робот, сочинения и т.п. Благодаря обратной связи в результате анализа проведённой контрольной учитель может, например, провести дополнительный урок по данной теме или, наоборот, особо отличившихся учеников освободить от каких-то заданий. Завершая обсуждение принципов работы управляющих систем, отметим, что их изучение не является самоцелью, а служит основой для разработки устройств автоматического управления. Кибернетика разделяет системы управления на три группы: неавтоматические, автоматизированные и автоматические. Как очевидно из названия, в неавтоматических системах управления человек занимается самостоятельно. Автоматизированные системы управления (АСУ) занимают некоторое промежуточное место – Сбор необходимой для принятия решения информации и её обработка производятся автоматически, а окончательное решение принимает человек. Наконец, в системах автоматического управления (САУ) все операции, связанные с процессами управления, происходят без участия человека. Разумеется, программы (алгоритмы) управления предварительно готовит человек. Количество автоматизированных и автоматических систем вокруг нас неуклонно расширяется.
|
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |