|
|
|
![]() |
![]() |
![]() |
![]() |
![]() |
Билет №1.
Понятие информации. Виды информации, ее свойства, классификация.
Информационные процессы. Передача информации. Информационная система,
управление, обратная связь. Билет №2. Понятие о кодировании информации. Позиционные и непозиционные системы счисления. Двоичная арифметика. Билет №3. Подходы к изменению информации. Преимущества и недостатки вероятного и алфавитного подходов к измерению информации. Единицы измерения информации. Скорость передачи информации. Пропуская способность канала связи. Билет №4. Понятие алгоритма: свойство алгоритмов, исполнителя алгоритмов. Автоматическое исполнение алгоритма. Способы описания алгоритмов. Основные алгоритмические структуры и их реализация на языке программирования. Оценка эффективности алгоритмов. Билет №5. Язык программирования. Типы данных. Реализация основных алгоритмических структур на языке программирования. Основные этапы разработки программ. Билет №6. Технология программирования. Структурное и объектно-ориентированное программирование. Процедуры и функции. Локальные и глобальные переменные. Билет №7. Типы данных. Структуры данных. Обработка массивов. Итеративные и рекурсивные алгоритмы обработки массивов. Многомерные массивы. Билет №8. Основные понятия и операции формальной логики. Законы логики. Логические переменные. Логические выражения и их преобразования. Построение таблиц истинности логических выражений. Билет №9. Логические элементы и схемы. Типовые логические устройства компьютера: полусумматор, сумматор, триггеры, регистры. Описание архитектуры компьютера с опорой на составляющие ее логические устройства. Билет №10. Моделирование как метод познания. Информационные модели. Основные этапы компьютерного моделирования. Билет №11. Информационные основы управления. Общие принципы управления. Роль обратной связи в управлении. Замкнутые и разомкнутые системы управления. Самоуправляемые системы, их особенности. Понятие о сложных системах управления, принцип иерархичности систем. Самоорганизующиеся системы. Билет №12. Архитектура современных компьютеров. Основные устройства компьютера, их функции и взаимосвязь. Магистрально-модульный принцип построения компьютера. Безопасность, гигиена, эргономика, ресурсосбережение, технологические требования при эксплуатации компьютерного рабочего места. Комплектация компьютерного рабочего места в соответствии с целями его использования. Билет №13. Компьютерные сети. Аппаратные средства компьютерных сетей. Топология локальных сетей. Характеристики каналов (линий) связи. Профессии, связанные с обеспечением эксплуатации сетей. Билет №14. Основные этапы становления информационного общества. Информационные ресурсы государства, их структура. Образовательные информационные ресурсы. Информационная этика и право, информационная безопасность. Правовые нормы, относящиеся к информации, правонарушения в информационной сфере, меры их предотвращения. Билет №15. Классификация и характеристика программного обеспечения компьютера. Взаимосвязь аппаратного и программного обеспечения компьютера. Многообразие операционных систем. Понятие о системном администрировании. Программные и аппаратные средства для решения различных профессиональных задач. Билет №16. Компьютерные вирусы и антивирусные программы. Специализированное программное обеспечение для защиты программ и данных. Технологии и средства защиты информации в глобальной локальной компьютерных сетях от разрушения, несанкционированного доступа. Билет №17. Понятие файла. Файлы прямого и последовательного доступа. Файловый принцип организации данных. Операции с файлами. Типы файлов. Аппаратное обеспечение хранения данных и функционирования файловой системы. Билет №18. Виды профессиональной информационной деятельности человека и используемые инструменты (технические средства и информационные ресурсы). Профессии, связанные с построением математических и компьютерных моделей, программированием, обеспечением информационной деятельности людей и организаций. Билет №19. Кодирование графической информации. Растровая и векторная графика. Средства и технологии работы с графикой. Создание и редактирование графических информационных объектов средствами графических редакторов, систем презентационной и анимационной графики. Форматы графических файлов. Способы сжатия. Билет №20. Кодирование звуковой информации. Форматы звуковых файлов. Ввод и обработка звуковых файлов. Использование инструментов специального программного обеспечения и цифрового оборудования для создания и преобразования звуковых файлов.
|
Билет №9 Логические элементы и схемы. Типовые логические устройства компьютера: полусумматор, сумматор, триггеры, регистры. Описание архитектуры компьютера с опорой на составляющие ее логические устройства Обсудив в билете №8 теоретические аспекты логических функций, сегодня мы поговорим об их практической реализации в виде логических элементов. Следует особо подчеркнуть, что в настоящее время основу всех компьютерных устройств (включая даже встроенные в бытовую технику!) составляют двоичные электронные логические элементы. Поэтому понимание базовых идей их функционирования для представления об общей логике работы компьютера весьма полезно. Может показаться, что для реализации всевозможных логических функций требуется большое разнообразие логических элементов. Как ни удивительно, но это не так. Из теории логических функций следует, что достаточно их очень небольшого базового набора, чтобы с помощью различных комбинаций, его составляющих, можно было получить абсолютно произвольную функцию, сколь бы сложной она не была. Следовательно, и количество базовых логических элементов, которые соответствуют данным функциям, к счастью, невелико. Базисный набор может быть сформулирован различными способами, но, как правило, используется классическая «тройка» логических операций И, ИЛИ, НЕ. Именно эта «тройка» применяется в книгах по логике, а также во всех языках программирования – от машинных кодов до языков высокого уровня. Внутренняя схема логического элемента может быть различной, более того, она может существенно совершенствоваться по мере развития технологий производства, но логические функции всегда остаются неизменными. Часто для удобства синтеза логических схем к перечисленному списку добавляют еще элемент «исключающий ИЛИ», который позволяет сравнивать двоичные коды на совпадение. Данная операция имеет и другие практически полезные свойства, в частности, восстанавливает исходные данные в случае повторного применения, что удобно использовать для временного наложения видеоизображений. Тем не мене классический базис не является единственным. Более того, для практической реализации логических схем инженеры предпочитают альтернативный вариант – на базе единственного комбинированного логического элемента И-НЕ. Читатели, которые заинтересовались данным вопросом, могут обратиться к книге Р.Токхейма или аналогичной, где показано, как из элементов И_НЕ можно построить все остальные примитивы классического базиса. Отметим, что на практике логические элементы могут иметь не только два, но и значительно большее количество входов. Первоначально тезис о построении любых логических устройств на основе некоторого простого базиса был технически реализован «один к одному» : были разработаны и выпускались интегральные микросхемы (ИМС), соответствующие основным логическим действиям. Потребитель, комбинируя имеющиеся в его распоряжении элементы, мог получить схему с реализацией любой необходимой логики. Довольно быстро стало ясно, что подобное «строительство здания из отдельных кирпичиков» слишком трудоемко и не может удовлетворить постоянно растущие практические потребности. Промышленность увеличила интеграции микросхем и начала выпускать более сложные типовые узлы: триггеры, регистры, счетчики, дешифраторы, сумматоры и т.д. (продолжая аналогию со строительством, этот шаг, видимо, следует уподобить панельному способу домостроения). Новые микро схемы давали возможность реализовать еще более сложные электронные логические устройства, но зато ассортимент выпускаемых микросхем расширился. Поскольку человечеству свойственно не останавливаться на достигнутом, рост возможностей породил новые потребности. Необходимым образом последовал переход к большим интегральным схемам (БИС), представлявшим собой функционально законченные узлы, А не отдельные компоненты для их создания (как тут не вспомнить блочный метод постройки здания из готовых комнат). Наконец, дальнейшая эволюция технологий производства ИМС привела к настолько высокой степени интеграции, что в одной БИС содержалось функционально законченное изделие: часы, калькулятор, небольшая специализированная ЭВМ. Примечание. Немногие, вероятно, знают, что появление первых микропроцессоров было связано вовсе не с попытками воспроизвести ЭВМ в одном кристалле: действительной причиной явилось стремление существенно ограничить ассортимент логических микросхем, повышая их универсальность и, как следствие, понижая стоимость за счет резкого роста объемов производства. Весьма поучительная история о замене дюжины специализированных микросхем одной программируемой, что, собственно, и привело к созданию инженером М.Хоффом первого микропроцессора Intel 4004, рассказывая в книге А.П. Частикова. Если мы посмотрим на внутреннее устройство типичного современного компьютера, то увидим там ИМС очень высокого уровня интеграции: микропроцессор, модули ОЗУ, котроллеры внешних устройств и д.р. Фактически каждая микросхема или небольшая группа микросхем образует функционально законченный блок. Уровень сложности блока таков, что разобраться в его внутреннем устройстве для неспециалиста не то чтобы нецелесообразно, а просто невозможно. К тому же выпускаемые промышленностью ИМС постоянно совершенствуются и усложняются. В результате оказывается, что для понимания наиболее общих принципов работы современной ЭВМ удобнее и правильнее рассмотреть несколько типовых узлов, а изучение поведения отдельных БИС заменить изучением функциональной схемы компьютера. В качестве характерных цифровых устройств мы выберем два наиболее важных и интересных – сумматор и триггер. Первое из них замечательно тем, что составляет основу арифметико-логического устройства процессора, а второе, будучи универсальным устройством для хранения одного бита информации., имеет еще более широкое применение – от регистров процессора до элементов памяти. Дополнительно подчеркнем, что выбранные логические схемы принадлежат к разным типам. Выходные сигналы сумматора определяются исключительно установившимся на входе напряжениями и никак не зависят от поступавших ранее сигналов (в литературе такие схемы часто называют комбинационными). Состояние триггера, напротив, зависит от предыстории, т.е. схема имеет память. Перейдем к описанию логической схемы сумматора. Для простоты ограничимся изучением работы отдельного двоичного разряда. В этом случае сумматор будет содержать три входа – бит первого слагаемого А, второго – В и перенос из предыдущего разряда Сi (обозначение происходит от английских слов Carry in - входной перенос). Тем ,для кого термин перенос звучит незнакомо, уместно вспомнить, что означает словосочетание «ноль пишем один в уме», которое они часто повторяли про себя, суммируя в младших классах числа на листке бумаги. Таблица истинности для полного одноразрядного сумматора имеет вид:
Особых комментариев к этой таблице не требуется. Может быть, только стоит напомнить тот факт, что 1+1=0 и 1 «в уме» (т.е. на выходе С0, что расшифровывается как Carry out, т.е.выходной перенос), поскольку все действия выполняются в двоичной системе. Построить сразу полный сумматор – задача для начинающего непростая. Она еще более усложняется, если при этом требуется использовать логические элементы из реально существующего ассортимента интегральных микросхем. К счастью, для понимания принципов работы суммирующих схем ЭВМ существует еще более простое решение, если воспользоваться логическими элементами «исключающее ИЛИ». При построении схемы удобно сумматор представить в виде двух полусумматоров, из которых первый складывается разряды А и В, а второй к полученному результату прибавляет бит переноса из предыдущего разряда Сi. Таблица истинности для полусумматора значительно упрощается:
Теперь мысленно объединим в приведенной таблице столбцы А, В и С0. Что напоминает вам полученная таблица? Конечно же базовый логический элемент И! Аналогично, сравнив первые три столбца А, В и S с таблицей истинности для элемента «исключающее ИЛИ», можно убедиться, что они совпадут (рекомендуем читателям самостоятельно убедиться этим, а также проверить тот факт, что сумма S равна 1 только в случае несовпадения исходных битов). Таким образом, для реализации полусумматора достаточно соединить параллельно входы двух логических элементов! Заметим, что для суммирования младшего разряда одного полусумматора уже достаточно, т.к в этом случае сигнал входного переноса отсутствует. А если соединить два полусумматора, то получится полный сумматор, способный осуществить сложение одного бита чисел с учетом возможности переноса. Перейти к многообразным числам можно, например, путем последовательного соединения соответствующего количества сумматоров. Мы не будем обсуждать возникающие при этом детали, связанные с необходимостью ускорения процесса переноса в такой схеме; думается , мы уже изучили вполне достаточно, чтобы иметь некоторое представление о том , как компьютер производит свои вычисления. Стоит особо подчеркнуть, что сумматор играет важную роль в реализации не только сложения, но и других арифметических действий. Например, вычитание обычно заменяется сложением с дополнительным кодом вычитаемого, а алгоритм умножения «столбиком» легко сводится к комбинации сложений и сдвигов. Таким образом, сумматор необходимой разрядности фактически является основой арифметического устройства современного компьютера. Перейдем теперь к описанию работы триггера. Таблица истинности имеет следующий вид:
Как видно, триггер собран из четырех логических элементов И-НЕ, причем два из них играют вспомогательную роль инверторов входных сигналов. Триггер имеет два входа, обозначенные буквой на схеме R и S, а также два выхода, помеченные буквой Q, - прямой и инверсный (черта над Q у инверсного выхода означает отрицание). Триггер устроен таким образом, что на прямом и инверсном выходах сигналы всегда противоположны. Как работает триггер? Пусть на входе R установлена 1, а на S - 0. Логические элементы D1 и D2 инвертируют эти сигналы, т.е. меняют их значение на противоположные; в результате на вход элемента D3 поступает 1, а на D4 -0. Поскольку на одном из входов D4 имеется 0, независимо от состояния другого входа на его выходе (он же является инверсным выходом триггера!) обязательно установится 1. Эта единица передается на вход элемента D3 и в сочетании с 1 на другом входе порождает на выходе триггера устанавливается 0, а на инверсном – 1. Обозначение состояния триггера по договоренности связывается с прямым выходом. Тогда при описанной выше комбинации входных сигналов результирующее состояние можно условно назвать нулевым: говорят, что триггер устанавливается в 0 или сбрасывается. Сброс по-английски называется Reset, отсюда вход, появление сигнала на котором приводит к сбросу триггера, принято обозначать буквой R. Приведите аналогичные рассуждения для «симметричного» случая R=0 и S=1. Вы увидите, что теперь, наоборот, на прямом выходе получится логическая 1, а на инверсном – 0. Триггер перейдет в единичное состояние – установится (установка по-английски Set). Далее рассмотрим наиболее распространенную и интересную ситуацию R=0 и S=0, когда входных сигналов нет. Тогда на входы элементов D3 и D4, связанные с R и S, будет подана 1, и их выходной сигнал будет зависеть от напряжения на других входах. Нетрудно убедиться, что такое состояние будет устойчивым. Пусть, например, на прямом выходе была 1. Тогда наличие единиц на обоих входах элемента D4 «подтверждает» нулевой сигнал на его выходе. В свою очередь, наличие 0 на инверсном выходе передается на D3 и поддерживает его выходное единичное состояние. Аналогично доказывается устойчивость картины и для противоположного состояния триггера, когда Q=0. Таким образом, при отсутствии входных сигналов триггер сохраняет свое «предыдущее» состояние. Иными словами, если на вход R подать 1, а затем убрать, триггер установится в нулевое состояние и будет его сохранять, пока не поступит сигнал на другой вход S. В последнем случае он перебросится в единичное состояние и после прекращения действия входного сигнала будет сохранять на прямом входе 1. Мы видим, что триггер обладает замечательным свойством: после снятия входных сигналов он сохраняет свое состояние, а значит, может служить устройством для хранения одного бита информации. В заключение проанализируем последнюю комбинацию входных сигналов R=1 и S=1. Нетрудно убедиться (проделайте необходимые рассуждения Самостоятельно), что в этом случае на обоих выходах триггера установится 1! Такое состояние, помимо своей логической абсурдности, еще и является неустойчивым: после снятия входных сигналов триггер случайным образом перейдет в одно из своих устойчивых состояний. Вследствие этого комбинация R=1 и S=1 на практике не используется и является запрещенной. Мы рассмотрели простейший RS-триггер. Существуют и другие разновидности этого интересного и полезного устройства. Все они различаются не столько принципом работы, сколько входной логикой, усложняющей «поведение» триггера. Подобно тому, как объединяются для обработки двоичных чисел однобитные схемы сумматоров, для хранения многоразрядных данных триггеры объединяются в единый блок, называемый регистром. Над регистром, как над единым целым, можно производить ряд стандартных операций: сбрасывать (обнулять), заносить в него код и некоторые другие. Причем часто регистры способны не просто хранить информацию, но и обрабатывать ее. Типичными примерами такого типа могут служить регистр, который способен сдвигать находящийся в нем двоичный код, или регистр, подсчитывающий количество поступающих импульсов, - счетчик. С выходом триггеров регистра сигнала могут поступать на другие цифровые устройства. Особый интерес с точки зрения принципов функционирования компьютера представляет схема анализа равенства (или неравенства) регистра нулю, которая позволяет организовать по этому признаку условный переход. Для n-разрядного двоичного регистра потребуется n-входовый элемент И4 , сигналы для которого удобнее снимать с инверсных выходов триггеров. Фактически такая схема анализа выполняется комбинированную логическую операцию НЕ-И. В самом деле, пусть содержимое всех битов регистра равно 0. Тогда на вход элемента И с инверсных выходов триггеров поступают все 1 и результат z=1. Если же хотя бы один из разрядов отличен от 0, то с его инверсного выхода снимается 0 и этого, как известно, уже достаточно, чтобы получить выходной сигнал z=0 независимо от состояния всех остальных входов элемента И. Таким образом, изображенная логическая схема вырабатывает управляющий сигнал равенства результата 0, что может использоваться, например, для организации ветвления по соответствующему условию. Кстати, переход по знаку числа реализовать еще проще – достаточно проанализировать состояние знакового (обычно старшего) разряда: если он установлен в 1, то регистр содержит отрицательное число. Наличие управляющих признаков, устанавливаемых в зависимости от полученного результата операции, является неотъемлемым свойством процессоров. Оно необходимо дл организации выполнения инструкций ветвления и цикла. Триггеры очень широко применяются в компьютерной технике. Помимо уже описанного применения в составе разнообразных регистров, на их основе могут еще изготовляться быстродействующие ИМС статического ОЗУ ( в том числе кэш-память0. Так что в состав любого микропроцессора входит множество триггеров, выполняющих самые разнообразные функции. Мы с вами изучили только два из многочисленных устройств вычислительной технике – сумматор и регистры. Казалось бы, много ли можно понять, зная всего два этих устройства? Оказывается, не так уж и мало. Можно, например, весьма успешно попытаться представить себе, как строится арифметическое устройство процессора. В самом деле, подумаем, каким образом можно спроектировать схему для реализации сложения двух чисел. Очевидно, что для хранения исходных чисел потребуется два триггерных регистра. Их выводы подадим на входы сумматора, так что на выводах последнего сформируется сигналы, соответствующие двоичному коду суммы. Для фиксации (запоминания) результирующего числа потребуется еще один регистр, который можно снабдить описанными выше схемами формирования управляющих признаков. Наша картина получается настолько естественной и реалистичной, что мы можем найти ее в наиболее подробной учебной литературе в качестве основы устройства простых учебных моделей компьютера. В частности, очень похоже выглядит описание внутреннего устройства процессора учебного компьютера «Нейман». Подводя итоги, подчеркнем, что в процессе рассмотрения материала билета мы прошли путь от изучения простейшего единичного логического элемента до понимания наиболее общих идей построения весьма крупных узлов ЭВМ, таких, как арифметическое устройство. Следующий уровень знакомства с логикой работы компьютера – на уровне функциональных устройств (процессор, память и устройства ввода/вывода), будет подробно изложен в билете №12.
|
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |